首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Journal of Physiology and Biochemistry - Lysophosphatidic acid (LPA) acts through the activation of G protein-coupled receptors, in a Ca2+-dependent manner. We show the effects of LPA on the plasma...  相似文献   

2.
Chen X 《生理学报》2007,59(5):619-627
溶血磷脂酸(1ysophosphatidic acid,LPA)是一种十分活跃的磷脂信号分子,具有广泛的生物学效应,包括诱导神经轴突回缩、应力纤维形成、促进血小板凝集、诱导平滑肌收缩、刺激血管平滑肌细胞增殖等。LPA通过其受体及耦联的G蛋白调节细胞内信号途径,介导各种生物学效应。心脏组织中存在多种LPA受体亚型,尤其受体LPAl亚型在心脏组织中的含量仅次于脑,位居第二,暗示LPA在心脏中有重要的生物学功能。本文着重对LPA的5种受体亚型的组织分布、与G蛋白的耦联和对第二信使的活性调节,以及LPA及其受体亚型对心脏细胞的生长调节作一综述。  相似文献   

3.
Lysophospholipids in the limelight: autotaxin takes center stage   总被引:10,自引:0,他引:10  
Lysophosphatidic acid (LPA) is a serum phospholipid that evokes growth factor-like responses in many cell types through the activation of its G protein-coupled receptors. Although much is known about LPA signaling, it has remained unclear where and how bioactive LPA is produced. Umezu-Goto et al. (2002)(this issue, page 227) have purified a serum lysophospholipase D that generates LPA from lysophosphatidylcholine and found it to be identical to autotaxin, a cell motility-stimulating ectophosphodiesterase implicated in tumor progression. This result is surprising, as there was previously no indication that autotaxin could act as a phospholipase.  相似文献   

4.
Lysophosphatidic acid (LPA) is a bioactive lipid mediator with diverse physiological and pathological actions on many types of cells. Originally, LPA was thought to elicit its biological functions through three subtypes of endothelial differentiation gene (Edg) family G protein-coupled receptors (LPA1, LPA2 and LPA3) until our group identified a fourth subtype, LPA4. The discovery of this receptor, which is structurally distinct from the Edg family LPA receptors, led to the identification of two additional LPA receptors, LPA5 and LPA6, homologous to LPA4. These 'non-Edg family' LPA receptors now provide a new framework for understanding the diverse functions of LPA, including vascular development, platelet activation and hair growth. In this review, we summarize the identification, intracellular signalling and biological functions of this novel cluster of LPA receptors.  相似文献   

5.
While it is well known that lysophosphatidic acid (LPA) mediates diverse physiological and pathophysiological responses through the activation of G protein-coupled LPA receptors, the specificity and molecular mechanisms by which different LPA receptors mediate these biological responses remain largely unknown. Recent identification of several PDZ proteins and zinc finger proteins that interact with the carboxyl-terminal tail of the LPA(2) receptor provides a considerable progress towards the understanding of the mechanisms how the LPA(2) receptor specifically mediates LPA signaling pathways. These findings have led to the proposal that there are at least two distinct protein interaction motifs present in the carboxyl-terminus of the LPA(2) receptor. Together, these data provide a new concept that the efficiency and specificity of the LPA(2) receptor-mediated signal transduction can be achieved through the cross-regulation between the classical G protein-activated signaling cascades and the interacting partner-mediated signaling pathways.  相似文献   

6.
Chang CL  Liao JJ  Huang WP  Lee H 《Autophagy》2007,3(3):268-270
Lysophosphatidic acid (LPA) is a platelet-enriched bioactive lysophospholipid. By binding to its cognitive G protein-coupled receptors, which are encoded by endothelial differentiation genes (edgs), LPA regulates various cellular activities including proliferation, survival, and migration. Currently, little is known about the influences of LPA on autophagy, a pivotal mechanism for cell survival during conditions of starvation. Herein we present data indicating that LPA attenuates starvation-induced autophagy, by monitoring the percentage of LC3-II, an autophagy indicator, in human prostate PC-3 cells. In addition, by using cells stably expressing EGFP-LC3, LPA is shown to inhibit the formation of autophagosomes in serum-starved conditions. Our results suggest that in these conditions, LPA inhibits autophagy, which might facilitate early cancer development.  相似文献   

7.
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are extracellular ligands for a family of G protein-coupled receptors (GPCRs), LPA1/2/3 and S1P1/2/3/4/5. Through coupling to multiple classes of G proteins and activating multiple signaling pathways, LPA/S1P receptors have been shown to be integral players for many essential cellular and physiological processes. Generation and analysis of mice deficient in each of LPA1, LPA2, S1P1, S1P2, and S1P3 have provided valuable information on the in vivo roles of these receptors. This review is focussed on expression patterns of each receptor gene in wild-type mice, targeted deletion approaches for generating mutant animals, main phenotypes of receptor-null mice, and alterations in signaling characteristics in receptor-deficient primary cells. Altogether, these data give insights to the importance of LPA/S1P receptors at the cellular and organismal level.  相似文献   

8.
Lysophosphatidic acid (LPA; 1-acyl-sn-glycerol-3-phosphate), an abundant constituent of serum, mediates multiple biological responses via G protein-coupled serpentine receptors. Schwann cells express the LPA receptors (Edg receptors), which, once activated, have the potential to signal through G(alphai) to activate p21(ras) and phosphatidylinositol 3-kinase, through G(alphaq) to activate phospholipase C, or through G(q12/13) to activate the Rho pathway. We found that the addition of serum or LPA to serum-starved Schwann cells rapidly (10 min) induced the appearance of actin stress fibers via a Rho-mediated pathway. Furthermore, LPA was able to rescue Schwann cells from apoptosis in a G(alphai)/phosphatidylinositol 3-kinase/MEK/MAPK-dependent manner. In addition, LPA increased the expression of myelin protein P(0) in Schwann cells in a Galpha(i)-independent manner but dependent on protein kinase C. By means of pharmacological and overexpression approaches, we found that the novel isozyme protein kinase Cdelta was required for myelin P(0) expression. Thus, the multiple effects of LPA in Schwann cells (actin reorganization, survival, and myelin gene expression) appear to be mediated through the different G protein-dependent pathways activated by the LPA receptor.  相似文献   

9.
10.
Lysophospholipids have long been recognized as membrane phospholipid metabolites, but only recently lysophosphatidic acids (LPA) have been demonstrated to act on specific G protein-coupled receptors. The widespread expression of LPA receptors and coupling to several classes of G proteins allow LPA-dependent regulation of numerous processes, such as vascular development, neurogenesis, wound healing, immunity, and cancerogenesis. Lysophosphatidic acids have been found to induce many of the hallmarks of cancer including cellular processes such as proliferation, survival, migration, invasion, and neovascularization. Furthermore, autotaxin (ATX), the main enzyme converting lysophosphatidylcholine into LPA was identified as a tumor cell autocrine motility factor. On the other hand, cyclic phosphatidic acids (naturally occurring analogs of LPA generated by ATX) have anti-proliferative activity and inhibit tumor cell invasion and metastasis. Research achievements of the past decade suggest implementation of preclinical and clinical evaluation of LPA and its analogs, LPA receptors, as well as autotaxin as potential therapeutic targets.  相似文献   

11.
Bioactive lysophospholipids and their G protein-coupled receptors   总被引:20,自引:0,他引:20  
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are serum-borne lysophospholipids that signal through their cognate G protein-coupled receptors to evoke a great variety of responses in numerous cell types. In addition to stimulating cell proliferation and survival, LPA and S1P induce profound cytoskeletal changes through Rho-mediated signaling pathways, leading to such diverse responses as cell rounding, neurite retraction, and modulation of tumor cell invasiveness (transcellular migration). A major recent advance is the identification of a subfamily of heptahelical receptors for LPA and S1P.  相似文献   

12.
Lysophosphatidic acid (LPA) acts via binding to specific G protein-coupled receptors and has been implicated in the biology of breast cancer. Here, we characterize LPA receptor expression patterns in common established breast cancer cell lines and their contribution to breast cancer cell motility. By measuring expression of the LPA receptors LPA1, LPA2, and LPA3 with real-time quantitative PCR, we show that the breast cancer cell lines tested can be clustered into three main groups: cells that predominantly express LPA1 (BT-549, Hs578T, MDA-MB-157, MDA-MB-231, and T47D), cells that predominantly express LPA2 (BT-20, MCF-7, MDA-MB-453, and MDA-MB-468), and a third group that shows comparable expression level of these two receptors (MDA-MB-175 and MDA-MB-435). LPA3 expression was detected primarily in MDA-MB-157 cells. Using a Transwell chemotaxis assay to monitor dose response, we find that cells predominantly expressing LPA1 have a peak migration rate at 100 nM LPA that drops off dramatically at 1 µM LPA, whereas cells predominantly expressing LPA2 show the peak migration rate at 1 µM LPA, which remains high at 10 µM. Using BT-20 cells, LPA2-specific small interfering RNA, and C3 exotransferase, we demonstrate that LPA2 can mediate LPA-stimulated cell migration and activation of the small GTPase RhoA. Using LPA2 small interfering RNA, exogenous expression of LPA1, and treatment with Ki16425 LPA receptor antagonist in the BT-20 cells, we further find that LPA1 and LPA2 cooperate to promote LPA-stimulated chemotaxis. In summary, our results suggest that the expression of both LPA1 and LPA2 may contribute to chemotaxis and may permit cells to respond optimally to a wider range of LPA concentrations, thus revealing a new aspect of LPA signaling. G protein-coupled receptor; lysophosphatidic acid; chemotactic migration; GTPase  相似文献   

13.
Ligand recognition by G protein-coupled receptors (GPCR), as well as substrate recognition by enzymes, almost always shows a preference for a naturally occurring enantiomer over the unnatural one. Recognition of lysophosphatidic acid (LPA) by its receptors is an exception, as both the natural L (R) and unnatural D (S) stereoisomers of LPA are equally active in bioassays. In contrast to the enantiomers of LPA, analogs of N-acyl-serine phosphoric acid (NASPA) and N-acyl-ethanolamine phosphoric acid (NAEPA), which contain a serine and an ethanolamine backbone, respectively, in place of glycerol, are recognized in a stereoselective manner. This stereoselective interaction may lead to the development of receptor subtype-selective antagonists. In the present study, we review the stereochemical aspects of LPA pharmacology and describe the chemical synthesis of pure LPA enantiomers together with their ligand-binding properties toward the LPA1, LPA2, and LPA3 receptors and their metabolism by lipid phosphate phosphatase 1 (LPP1). Finally, we evaluate the concept of stereopharmacology in developing novel ligands for LPA receptors.  相似文献   

14.
15.
Lysophosphatidic acid (LPA) is a potent activator of human platelets in vitro. Recently, the G protein-coupled receptor LPA5/GPR92 has been identified to be the relevant LPA receptor responsible for the activation of human platelets by LPA. In a high-throughput screening campaign we identified a diphenyl pyrazole carboxylic acid as a small-molecule inhibitor for LPA5. Confirmation for the specificity of this small molecule was achieved in human platelets as the relevant cellular in vitro model. We could confirm using antagonists for alternative LPA receptors that we identified in our work the first non-lipid, small-molecule inhibitor for LPA5/GPR92 specifically inhibiting LPA-mediated platelet activation in vitro.  相似文献   

16.
The lysophospholipids, lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), regulate various signaling pathways within cells by binding to multiple G protein-coupled receptors. Receptor-mediated LPA and S1P signaling induces diverse cellular responses including proliferation, adhesion, migration, morphogenesis, differentiation and survival. This review will focus on major components of lysophospholipid signaling: metabolism, identification and expression of LPA and S1P receptors, general signaling pathways and specific signaling mechanisms in mouse embryonic fibroblasts. Finally, in vivo effects of LP receptor gene deletion in mice will be discussed.  相似文献   

17.
Sphingosine-1-phosphate (S1P) is a bioactive lysosphingolipid implicated in mitogenesis and cytoskeletal remodelling, but its mechanism of action is poorly understood. We report here that in N1E-115 neuronal cells, S1P mimics the G protein-coupled receptor agonist lysophosphatidic acid (LPA) in rapidly inducing neurite retraction and soma rounding, a process driven by Rho-dependent contraction of the actin cytoskeleton. S1P is approximately 100-fold more potent than LPA in evoking these shape changes, with an EC50 as low as 1.5 nM. Microinjection of S1P has no effect, neither has addition of sphingosine or ceramide. As with LPA, S1P action is inhibited by suramin and subject to homologous desensitization; however, the responses to S1P and LPA do not show cross-desensitization. We conclude that S1P activates its own high affinity receptor to trigger Rho-regutated cytoskeletal events. Thus, S1P and LPA may belong to an emerging family of bioactive lysophospholipids that act through distinct G protein-coupled receptors to mediate similar actions.  相似文献   

18.
Mitogenic action of LPA in prostate   总被引:4,自引:0,他引:4  
The lipid growth factor lysophosphatidic acid (LPA) elicits multiple cellular responses, including cell growth and survival. LPA acts upon target cells by activating its cognate receptors, which belong to the G protein-coupled endothelial differentiation gene (EDG) family. To date, three known LPA receptors, termed LPA1, LPA2 and LPA3, have been molecularly characterized and cloned. Here, we review recent data describing the molecular steps involved in the LPA receptor-mediated activation of mitogenic extracellular signal-regulated kinase (ERK) pathway in prostate cancer. Induction of ERK by LPA proceeds via Gbetagamma-dependent activation of tyrosine kinases, including the epidermal growth factor (EGF) receptor and c-Src. Further, LPA-induced ERK activation involves matrix metalloproteinases (MMPs), which cause the release of active EGFR ligands. Finally, we present data demonstrating a correlation between the mitogenic effects of LPA and expression of the lp(A1) gene in the prostate cancer cells.  相似文献   

19.
Lysophosphatidic acid (LPA), a water-soluble phospholipid, has gained significant attention in recent years since the discovery that it acts as a potent signaling molecule with wide-ranging effects on many different target tissues. There are currently five identified G protein-coupled receptors for LPA and more are undergoing validation. The complexity of the expression pattern and signaling properties of LPA receptors results in multiple influences on developmental, physiological, and pathological processes. This review provides a summary of LPA receptor signaling and current views on the potential involvement of this pathway in human diseases that include cardiovascular, cancer, neuropathic pain, neuropsychiatric disorders, reproductive disorders, and fibrosis. The involvement of LPA signaling in these processes implicates multiple, potential drug targets including LPA receptor subtypes and LPA metabolizing enzymes. Modulation of LPA signaling may thus provide therapeutic inroads for the treatment of human disease.  相似文献   

20.
Lysophosphatidic acid as a novel cell survival/apoptotic factor   总被引:13,自引:0,他引:13  
Lysophosphatidic acid (LPA) activates its cognate G protein-coupled receptors (GPCRs) LPA(1-3) to exert diverse cellular effects, including cell survival and apoptosis. The potent survival effect of LPA on Schwann cells (SCs) is mediated through the pertussis toxin (PTX)-sensitive G(i/o)/phosphoinositide 3-kinase (PI3K)/Akt signaling pathways and possibly enhanced by the activation of PTX-insensitive Rho-dependent pathways. LPA promotes survival of many other cell types mainly through PTX-sensitive G(i/o) proteins. Paradoxically, LPA also induces apoptosis in certain cells, such as myeloid progenitor cells, hippocampal neurons, and PC12 cells, in which the activation of the Rho-dependent pathways and caspase cascades has been implicated. The effects of LPA on both cell survival and apoptosis underscore important roles for this lipid in normal development and pathological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号