首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The postnatal development, between 0 and 90 days, of three hindlimb muscles and diaphragm of the rat was investigated with respect to fiber types and diameter (histochemistry) and substrate oxidation rates and enzyme activities (biochemistry). The process of muscle fiber differentiation into mature patterns was evaluated by visual classification into 3 or 4 groups having different staining intensities for 3 enzyme-histochemical reactions, enabling 26 fiber types to be distinguished. These exhibited specific sizes and growth rates that varied among the muscles. One of the hindleg muscles (flexor digitorum brevis) remained much more immature than soleus and extensor digitorum longus.The histochemical and biochemical findings correlated well. The capacity for pyruvate and palmitate oxidation, and the activities of cytochrome c oxidase and citrate synthase, increased markedly between 9 and 37 days in soleus and extensor digitorum longus (except citrate synthase in the latter) but not in flexor digitorum brevis. Creatine kinase activity increased in all hindlimb muscles. Both the capacity and the activity of pyruvate oxidation (determined in homogenates and intact isolated muscles, respectively), were in accordance with the fiber type composition. In contrast to oxidation capacity, the activity of pyruvate oxidation decreased after birth until the mature stage, when a value of 18–42% of that of early postnatal muscles was recorded.  相似文献   

2.
Few studies have examined potential for endothelium-dependent vasodilation in skeletal muscles of different fiber-type composition. We hypothesized that muscles composed of slow oxidative (SO)- and/or fast oxidative glycolytic (FOG)-type fibers have greater potential for endothelium-dependent vasodilation than muscles composed of fast glycolytic (FG)-type fibers. To test this hypothesis, the isolated perfused rat hindlimb preparation was used with a constant-flow, variable-pressure approach. Perfusion pressure was monitored continuously, and muscle-specific flows were determined by using radiolabeled microspheres at four time points: control, at peak effect of acetylcholine (ACh I; 1-2 x 10(-4) M), at peak effect of ACh after infusion of an endothelial inhibitor (ACh II), and at peak effect of sodium nitroprusside (SNP; 4-5 x 10(-4) M). Conductance was calculated by using pressure and flow data. In the SO-type soleus muscle, conductance increased with ACh and SNP, but the increase in conductance with ACh was partially abolished by the endothelial inhibitor N(G)-nitro-l-arginine methyl ester (control, 0.87 +/- 0.19; ACh I, 2.07 +/- 0.29; ACh II, 1.32 +/- 0.15; SNP, 1.76 +/- 0.19 ml. min(-1). 100 g(-1). mmHg(-1); P < 0.05, ACh I and SNP vs. control). In the FOG-type red gastrocnemius muscle, similar findings were obtained (control, 0.64 +/- 0.11; ACh I, 1.36 +/- 0.21; ACh II, 0.73 +/- 0.16; SNP, 1.30 +/- 0.21 ml. min(-1). 100 g(-1). mmHg; P < 0.05, ACh I and SNP vs. control). In the FG-type white gastrocnemius muscle, neither ACh nor SNP increased conductance. Similar findings were obtained when muscles were combined into high- and low-oxidative muscle groups. Indomethacin had no effect on responses to ACh. These data indicate that endothelium-dependent vasodilation is exhibited by high-oxidative, but not low-oxidative, rat skeletal muscle. Furthermore, endothelium-dependent vasodilation in high-oxidative muscle appears to be primarily mediated by nitric oxide.  相似文献   

3.
4.
The aim of the study was to address discrepant findings in the literature regarding coupling between decreased functional demand during disuse and reduced capillarity. We previously reported [K. Tyml, O. Mathieu-Costello, and E. Noble. Microvasc. Res. 49: 17-32, 1995] that severe disuse of rat extensor digitorum longus (EDL) muscle caused by a 2-wk application of tetrodotoxin (TTX) on the sciatic nerve is not accompanied by capillary loss. Using the same animal model, the present study examined whether this absence of coupling could be explained in terms of 1) too short a duration of disuse and 2) muscle-specific response to disuse. Fischer 344 rats were exposed to either no treatment (control) or to 2- or 8-wk TTX applications. Fiber size, capillary density per fiber cross-sectional area, and capillary-to-fiber (C/F) ratio were determined by morphometry in the EDL muscle (control, 2- and 8-wk groups) and in the superficial portion of medial gastrocnemius (Gas) muscle (control, 2 wk). In both muscles, microvascular blood flow was evaluated by intravital microscopy [red blood cell velocity in capillaries (V(RBC))] and by laser Doppler flowmetry (LDF). Regardless of duration of TTX application or muscle type, TTX-induced disuse resulted in a significant reduction of fiber area (44-71%). However, capillary density increased in EDL muscle (both at 2 and 8 wk) but not in Gas muscle. C/F ratio decreased in EDL muscle at 8 wk (18%) and in Gas muscle (39%). This indicates that the effect on capillarity depended on duration of disuse and on muscle type. V(RBC) and LDF signal were significantly larger in EDL than in Gas muscle. Analysis of change in capillarity vs. V(RBC) suggested that the outcome of disuse may be modulated by blood flow. We conclude that the duration of skeletal muscle disuse per se does not dictate capillary loss, and we hypothesize that discrepant findings of coupling between functional demand and capillarity could be due to the presence/absence of flow-related angiogenesis superimposed on the capillary removal process during disuse.  相似文献   

5.
Insulin-induced translocation of glucose transporters in rat hindlimb muscles   总被引:29,自引:0,他引:29  
Insulin causes a translocation of glucose transporters from intracellular microsomes to the plasma membrane in adipocytes. To determine whether insulin has a similar effect in rat hindlimb muscles, we used glucose-inhibitable cytochalasin B binding to estimate the number of glucose transporters in membrane fractions from insulinized and control muscles. Insulin treatment caused an approx. 2-fold increase in cytochalasin B-binding sites in a plasma membrane fraction and an approx. 70% decrease in cytochalasin B-binding sites in an intracellular membrane fraction. In order to detect this effect of insulin, it was necessary to develop a procedure for isolating a plasma membrane fraction and an intracellular membrane fraction that were not contaminated with sarcoplasmic reticulum. Our results show that, as in adipocytes, insulin stimulates translocation of glucose transporters from an intracellular membrane pool to the plasma membrane in hindlimb skeletal muscles.  相似文献   

6.
The purpose of this study was to investigate the functional impact of acute irreversible inhibition of acetylcholinesterase (AChE) on the fatigability of medial gastrocnemius and plantaris muscles of Sprague-Dawley rats. After treatment with methanesulfonyl fluoride (a lipid-soluble anticholinesterase), which reduced their AChE activity by >90%, these muscles were subjected to an in situ indirect stimulation protocol, including a series of isolated twitch and tetanic contractions preceding a 3-min fatigue regimen (100-ms trains at 75 Hz applied every 1.5 s). During the first minute of the fatigue regimen, the effects of AChE inhibition were already near maximal, including marked reductions in peak tension and the force-time integral (area), as well as a decrement of compound muscle action potential amplitudes within a stimulus train. Neuromuscular transmission failure was the major contributor of the force decreases in the AChE-inhibited muscles. However, despite this neuromuscular transmission failure, muscles of which all AChE molecular forms were nearly completely inhibited were still able to function, although abnormally, during 3 min of intermittent high-frequency nerve stimulation.  相似文献   

7.
Hindlimb unweighting is a commonly used model to study skeletal muscle atrophy associated with disuse and exposure to microgravity. However, a discrepancy in findings between single fibers and whole muscle has been observed. In unweighted solei, specific tension deficits are greater in whole muscle than in single fibers. Also, metabolic enzyme activity when normalized per gram of mass is depressed in whole muscle but not in single fibers. These observations suggest that soleus muscle interstitial fluid volume may be elevated with atrophy caused by unweighting in rats. The purpose of this study was to determine if soleus muscle atrophy induced by unweighting is accompanied by alterations in muscle interstitial fluid volume and to calculate the effect of any such alterations on the muscle specific tension (N/cm2 muscle cross-sectional area). Nine female Wistar rats (200 g) were hindlimb unweighted (HU) by tail suspension. Soleus muscles were studied after 28 days and compared with those from five age-matched control (C) rats. Interstitial fluid volume ([3H]inulin space) and maximum tetanic tension (Po) were measured in vitro at 25 degrees C. Soleus muscles atrophied 58% because of unweighting (C = 147.8 +/- 2.3 mg; HU = 62.3 +/- 3.6 mg, P less than 0.001). Relative muscle interstitial fluid volume increased 107% in HU rats (35.5 +/- 2.8 microliters/100 mg wet mass) compared with the control value of 17.2 +/- 0.5 microliters/100 mg (P less than 0.001); however, absolute interstitial fluid volume (microliters) was unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The occurrence and distribution of muscle spindles was studied in histochemically and conventionally stained serial cross sections of 6-week-old and adult rat masticatory and suprahyoid muscles. Spindles were present in moderate to large numbers in jaw closers, but they were absent in jaw openers and two of four muscles of an accessory suprahyoid group. In jaw closers, 67% or more of the total spindle population was concentrated relatively distant from the temporomandibular joint, in muscle portions which contained large numbers of extrafusal fibers reacting strongly for oxidative enzymes. Because of their location, spindles in these portions should be stretched more and, subsequently, should respond with a greater afferent discharge at any given muscle length than spindles situated nearer to the joint. Spindles in jaw closers, especially the medial pterygoid and deep masseter, often occurred in clusters and complex forms near the terminal branching of intramuscular nerve trunks. No such concentrations were seen in the two muscles of the accessory suprahyoid group that had spindles. The association in jaw closers of spindles with extrafusal fibers high in oxidative enzyme activity is consistent with the view that spindles are the sensory component of a reflex system that recruits these fibers for finely-graded contractions in response to small internal length-changes of the muscle (Botterman et al., '78); however, in jaw openers and two muscles of the accessory suprahyoid group, the absence of spindles, coupled with the presence of large populations of extrafusal fibers high in oxidative enzyme activity, is not easily reconciled with this concept.  相似文献   

9.
10.
Guinea pig soleus, medial gastrocnemius and vastus lateralis muscles were compared for spindle density and distribution, number of intrafusal fibers per spindle and histochemical appearance of the axial bundle. A total of 326 spindles was used in the comparisons. Spindle density was over four times greater in the soleus than in either the medial gastrocnemius or vastus lateralis. In the soleus the spindles were distributed at random, but in the other two muscles no spindles were found in those fascicles in which fast-twitch glycolytic extrafusal fibers predominated. The average number of intrafusal fibers per spindle varied by less than 5% between the three kinds of muscles. About 80% of all spindles located had four intrafusal fibers, two of the nuclear bag type and two of the nuclear chain type. The histochemical appearance of the axial bundle was the same in each kind of muscle. Based on intensities of the myofibrillar adenosine triphosphatase reaction product at polar regions nuclear bag fibers were separable into two histochemical groups; nuclear chain fibers were of only one histochemical type.  相似文献   

11.
Although the soleus muscle comprises only 6% of the ankle plantar flexor mass in the rat, a major role in stance and walking has been ascribed to it. The purpose of this study was to determine if removal of the soleus muscle would result in adaptations in the remaining gastrocnemius and plantaris muscles due to the new demands for force production imposed on them during stance or walking. A second purpose was to determine whether the mass or the fiber type of the muscle(s) removed was a more important determinant of compensatory adaptations. Male Sprague-Dawley rats underwent bilateral removal of soleus muscle, plantaris muscle, or both muscles. For comparison, compensatory hypertrophy was induced in soleus and plantaris muscles by gastrocnemius muscle ablation. After forty days, synergist muscles remaining intact were removed. Mass, and oxidative, glycolytic, and contractile enzyme activities were determined. Despite its role in stance and slow walking, removal of the soleus muscle did not elicit a measurable alteration in muscle mass, or in citrate synthase, lactate dehydrogenase, or myofibrillar ATPase activity in gastrocnemius or plantaris muscles. Similarly, removal of the plantaris muscle, or soleus and plantaris muscles, had no effect on the gastrocnemius muscle, suggesting that this muscle was able to easily meet the new demands placed on it. These results suggest that amount of muscle mass removed, rather than fiber type, is the most important stimulus for compensatory hypertrophy. They also suggest that slow-twitch motor units in the gastrocnemius muscle play an important role during stance and locomotion in the intact animal.  相似文献   

12.
Abstract. Myosin isozymes from the slow soleus and fast EDL muscles of the rat hindlimb were analyzed by pyrophosphate gel electrophoresis, by peptide mapping of heavy chains, and by antibody staining. At the earliest stage examined, 20 days gestation, distinctions between the developing fast and slow muscles were seen by all these criteria; all fibers in the distal hindlimb reacted strongly with antibody to adult fast myosin. Some fibers also reacted with antibody to adult slow myosin; these fibers had a precise, axial distribution in the hindlimb. This pattern of staining which includes the entire soleus, foreshadows the adult distribution of slow fibers and may indicate that the specific pattern of innervation of the limb is already determined. In the early developing soleus there are four fetal and neonatal isozymes plus two isozymes present in equal proportions in the 'slow' area of the pyrophosphate gel. The mobility of these two slow isozymes decreases with maturity and the slowest moving isozyme gradually becomes the dominant species. Thus early diversity between the soleus and EDL is expressed by myosins which are distinct from the mature isozymes. The relative proportion of slow isozymes significantly increases with development and as this occurs the fetal and neonatal isozymes are progressively eliminated. Transiently at least one mature fast isozyme appears in the soleus. This is present at 15 days postpartum and probably correlates with the population of fast, type II fibers, which comprise 50% of this muscle cell population at 15 days. The EDL contained three fetal and neonatal isozymes and only one slow isozyme which does not change in mobility with age. Slow isozymes in the soleus and EDL are thus not identical. Each muscle underwent a unique series of changes until the adult pattern of isozymes and heavy chains was reached about one month postpartum.  相似文献   

13.
14.
15.
This study was designed to examine insulin- and exercise-stimulated glucose uptake and metabolism in the hindlimb muscles of rats after conditions of simulated microgravity. To simulate microgravity, male Sprague-Dawley rats were suspended in a head-down (45 degrees) position with their hindlimbs non-weight bearing (SUS) for 14 days. In addition, rats were assigned to suspension followed by exercise (SUS-E), to cage control (CC), or to exercising control (CC-E) groups. Exercise consisted of five 10-min bouts of treadmill running at the same relative intensity for the CC-E and SUS-E rats (80-90% of maximum O2 consumption). Hindlimb perfusion results indicated that glucose uptake for the entire hindquarter at 24,000 microU/ml insulin (maximum stimulation) was significantly higher in the SUS (8.9 +/- 0.5 mumol.g-1.h-1) than in the CC (7.6 +/- 0.4 mumol.g-1.h-1) rats, signifying an increased insulin responsiveness. Glucose uptake at 90 microU/ml insulin was also significantly higher in the SUS (48 +/- 4; % of maximum stimulation over basal) than in the CC (21 +/- 4%) rats. In addition, exercise-induced increases in glucose uptake for the hindlimbs (133%) and glucose incorporation into glycogen for the plantaris (8.4-fold), extensor digitorum longus (5.4-fold), and white gastrocnemius (4.8-fold) muscles were greater for the SUS-E rats than for the CC-E rats (39% and 1.9-, 1.9-, and 3.0-fold, respectively). Therefore, suspension of the rat with hindlimbs non-weight bearing leads to enhanced muscle responses to insulin and exercise when they were applied separately. However, insulin action appeared to be impaired after exercise for the SUS-E rats, especially for the soleus muscle.  相似文献   

16.
A model for quantitative strength training of hindlimb muscles of the rat   总被引:1,自引:0,他引:1  
Rats were taught to lift up a lever to train the plantar flexors. After 2 wk of adaptation the rats were trained for 36 wk. The mass of weights on the lever rose by 85% over the 36-wk period (P less than 0.05) The estimated force that the plantar flexors had to develop to lift the lever rose by 32% (P less than 0.05), just as the work per lift rose by 28% (P less than 0.05). For the trained group of rats the soleus muscles of the right and the left limb were 34% (P less than 0.05) and 31% (P less than 0.05) heavier, respectively, after the training period than those of the control group. Similarly, the plantaris muscles of both the right and the left limb were 24% heavier (P less than 0.05). For the trained group the maximum twitch and tetanus tensions of the soleus were 63% (P less than 0.05) and 65% (P less than 0.05) higher, respectively. Relative to the plantaris these measures were 79% (P less than 0.05) and 37% (P less than 0.05), respectively. The described model, therefore, seems appropriate for the study of the skeletal muscles' adaptation to usage.  相似文献   

17.
18.
19.
In previous study, we found that the reduced exercise-induced production of reactive oxygen species (ROS) reported in slow-oxidative muscle of hypoxemic rats and also in chronic hypoxemic patients did not simply result from deconditioning. In control rats and after a 3-week period of hindlimb suspension (HS), the slow-oxidative (Soleus, SOL) and fast-glycolytic skeletal muscles (Extensor digitorum longus, EDL) were sampled. We determined the response to direct muscle stimulation (twitch stimulation (TS), Maximal force (Fmax)), twitch amplitude and maximal relaxation rate, tetanic frequency, endurance to fatigue after muscle stimulation (MS), the different fibre types based on their myofibrillar adenosinetriphosphatase (ATPase) activity, and the intra-muscular redox status (Thiobarbituric Acid Reactive Sustances: TBARS, reduced glutathione: GSH, reduced ascorbic acid: RAA). After the 3-w HS period: (1) the contractile properties were modified in SOL only (reduced Fmax and twitch amplitude, increased tetanic frequency); (2) the fibre typology was modified in both muscles (in SOL: increased proportion of IIa and IIc fibres, in EDL: increased proportion of IId/x fibres but decreased proportion of IIb fibres); and (3) only in SOL, the TBARS level increased and the GSH and RAA concentrations decreased at rest and after fatiguing MS. Thus, HS accentuates the exercise-induced ROS production in slow-oxidative muscle in a direction opposite to that measured in chronic hypoxemic rats. This strongly suggests that hypoxemia reduces the ROS production independently from any muscle disuse.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号