首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.

Background and Aims

Invasiveness of some alien plants is associated with their traits, plastic responses to environmental conditions and interpopulation differentiation. To obtain insights into the role of these processes in contributing to variation in performance, we compared congeneric species of Impatiens (Balsaminaceae) with different origin and invasion status that occur in central Europe.

Methods

Native I. noli-tangere and three alien species (highly invasive I. glandulifera, less invasive I. parviflora and potentially invasive I. capensis) were studied and their responses to simulated canopy shading and different nutrient and moisture levels were determined in terms of survival and seedling traits.

Key Results and Conclusions

Impatiens glandulifera produced high biomass in all the treatments and the control, exhibiting the ‘Jack-and-master’ strategy that makes it a strong competitor from germination onwards. The results suggest that plasticity and differentiation occurred in all the species tested and that along the continuum from plasticity to differentiation, the species at the plasticity end is the better invader. The most invasive species I. glandulifera appears to be highly plastic, whereas the other two less invasive species, I. parviflora and I. capensis, exhibited lower plasticity but rather strong population differentiation. The invasive Impatiens species were taller and exhibited higher plasticity and differentiation than native I. noli-tangere. This suggests that even within one genus, the relative importance of the phenomena contributing to invasiveness appears to be species''specific.  相似文献   

2.
Impatiens balfourii was introduced in the beginning of the 20th century from the Himalayas to Southern Europe where it was able to establish. In recent years an increasing number of more northern situated occurrences were recorded. An overview about the current distribution of Impatiens balfourii in Europe is given and new records for Germany are presented. To explore the range of potential habitat conditions, vegetation relevés and autecological experiments were conducted. Gas exchange measurements showed an optimum of net photosynthesis at 24–32 °C and light saturation above 700 μmol m−1 s−1 PPFD without any signs of photoinhibition. A moisture gradient experiment showed that Impatiens balfourii prefers fresh soils of moderate dampness. In contrast to the native I. noli-tangere and to the alien species I. glandulifera and I. capensis, which prefer moister or even wet habitats, Impatiens balfourii resembles in its soil moisture demands the alien Impatiens parviflora which originates also in Central Asia and which is invasive in Europe. But in contrast to I. parviflora and to all other established Impatiens species in Europe, I. balfourii is able to colonize even open habitats with high light intensities. Against this background, a further expansion of Impatiens balfourii in Europe appears to be likely.  相似文献   

3.
The forest canopy cover can directly and indirectly affect soil conditions and hence soil carbon emission through soil respiration. Little is known, however, on the effects of canopy cover on soil respiration under the canopy of different tree species and soil water conditions. We have examined the variation in soil respiration at different soil water conditions (dry <10 %, wet >20 %, v/v) under different tree canopy covers in comparison with the canopy interspace in a temperate coniferous (Pinus armandii Franch) and broadleaved (Quercus aliena var. acuteserrata) mixed forest in central China. The results show that soil respiration measured under tree canopy cover varied with canopy size and soil water content. Soil respiration under small-sized canopies of P. armandii (PS) was higher than that under large-sized (PL) canopies, but the difference was only significant under the dry soil condition. However, soil respiration under large-sized canopies of Q. aliena (QL) was significantly greater than that under small-sized (QS) canopies under both dry and wet soil conditions. The difference in soil respiration between differently sized canopies of Q. aliena (33.5–35.8 %) was significantly greater than that between differently sized canopies of P. armandii (2.4–8.1 %). Differences in soil respiration between inter-plant gaps and under QS canopies in both the dry and wet soil conditions were significant. Significant increases in soil respiration (9.7–32.2 %) during the transition from dry to wet conditions were found regardless of canopy size, but the increase of soil respiration was significantly lower under P. armandii canopies (9.7–17.7 %) than under Q. aliena canopies (25.9–31.5 %). Our findings that the canopy cover of different tree species influences soil respiration under different soil moisture conditions could provide useful information for parameterizing and/or calibrating carbon flux models, especially for spatially explicit carbon models.  相似文献   

4.
The main aim of presented study was the comparison of various extraction methods for the quantitative and qualitative analysis (LC-ESI–MS/MS) of phenolic acids present in extracts obtained from leaves, flowers, and roots of Impatiens glandulifera. The accelerated solvent extraction (ASE) at three temperature ranges (80° C, 100° C, and 120° C), ultrasound assisted extraction (USAE) at 60° C, and traditional extraction in Soxhlet apparatus were used. Taking into account the extraction yield, and the diversity of the individual compounds, ultrasound assisted extraction proved to be the most efficient method, and it was used to determine the content of phenolic acids in leaves of four other Impatiens species, including I. balsamina, I. noli-tangere, I. parviflora, and I. walleriana. Eleven phenolic acids were identified in all examined species. These were protocatechuic, gentisic, 4- hydroxybenzoic, vanillic, trans-caffeic, syringic, trans-p-coumaric, trans- and cis-ferulic, salicylic, and 3-hydroxycinnamic acids. In the extract from the leaves of I. balsamina and I. walleriana, gallic and cis-p-coumaric acids were found additionally. The most abundant compounds in all examined extracts were protocatechuic and 3-hydroxycinnamic acids. The latest acid was found in the highest yield in I. noli-tangere (266.12 μg/g DW). In the leaves of I. glandulifera a great amount of 4-hydroxybenzoic (41.44 μg/g DW), vanillic (61.50 μg/g DW), and trans-p-coumaric (58.42 μg/g DW) acids was also observed. Our results indicate that protocatechuic, 4-hydroxybenzoic, vanillic, trans-p-coumaric, trans-ferulic, and 3-hydroxycinnamic acids were most characteristic of Impatiens species.Additionally, various phenolic-rich extracts from leaves, flowers, and roots of Impatiens glandulifera were tested for antioxidant activity. The highest antiradical activity was detected for roots using Soxhlet extraction (EC50 = 0.055 mg [DE/ml]).The study demonstrated that members of the genus Impatiens, and in particular Impatiens glandulifera, and Impatiens noli-tangere, contain significant amounts of phenolic acids. In addition, extracts from various parts of I. glandulifera could be interesting as novel sources of natural antioxidants.  相似文献   

5.
Impatiens parviflora is one of the most widely spread invasive species in central Europe, yet the factors affecting its spread are still subject to discussion. The aim of this study was to determine which factors affect the spread of I. parviflora. This was achieved by observing the natural spread of the species on 15 permanent transects, in six different habitats, found within the Czech Republic from 2012 to 2016. The transects were divided into 321 plots, whilst data on environmental conditions, as well as of the spread of I. parviflora and its performance, were collected in each plot. The results showed that individual stages of the I. parviflora life-cycle were affected by individual environmental conditions to different extents. The most important factor preventing seedling emergence and establishment was a high cover of herb layer. It did not, however, affect survival of older plants. Thus, I. parviflora can grow in sites with dense cover of herb layer in case the cover formed after I. parviflora seedlings established. Juvenile mortality was the highest in sites with low nutrient levels and low soil moisture. Canopy openness had a negative effect on I. parviflora performance. Impatiens parviflora performed better in neutral soils, in comparison to acidic soils. Oak-hornbeam forests were the most suitable habitat for I. parviflora, followed by acidophilous oak and mixed coniferous forests. However, I. parviflora was able to penetrate into even species-rich habitats, such as thermophilous oak forests, as well as steppe grasslands on rocks. This makes it a potential threat to biodiversity. Only heathlands found on former pastures proved to be unsuitable for I. parviflora, as these remained uninvaded until the end of the study.  相似文献   

6.
Forests understories in Europe are known to generally resist invasion, though some alien plants do invade woodland communities. Here we focused on the impact of the widespread invasive annual Impatiens glandulifera, common along watercourses, but recently spreading in forests up to timberline. We investigated its impact on plant–soil feedback and ecosystem functioning. We recorded >40 variables focusing on: soil characteristics, including micro- and macro-nutrients; characteristics of litter layer and enzyme activity in litter; and richness and species composition of the forest understory. Three treatments were followed for 3 years: plots invaded by I. glandulifera; adjacent invader removal plots within the invaded area; and spatially separated uninvaded plots outside the invaded area. The effect of year-to-year variation was generally greater than that of the treatments, especially in soil and litter characteristics. Copper and boron were higher in invaded than invader removal and uninvaded plots, though in quantities that are unlikely to harm other plants. We found no effect of I. glandulifera on litter characteristics or enzyme activity. Despite almost 80% cover of I. glandulifera, we did not detect any difference in species richness and total vegetation cover between invaded and uninvaded plots. The floristic composition differed among the uninvaded, invader removal and invaded plots across 3 years. Our results indicate that the effect of I. glandulifera on the forest community studied was minor, and largely resulted from its increased shading to other plant species. In conclusion, we show how misleading the evaluation of impacts can be if based on a single season.  相似文献   

7.
Habitat invasibility has been found to increase dramatically following the alteration of ecosystem properties by a nonnative species. Robinia pseudoacacia, black locust, is a nitrogen-fixing, clonal tree species that aggressively invades open habitats and expands outside of plantations worldwide. Robinia pseudoacacia stands in Cape Cod National Seashore were particularly susceptible to a hurricane in 1991 that caused widespread blowdown and a dramatic reduction in Robinia in some stands. We used this change to investigate the lasting ecological effects of this nonnative species on this upland coastal ecosystem. We established replicate clusters of 20 × 20 m field plots within 50 m of each other that contained native pitch pine (Pinus rigida) and oak (Quercus velutina, Q. alba) forest, living Robinia stands, and stands in which Robinia was eliminated or reduced to less than 5 % cover by the hurricane. Net nitrification and extractable soil nitrate concentration differed significantly between stand types, in the order Robinia > former Robinia > pine-oak. Nonnative species cover differed significantly between each stand type, in the order Robinia > former Robinia > pine-oak. Invasion of Robinia pseudoacacia increased soil net nitrification and nitrogen availability and precipitated a change in forest species composition that favored nonnative species. The presence of elevated soil nitrogen and nonnative species persisted at least 14 years after the removal of the original invading tree species, suggesting that the invasion of a tree species left a legacy of altered soil biogeochemistry, a higher number of nonnative species, and greater nonnative species cover.  相似文献   

8.
Understanding the responses of invasive and native populations to environmental change is crucial for reliable predictions of invasions in the face of global change. While comparisons of responses across invasive species with different life histories have been performed before, comparing functional traits of congeneric native and invasive species may help to reveal driving factors associated with invasion. Here we compared morphological functional trait patterns of an invasive species (Impatiens parviflora) with its congeneric native species (I. noli-tangere) along an approximately 1600 km European latitudinal gradient from France (49°34′N) to Norway (63°40′N). Soil nitrogen was recorded during six weeks of the growing season, and light, soil moisture, and nutrient availability were estimated for each sampled population using community weighted means of indicator values for co-occurring species. Temperature data were gathered from nearby weather stations.Both the native and invasive species are taller at higher latitudes and this response is strongest in the invasive species. Seed mass and number of seeds per capsule increase in I. noli-tangere but decrease in I. parviflora towards higher latitudes. Surprisingly, plant height in the invasive I. parviflora decreases with increasing soil nitrogen availability. The latitudinal pattern in seed mass is positively related to temperature in I. noli-tangere and negatively in I. parviflora. Leaf area of both species decreases with increasing Ellenberg indicator values for nitrogen and light but increases with increasing soil moisture. Soil nitrogen concentrations and Ellenberg indicator values for nitrogen have significant positive (I. noli-tangere) and negative (I. parviflora) effects on the number of seeds per capsule. Our results show that the native I. noli-tangere has efficient reproduction at its range edge while the invasive I. parviflora shows a marked decrease in seed size and seed number per capsule. These patterns are unrelated to the growth and obtained size of the plants: even low soil nitrogen availability in the north seemed not to limit plant growth and size. Our results suggest that the invasive I. parviflora tends to become more invasive at lower latitudes by producing heavier seeds and more seeds per capsule.  相似文献   

9.
Analysis of the spatial pattern of plants may provide insight into the processes and mechanisms that promote species coexistence and community organization. Using torus-translation tests and point-pattern analyses for a heterogeneous Poisson process, we investigated habitat association and intra- and inter-specific spatial relationships of six major tree species in a cool-temperate forest community. All stems ≥5 cm in diameter at breast height were mapped on a 1.4-ha (100 × 140 m) plot and the topographic conditions (convexity and slope degree) and canopy state were assessed. Our results showed that all six species exhibited habitat associations with topographic and/or canopy conditions except for Magnolia salicifolia. Intra-specific aggregation was found for Acer japonicum, M. salicifolia, and Hamamelis japonica var. obtusata. Community-wide analysis of the inter-specific spatial patterns showed mainly mixed or partially overlapped patterns at a scale of up to 30 m, whereas individual pairwise analyses of inter-specific patterns revealed that Fagus crenata was positively associated with two Acer species and M. salicifolia at a spatial scale of up to 5 m. These results highlight that scale-dependant ecologically important processes, such as species-specific habitat preference, regeneration mode, seed dispersal, facilitation and niche complementarity, may operate simultaneously to shape tree distributional patterns, although their presence/absence as well as relative importance vary among species. Given the complexity of the process and mechanisms promoting species coexistence and community organization, more attention should be given to the effect of spatial scale in analyzing the spatial patterns of tree species in forest communities.  相似文献   

10.
Changes in forest openings affect light quality and quantity, and the magnitude of rainfall that reaches the soil surface. Osmorhiza depauperata, a geophyte, acclimates to changes imposed because of forest openings. We studied which changes in biomass allocation allow acclimation of O. depauperata to the various environments that this species inhabits, and where it develops better. Three light intensities (I4 = 4 %, I26 = 26 %, I64 = 64 % of ambient sunlight) and two moisture levels (M40 = 40–60 %, M80 = 80–100 % field capacity) were evaluated on O. depauperata under greenhouse conditions. Plant biomasses per pot were 0.81, 0.56 and 0.48 g at I26, I4 and I64 light intensities, respectively, after one growing season. The biomass allocation to aboveground tissues and leaf area decreased as light intensity increased. Soil moisture modified only belowground biomass and weight of fine roots. The interaction between soil moisture content and light intensity was consistent. This was because of a significant reduction in total plant biomass under high both soil moisture content and high light intensity. Osmorhiza depauperata growth was favored most at medium light intensities. Changes in biomass allocation among various organs allow this species to inhabit forest habitats with different light intensities.  相似文献   

11.
Sierra Nevada forests have high understory species richness yet we do not know which site factors influence herb and shrub distribution or abundance. We examined the understory of an old-growth mixed-conifer Sierran forest and its distribution in relation to microsite conditions. The forest has high species richness (98 species sampled), most of which are herbs with sparse cover and relatively equal abundance. Shrub cover is highly concentrated in discrete patches. Using overstory tree cover and microsite environmental conditions, four habitats were identified; tree cluster, partial canopy, gap, and rock/shallow soil. Herb and shrub species were strongly linked with habitats. Soil moisture, litter depth and diffuse light were the most significant environmental gradients influencing understory plant distribution. Herb cover was most strongly influenced by soil moisture. Shrub cover is associated with more diffuse light, less direct light, and sites with lower soil moisture. Herb richness is most affected by conditions which influence soil moisture. Richness is positively correlated with litter depth, and negatively correlated with direct light and shrub cover. Disturbance or management practices which change forest floor conditions, shallow soil moisture and direct light are likely to have the strongest effect on Sierran understory abundance and richness.  相似文献   

12.
The present study aimed to assess abundance indices and habitat associations of four sympatric ungulate species (alpine musk deer Moschus chrysogaster, tufted deer Elaphodus cephalophus, Chinese serow Capricornis milneedwardsii, and Chinese goral Naemorhedus griseus) in Baima Xueshan Nature Reserve of southwest China, using camera trapping and dung counts data. Camera traps were set along six dung transects in different habitats and explored habitat use of the sympatric ungulates using trapping rates. The results obtained revealed that Chinese serow showed a negative association with open canopy cover and low canopy cover. Alpine musk deer were associated with oak shrubs, oak forests and open canopy cover, while tufted deer avoided oak shrubs. Goral showed no significant associations with habitat variables. Alpine musk deer and tufted deer had considerable habitat overlap with Chinese serow. By finding a high correlation between indices, the study indicates that camera trapping may represent a valid index of relative abundance, matching results from other studies.  相似文献   

13.
Invasive exotic plants reduce the diversity of native communities by displacing native species. According to the coexistence theory, native plants are able to coexist with invaders only when their fitness is not significantly smaller than that of the exotics or when they occupy a different niche. It has therefore been hypothesized that the survival of some native species at invaded sites is due to post‐invasion evolutionary changes in fitness and/or niche traits. In common garden experiments, we tested whether plants from invaded sites of two native species, Impatiens noli‐tangere and Galeopsis speciosa, outperform conspecifics from non‐invaded sites when grown in competition with the invader (Impatiens parviflora). We further examined whether the expected superior performance of the plants from the invaded sites is due to changes in the plant size (fitness proxy) and/or changes in the germination phenology and phenotypic plasticity (niche proxies). Invasion history did not influence the performance of any native species when grown with the exotic competitor. In I. noli‐tangere, however, we found significant trait divergence with regard to plant size, germination phenology and phenotypic plasticity. In the absence of a competitor, plants of I. noli‐tangere from invaded sites were larger than plants from non‐invaded sites. The former plants germinated earlier than inexperienced conspecifics or an exotic congener. Invasion experience was also associated with increased phenotypic plasticity and an improved shade‐avoidance syndrome. Although these changes indicate fitness and niche differentiation of I. noli‐tangere at invaded sites, future research should examine more closely the adaptive value of these changes and their genetic basis.  相似文献   

14.
Perennial C4 grasses, especially Miscanthus sinensis, are widely distributed in the degraded lands in South China. We transplanted native and exotic tree seedlings under the canopy of M. sinensis to assess the interaction (competition or facilitation) between dominant grass M. sinensis and tree seedlings. The results of growth, chlorophyll fluorescence, and ultrastructure showed that negative effects may be stronger in perennial dominant grass M. sinensis. Although M. sinensis buffered the air temperature, improved soil structure, and increased soil phosphorus content, these beneficial effects were outweighed by the detrimental effect, especially overshading. To ensure the establishment of target native species in M. sinensis communities in degraded lands of South China, restoration strategies should include removing aboveground vegetation, planting target species seedlings in openings to reduce the effects of canopy shading, and/or selecting competition-tolerant target species. Also, seedlings of exotic species used in restoration engineering cannot be directly planted under the canopy of M. sinensis.  相似文献   

15.
Question: What role does air humidity play as an environmental factor for the abundance and distribution of temperate woodland herbs? Location: Beech forests on calcareous soils in southern lower Saxony, central Germany. Methods: The abundance of woodland herb species and total herb cover were investigated in 60 plots with contrasting exposure, slope angle and relief type. On all plots, air humidity, air temperature, soil moisture, photosynthetically active radiation, pH (H2O) and concentration of salt‐exchangeable Ca, Mg and K were measured. Species‐environment relationships were analysed with multiple regression analysis and CCA. Results: Air humidity (RH), soil moisture and the concentration of exchangeable Ca and K, but not light, C/N ratio and the concentration of exchangeable Mg were identified as the most important abiotic factors influencing the cover of the most abundant plant species and total herb cover. RH varied substantially across the different forest floor site types and influenced species abundance independent of soil moisture. In several species (including Mercurialis perennis and Impatiens noli‐tangere), RH was found to be a key environmental factor. Other species such as Aegopodium podagraria and Lamiastrum galeobdolon depended more on elevated soil moisture, while RH was less important. Conclusions: This study showed that the distribution of widespread temperate woodland herb species depends on high air humidity, and that certain sensitive species do not occur at sites with reduced air humidity even though soil moisture is high. Thus, high air humidity and ample soil moisture are key abiotic factors in beech forests on calcareous soils. Shade level (PAR) was found to be of secondary importance.  相似文献   

16.
Passive management to preserve endangered plant species involves measures to avoid anthropogenic disturbance of natural populations, but this approach may not sustain plants that require disturbance-maintained habitats. Active management is often necessary to maintain existing habitats or provide new habitats for endangered species recovery. Our objective was to examine the effects of two disturbances in floodplain forests, soil flooding and light availability, on survival, stem length, stem diameter and ramet production of endangered Lindera melissifolia (Walt.) Blume. We used a water impoundment facility to control the timing and duration of flooding (0, 45 or 90 days) and shade houses to vary light availability (70, 63 or 5 % ambient light). Hydroperiod had little direct effect on steckling survival, stem length growth and stem diameter growth, supporting indications that soil flooding may be important for reduction of interspecific competition in L. melissifolia habitat. Greater ramet production by stecklings receiving no soil flooding likely resulted from longer periods of favorable soil conditions during each growing season. Positive stem length growth and stem diameter growth under all light levels demonstrates the plasticity of this species to acclimate to a range of light environments, though, greatest survival and stem length growth occurred when L. melissifolia received 37 % light, and stem diameter growth was greatest beneath 70 % light. Further, female clones produced more ramets as light availability increased. These results indicate that passive management absent natural disturbance could jeopardize sustainability of extant L. melissifolia populations, and this species would respond favorably to active management practices that create canopy openings to increase understory light availability.  相似文献   

17.
Plant–plant interspecific competition via pollinators occurs when the flowering seasons of two or more plant species overlap and the pollinator fauna is shared. Negative sexual interactions between species (reproductive interference) through improper heterospecific pollen transfer have recently been reported between native and invasive species demonstrating pollination‐driven competition. We focused on two native Impatiens species (I. noli‐tangere and I. textori) found in Japan and examined whether pollinator‐mediated plant competition occurs between them. We demonstrate that I. noli‐tangere and I. textori share the same pollination niche (i.e., flowering season, pollinator fauna, and position of pollen on the pollinator's body). In addition, heterospecific pollen grains were deposited on most stigmas of both I. noli‐tangere and I. textori flowers that were situated within 2 m of flowers of the other species resulting in depressed fruit set. Further, by hand‐pollination experiments, we show that when as few as 10% of the pollen grains are heterospecific, fruit set is decreased to less than half in both species. These results show that intensive pollinator‐mediated competition occurs between I. noli‐tangere and I. textori. This study suggests that intensive pollinator‐mediated competition occurs in the wild even when interacting species are both native and not invasive.  相似文献   

18.

Aims

The selection of tree characteristics is critical for the outcome of the tree effects on soil fertility in silvopastoral pastures. This study aims to quantify the effects of trees on soil nutrient and C stocks, as well as assessing differences on the effects between legume (Albizia saman; Enterolobium cyclocarpum) and non-legume tree species (Tabebuia rosea; Guazuma ulmifolia).

Methods

In Central Nicaragua, soil was sampled (0–10 cm deep) in paired plots, under both a canopy and in open grassland, in 12 sites per tree species and analysed for organic C, total N stocks, available P and extractable K+, Ca2+ and Mg2+. To assess the effects of herbaceous composition and cattle to soil proprieties, we recorded the cover of plant groups and assessed the mass of dung in each plot.

Results

Soil organic C and N, available P and extractable K+ and Ca2+ were higher under the tree canopy than under paired open grassland. The basal area of trees was positively related with the canopy effect on soil variables, thus suggesting that the age or sizes of the trees are relevant factors associated with the content of soil C and nutrients. No specific effects related to the legume species group were detected.

Conclusions

Our results indicate that in fertile seasonally dry subtropical pastures, scattered trees have an overall effect on soil fertility, and that the magnitude of the effect depends more on the tree characteristics (i.e. basal area, crown area) than on whether the species is a legume or not.  相似文献   

19.
This paper aims to develop our understanding of the effect of cadmium (Cd) on Impatiens glandulifera, a recently identified potential Cd hyperaccumulator. Impatiens glandulifera plants were exposed to three concentrations of Cd (20, 60 and 90 mg/kg) and were sampled at two timepoints (one and seven days) to investigate the stress response of I. glandulifera to Cd. Cd can induce oxidative stress in plants, triggering overproduction of reactive oxygen species (ROS). The level of activity of catalase (CAT) and ascorbate peroxidase (APX), two crucial antioxidant enzymes responsible for detoxifying ROS, were found to increase in a concentration dependent manner. Though there was no change observed in the level of superoxide dismutase (SOD) activity, the activity of glutathione S-transferase (GST), involved in detoxifying and sequestering Cd, increased after exposure to Cd. Cd did not appear to impact the levels of proline and photosynthetic pigments, indicating the plants weren't stressed by the presence of Cd. These results suggest that the rapid response observed in enzyme activity aid the efficacious mitigation of the toxic effects of Cd, preventing significant physiological stress in I. glandulifera.  相似文献   

20.
Qualea parviflora Mart. (Vochysiaceae) is a deciduous tree, commonly observed in campo sujo, cerrado sensu stricto and cerradão vegetation types in Brazilian cerrado (savannas). In this study we investigated herbivory, nutritional, and water status effects on leaf sclerophylly of Q. parviflora. Twenty fully expanded leaves were taken from 10 plants in each vegetation type four times a year. Mean leaf concentration of N, P, K, Ca, C, Al, Si, and percentage of total phenols, herbivory and tannins were measured on a plant basis. Leaf specific mass (LSM) (g m?2), a sclerophylly index, and pre-dawn leaf water potential (MPa) were also recorded. Soil samples below each tree were collected to quantify N–NO3, N–NH4, P, K, Mn, soil moisture, organic matter, Si, and Al. Qualea parviflora showed a LSM from 69 to 202 g m?2 and leaves were younger and less sclerophyllous in November (beginning of rainy season). Q. parviflora inhabiting the cerradão had leaves with higher concentration of nutrients and lower sclerophylly while trees in campo sujo and cerrado sensu stricto did not show significant differences in leaf sclerophylly. The concentrations of N, P, K and tannins had an inverse relationship with leaf age. Concentration of phenols, Al, C, Ca, Si, C/N and Ca/K increased with leaf age. The concentrations of P and Ca/K ratio in leaves explained 60% of variation observed in leaf sclerophylly. We did not find any significant relationship between the level of sclerophylly and water potential or herbivory. Our results corroborate the hypothesis that predicts lower concentrations of essential macronutrients would be the main factors influencing higher sclerophylly in leaves of Q. parviflora plants in Cerrado.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号