首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A key hypothesis that has been proposed to explain plants’ invasive success suggests that some invasive species produce allelochemicals that are novel against naïve neighbours at the introduced range and therefore provide an advantage there (novel weapons hypothesis – NWH). However, a seldom‐studied hypothesis suggests that invasive populations could not only possess novel weapons, but might also evolve their enhanced production. Moreover, so far no study has examined both the novelty and evolution of allelopathic effects. Here, we examined these two hypotheses in a set of experiments with the highly invasive plant Impatiens glandulifera. In the first experiment, we examined the evolution of allelopathic ability by comparing the inhibitory effects of leaf extracts from native versus invasive I. glandulifera on the germination success of its dominant neighbour Urtica dioica. In the following experiments, we examined the NWH by comparing the germination success of U. dioica seeds collected at the native versus invasive range of I. glandulifera, in response to either leaf extracts or soil trained with invasive I. glandulifera. The results of the first experiment indicate that invasive I. glandulifera exert a stronger inhibitory effect on the germination of U. dioica compared to their native counterparts, providing support for the hypothesis that allelopathic ability can evolve at the invasive range. However, the results of the two following experiments reveal no difference in the response of U. dioica from the native versus invasive range of I. glandulifera, to the allelopathic effects of either the leaf extracts or the trained soil. These results therefore do not provide support for the NWH, and suggest that increased allelopathy in invasive I. glandulifera might have been selected for by other processes. The results of this study call for biogeographical experiments that will examine not only the novelty but also the evolution of allelopathic effects in invasive plants.  相似文献   

2.
Biological invasions are one of the major threats to biodiversity worldwide and contribute to changing community patterns and ecosystem processes. However, it is often not obvious whether an invader is the “driver” causing ecosystem changes or a “passenger” which is facilitated by previous ecosystem changes. Causality of the impact can be demonstrated by experimental removal of the invader or introduction into a native community. Using such an experimental approach, we tested whether the impact of the invasive plant Impatiens glandulifera on native vegetation is causal, and whether the impact is habitat‐dependent. We conducted a field study comparing invaded and uninvaded plots with plots from which I. glandulifera was removed and plots where I. glandulifera was planted within two riparian habitats, alder forests and meadows. A negative impact of planting I. glandulifera and a concurrent positive effect of removal on the native vegetation indicated a causal effect of I. glandulifera on total native biomass and growth of Urtica dioica. Species α‐diversity and composition were not affected by I. glandulifera manipulations. Thus, I. glandulifera had a causal but low effect on the native vegetation. The impact depended slightly on habitat as only the effect of I. glandulifera planting on total biomass was slightly stronger in alder forests than meadows. We suggest that I. glandulifera is a “back‐seat driver” of changes, which is facilitated by previous ecosystem changes but is also a driver of further changes. Small restrictions of growth of the planted I. glandulifera and general association of I. glandulifera with disturbances indicate characteristics of a back‐seat driver. For management of I. glandulifera populations, this requires habitat restoration along with removal of the invader.  相似文献   

3.
Invasive exotic plants often grow fast, reproduce rapidly and display considerable phenotypic plasticity in their invasive range, which may be essential characteristics for successful invasion. However, it remains unclear whether these characteristics are already present in native populations (pre-adaptation hypothesis) or evolve after introduction (genetic shift hypothesis).To test these hypotheses we compared means and phenotypic plasticity of vegetative and reproductive traits between populations of Impatiens glandulifera collected from either the invasive (Norway) or native range (India). Seeds were sown and the resulting plants were exposed to different experimental environments in a glasshouse. We also tested whether trait means and reaction norms harbored genetic variation, as this may promote fitness in the novel environment.We did not find evidence that invasive populations of I. glandulifera grew more vigorously or produced more seeds than native populations. Phenotypic plasticity did not differ between the native and invasive range, except for the number of nodes which was more plastic in the invasive range. Genetic variation in the slope of reaction norms was absent, suggesting that the lack of change in phenotypic plasticity between native and invasive populations resulted from low genetic variation in phenotypic plasticity initially harbored by this species. Post-introduction evolution of traits thus probably did not boost the invasiveness of I. glandulifera. Instead, the species seems to be pre-adapted for invasion.We suggest that differences in habitat between the native and invasive range, more specifically the higher nutrient availability observed in the new environment, are the main factor driving the invasion of this species. Indeed, plants in the more nutrient-rich invasive range had greater seed mass, likely conferring a competitive advantage, while seed mass also responded strongly to nutrients in the glasshouse. Interactions between habitat productivity and herbivore defense may explain the lack of more vigorous growth in the new range.  相似文献   

4.

Background and Aims

Invasiveness of some alien plants is associated with their traits, plastic responses to environmental conditions and interpopulation differentiation. To obtain insights into the role of these processes in contributing to variation in performance, we compared congeneric species of Impatiens (Balsaminaceae) with different origin and invasion status that occur in central Europe.

Methods

Native I. noli-tangere and three alien species (highly invasive I. glandulifera, less invasive I. parviflora and potentially invasive I. capensis) were studied and their responses to simulated canopy shading and different nutrient and moisture levels were determined in terms of survival and seedling traits.

Key Results and Conclusions

Impatiens glandulifera produced high biomass in all the treatments and the control, exhibiting the ‘Jack-and-master’ strategy that makes it a strong competitor from germination onwards. The results suggest that plasticity and differentiation occurred in all the species tested and that along the continuum from plasticity to differentiation, the species at the plasticity end is the better invader. The most invasive species I. glandulifera appears to be highly plastic, whereas the other two less invasive species, I. parviflora and I. capensis, exhibited lower plasticity but rather strong population differentiation. The invasive Impatiens species were taller and exhibited higher plasticity and differentiation than native I. noli-tangere. This suggests that even within one genus, the relative importance of the phenomena contributing to invasiveness appears to be species''specific.  相似文献   

5.
The genus Impatiens (Balsaminaceae) includes three widespread species in the Czech Republic, central Europe: the native I. noli-tangere, and two invasive species, I. parviflora and I. glandulifera, differing in the dynamics of invasion. They all occur in similar habitats and share basic life-history characteristics, which make them a suitable model for studying species traits associated with invasiveness. In this study we investigated differences in habitat requirements of these Impatiens species, their coexistence and short-term population dynamics in the field. We established 84 1 × 1 m permanent plots in five localities where all three species co-occurred. In each plot vascular plant species were determined, their cover estimated and all individuals of Impatiens species counted. Site characteristics including tree canopy cover, soil moisture, nitrogen and carbon content, and slope were measured directly. Nutrients, light, humidity and soil reaction were estimated using Ellenberg indicator values. The presence of I. noli-tangere was strongly correlated with high soil moisture, that of I. parviflora with high tree canopy cover and low soil moisture. Impatiens glandulifera exhibited a unimodal response to tree canopy cover, avoiding both very shaded and fully open sites. The current-year abundances of all species were negatively related to those of congeneric species. These results suggest that the coexistence of Impatiens species in the same habitat is due to microsite differentiation. Further spread of I. glandulifera to new habitats, and reduction of the native I. noli-tangere niche, can be expected in areas where the latter species co-occurs with competitively strong invasive congeners.  相似文献   

6.
Invasive alien species are a major threat to ecosystems. Invasive terrestrial plants can produce allelochemicals which suppress native terrestrial biodiversity. However, it is not known if leached allelochemicals from invasive plants growing in riparian zones, such as Impatiens glandulifera, also affect freshwater ecosystems. We used mesocosms and laboratory experiments to test the impact of I. glandulifera on a simplified freshwater food web. Our mesocosm experiments show that leachate from I. glandulifera significantly reduced population growth rate of the water flea Daphnia magna and the green alga Acutodesmus obliquus, both keystone species of lakes and ponds. Laboratory experiments using the main allelochemical released by I. glandulifera, 2‐methoxy‐1,4‐naphthoquinone, revealed negative fitness effects in D. magna and A. obliquus. Our findings show that allelochemicals from I. glandulifera not only reduce biodiversity in terrestrial habitats but also pose a threat to freshwater ecosystems, highlighting the necessity to incorporate cross‐ecosystem effects in the risk assessment of invasive species.  相似文献   

7.
Both Impatiens glandulifera and Fallopia japonica are highly invasive plant species that have detrimental impacts on native biodiversity in areas where they invade and form dense monocultures. Both species are weakly dependent on arbuscular mycorrhizal fungi (AMF) for their growth and, therefore, under monotypic stands, the AMF network can become depauperate. We evaluated the impact of I. glandulifera and F. japonica on the performance (expressed as shoot biomass) of three UK native species (Plantago lanceolata, Lotus corniculatus and Trifolium pratense) grown in soil collected from under stands of both invasive plants and compared to plants grown in soil from under stands of the corresponding native vegetation. All native species had a higher percentage colonisation of AMF when grown in uninvaded soil compared to the corresponding invaded soil. P. lanceolata and L. corniculatus had a higher biomass when grown in uninvaded soil compared to corresponding invaded soil indicating an indirect impact from the non-native species. However, for T. pratense there was no difference in biomass between soil types related to I. glandulifera, suggesting that the species is more reliant on rhizobial bacteria. We conclude that simply managing invasive populations of non-native species that are weakly, or non-dependent, on AMF is inadequate for habitat restoration as native plant colonisation and establishment may be hindered by the depleted levels of AMF in the soil below invaded monocultures. We suggest that the reintroduction of native plants to promote AMF proliferation should be incorporated into future management plans for habitats degraded by non-native plant species.  相似文献   

8.
Studies of plant invasions rarely address impacts on molluscs. By comparing pairs of invaded and corresponding uninvaded plots in 96 sites in floodplain forests, we examined effects of four invasive alien plants (Impatiens glandulifera, Fallopia japonica, F. sachalinensis, and F.×bohemica) in the Czech Republic on communities of land snails. The richness and abundance of living land snail species were recorded separately for all species, rare species listed on the national Red List, and small species with shell size below 5 mm. The significant impacts ranged from 16–48% reduction in snail species numbers, and 29–90% reduction in abundance. Small species were especially prone to reduction in species richness by all four invasive plant taxa. Rare snails were also negatively impacted by all plant invaders, both in terms of species richness or abundance. Overall, the impacts on snails were invader-specific, differing among plant taxa. The strong effect of I. glandulifera could be related to the post-invasion decrease in abundance of tall nitrophilous native plant species that are a nutrient-rich food source for snails in riparian habitats. Fallopia sachalinensis had the strongest negative impact of the three knotweeds, which reflects differences in their canopy structure, microhabitat humidity and litter decomposition. The ranking of Fallopia taxa according to the strength of impacts on snail communities differs from ranking by their invasiveness, known from previous studies. This indicates that invasiveness does not simply translate to impacts of invasion and needs to be borne in mind by conservation and management authorities.  相似文献   

9.
Many notorious invasive plants are clonal, however, little is known about the different roles of clonal integration effects between invasive and native plants. Here, we hypothesize that clonal integration affect growth, photosynthetic performance, biomass allocation and thus competitive ability of invasive and native clonal plants, and invasive clonal plants benefit from clonal integration more than co-occurring native plants in heterogeneous habitats. To test these hypotheses, two stoloniferous clonal plants, Alternanthera philoxeroides (invasive), Jussiaea repens (native) were studied in China. The apical parts of both species were grown either with or without neighboring vegetation and the basal parts without competitors were in nutrient- rich or -poor habitats, with stolon connections were either severed or kept intact. Competition significantly reduced growth and photosynthetic performance of the apical ramets in both species, but not the biomass of neighboring vegetation. Without competition, clonal integration greatly improved the growth and photosynthetic performance of both species, especially when the basal parts were in nutrient-rich habitats. When grown with neighboring vegetation, growth of J. repens and photosynthetic performance of both species were significantly enhanced by clonal integration with the basal parts in both nutrient-rich and -poor habitats, while growth and relative neighbor effect (RNE) of A. philoxeroides were greatly improved by clonal integration only when the basal parts were in nutrient-rich habitats. Moreover, clonal integration increased A. philoxeroides''s biomass allocation to roots without competition, but decreased it with competition, especially when the basal ramets were in nutrient-rich sections. Effects of clonal integration on biomass allocation of J. repens was similar to that of A. philoxeroides but with less significance. These results supported our hypothesis that invasive clonal plants A. philoxeroides benefits from clonal integration more than co-occurring native J. repens, suggesting that the invasiveness of A. philoxeroides may be closely related to clonal integration in heterogeneous environments.  相似文献   

10.
Alien plant species invasiveness and impact on diversity (i.e. species richness and composition) can be driven by the altered competitive interactions experienced by the invader in its invaded range compared to its native range. Trait-based competition effects on invasiveness can be mediated through size-asymmetric competition, i.e. a trait suit of the invader that drives competitive dominance, and through ‘niche differences', i.e. trait differentiation and thus minimized competition between invader and the invaded community. In terms of invasion impact, size-asymmetric competition is expected to result in competitive exclusion of co-occurring subordinate species, whereas ‘niche differences' might result in competitive exclusion of the most functionally similar co-occurring species. Although observational work does not allow the full disentanglement of both trait-based effects, it does allow to verify the occurrence of expected theoretical trait patters. In this study, we explored the trait-based competition effects on invasiveness and diversity impact for Rosa rugosa in both its invaded range in Belgium and its native range in Japan, based on seven functional traits across 100 vegetation plots. Following the predictions for enhanced invasiveness, we found much lower functional overlap between R. rugosa and the co-occurring species in the invaded range compared to the native range. This likely also explains the absence of diversity impact in its native range. Despite the absence of changes in species richness in the invaded range, the invader did strongly impact species composition of invaded communities. This impact occurred through strong shade tolerance responses, suggesting size-asymmetric competition effects and cover loss of co-occurring dominant species, next to exclusion of co-occurring species most functionally similar to the invader; suggesting niche difference effects. In conclusion, this case-study illustrates how exploring functional trait patterns across a species native and invaded range can help in understanding how trait-based competition processes can affect invasiveness and community impact.  相似文献   

11.
Invasions by alien plants significantly affect native biodiversity and ecosystem functioning. We conducted a 5-year field experiment to investigate potential effects of the annual invasive plant Impatiens glandulifera on both the native above-ground vegetation and the soil seed bank in a deciduous forest in Switzerland. Eight years after the establishment of I. glandulifera, we set up plots in patches invaded by the alien plant, in plots from which the invasive plant had been manually removed and in plots which were not yet colonized by the invasive plant. We examined plant species richness, diversity and plant species composition in the above-ground vegetation and soil seed bank in all plots one year and five years after the initiation of the experiment. The 36 plots (3 plot types × 6 replicates × 2 sites) were equally distributed over two forest sites. Neither the native above-ground vegetation nor the soil seed bank was influenced by the presence of I. glandulifera one year after the start of the field experiment. After five years, however, plant species richness of both the above-ground vegetation and the soil seed bank was reduced by 25% and 30%, respectively, in plots invaded by the alien plant compared to plots from which I. glandulifera had been removed or uninvaded plots. Furthermore, plots invaded by the alien plant had a lower total seedling density (reduction by 60%) and an altered plant species composition in the soil seed bank compared to control plots. Our field experiment indicates that negative effects of the annual invasive plant on the native above-ground vegetation and soil seed bank of deciduous forests become visible with a delay of several years.  相似文献   

12.
Self-fertilization and admixture of genotypes from different populations can have major fitness consequences in native species. However, few studies have addressed their potential roles in invasive species. Here, we used plants of Mimulus guttatus from seven native North American, three invasive Scottish and four invasive New Zealand populations to address this. We created seeds from self-fertilization, within-population outcrossing, between-population outcrossing within the same range, and outcrossing between the native and invasive ranges. A greenhouse experiment showed that native and invasive plants of M. guttatus suffered to similar degrees from inbreeding depression, in terms of asexual reproduction and biomass production. After outcrossing with plants from other populations, M. guttatus benefited from heterosis, in terms of asexual and sexual reproduction, and biomass production, particularly when plants from native and invasive populations were crossed. This suggests that, when novel genotypes of M. guttatus from the native North American range will be introduced to the invasive ranges, subsequent outcrossing with M. guttatus plants that are already there might further boost invasiveness of this species.  相似文献   

13.
Invasive species are frequently found in recently disturbed sites. To examine how these disturbance-dependent invasive species exploit resource pulses resulting from disturbance, twelve physiological and morphological traits, including age-dependent responsiveness in leaf traits to nitrogen pulse, were compared between Bischofia javanica, an invasive tree species in Ogasawara islands, and three native Ogasawara species, each having a different successional status. When exposed to a nitrogen pulse, invasive B. javanica showed higher increases in photosynthetic capacity, leaf area, epidermal cell number and cell size in leaves of broad age classes, and root nitrogen absorption ability than two native mid-/late or late-successional species, but showed no particular superiority to a native pioneer species in these responses. Under low nitrogen, however, it showed the largest relative growth rate among the four species, while the native pioneer showed the lowest growth. From these results, we concluded that the combination of moderately high responsiveness to resource pulses and the ability to maintain steady growth under resource limitations may give B. javanica a competitive advantage over a series of native species with different successional status from early to late-successional stages.  相似文献   

14.
In natural as in agricultural ecosystems, interactions between ants and honeydew-producing hemipterans are commonly observed. Mutualisms between invasive ants and hemipterans have been extensively studied in recent years. However, native ant species can equally exploit the honeydew excreted by hemipterans, and establish close relationships with them. Up till present, little is known about the competition between exotic ants (such as Solenopsis invicta) and its co-occurring species (e.g., Tapinoma melanocephalum) for this food resource. In this study, we compared the competitive ability of the invasive ant S. invicta and its co-occurring species T. melanocephalum in the laboratory. We also determined whether the two ant species could coexist and share honeydew resource. Our results indicate that the foraging activity of T. melanocephalum was restrained by S. invicta. Mortality of S. invicta and T. melanocephalum was significantly higher in T. melanocephalum colony case than that in other cases. The invasive ability between the two ant species was significantly different. These results suggest that S. invicta suppresses exploitation of honeydew-producing hemipterans by native ants and occupies most of honeydew resource. S. invicta could not completely drive T. melanocephalum out of honeydew competition, with small numbers of T. melanocephalum workers coexisting and sharing the honeydew with S. invicta. This finding permits a better understanding of the invasion success of S. invicta, and its ability to occupy new habitats.  相似文献   

15.
Understanding the factors that affect establishment success of new species in established communities requires the study of both the ability of new species to establish and community resistance. Spatial pattern of species within a community can affect plant performance by changing the outcome of inter-specific competition, and consequently community invasibility. We studied the effects of spatial pattern of resident plant communities on fitness of genotypes from the native and introduced ranges of two worldwide invasive species, Centaurea stoebe and Senecio inaequidens, during their establishment stage. We experimentally established artificial plant mixtures with 4 or 8 resident species in intra-specifically aggregated or random spatial patterns, and added seedlings of genotypes from the native and introduced ranges of the two target species. Early growth of both S. inaequidens and C. stoebe was higher in aggregated than randomly assembled mixtures. However, a species-specific interaction between invasiveness and invasibility highlighted more complex patterns. Genotypes from native and introduced ranges of S. inaequidens showed the same responses to spatial pattern. By contrast, genotypes from the introduced range of C. stoebe did not respond to spatial pattern whereas native ones did. Based on phenotypic plasticity, we argue that the two target species adopted different strategies to deal with the spatial pattern of the resident plant community. We show that effects of spatial pattern of the resident community on the fitness of establishing species may depend on the diversity of the recipient community. Our results highlight the need to consider the interaction between invasiveness and invasibility in order to increase our understanding of invasion success.  相似文献   

16.
Vegetation community composition and the above- and below-ground invertebrate communities are linked intrinsically, though few studies have assessed the impact of non-native plants on both these parts of the community together. We evaluated the differences in the above- (foliage- and ground-dwelling) and below-ground invertebrate communities in nine uninvaded plots and nine plots invaded by the annual invasive species Impatiens glandulifera, in the UK during 2007 and 2008. Over 139,000 invertebrates were identified into distinct taxa and categorised into functional feeding groups. The impact of I. glandulifera on the vegetation and invertebrate community composition was evaluated using multivariate statistics including principal response curves (PRC) and redundancy analysis (RDA). In the foliage-dwelling community, all functional feeding groups were less abundant in the invaded plots, and the species richness of Coleoptera and Heteroptera was significantly reduced. In the ground-dwelling community, herbivores, detritivores, and predators were all significantly less abundant in the invaded plots. In contrast, these functional groups in the below-ground community appeared to be largely unaffected, and even positively associated with the presence of I. glandulifera. Although the cover of I. glandulifera decreased in the invaded plots in the second year of the study, only the below-ground invertebrate community showed a significant response. These results indicate that the above- and below-ground invertebrate communities respond differently to the presence of I. glandulifera, and these community shifts can potentially lead to a habitat less biologically diverse than surrounding native communities; which could have negative impacts on higher trophic levels and ecosystem functioning.  相似文献   

17.
The ability of some invasive plant species to produce biochemical compounds toxic to native species, called allelopathy, is thought to be one of the reasons for their success when introduced to a novel range, an idea known as the Novel Weapons Hypothesis. However, support for this hypothesis mainly comes from bioassays and experiments conducted under controlled environments, whereas field evidence is rare. In a field experiment, we investigated whether three plant species invasive in Europe, Solidago gigantea, Impatiens glandulifera and Erigeron annuus, inhibit the germination of native species through allelopathy more than an adjacent native plant community. At three sites for each invasive species, we compared the germination of native species that were sown on invaded and non-invaded plots. Half of these plots were amended with activated carbon to reduce the influence of potential allelopathic compounds. The germination of sown seeds and of seeds from the seedbank was monitored over a period of 9 weeks. Activated carbon generally enhanced seed germination. This effect was equally pronounced in invaded and adjacent non-invaded plots, indicating that invasive species do not suppress germination more than a native plant community. In addition, more seeds germinated from the seedbank on invaded than on non-invaded soil, probably due to previous suppression of germination by the invasive species. Our field study does not provide evidence for the Novel Weapons Hypothesis with respect to the germination success of natives. Instead, our results suggest that if invasive species release allelopathic compounds that suppress germination, they do so to a similar degree as the native plant community.  相似文献   

18.
Invasion by exotic plants is often associated with nutrient enrichment of soils, particularly on soils of naturally low fertility. As a consequence, it is likely that the outcome of competitive interactions between native and invasive plants may be mediated by soil nutrient availability. We independently investigated competitive effect and response as well as the occurrence of asymmetric competition among native and invasive plants on soils of varying nutrient availability, using a glasshouse experiment. Seedlings of eight co‐occurring pairs of invasive and native species from low fertility Hawkesbury Sandstone‐derived soil were grown under low and high nutrient availability. We tested the hypotheses that native species would be competitively superior at low nutrient availability and have trait values associated with a resource conservation strategy while invasive species would be competitively superior at high nutrient availability and have trait values associated with a resource acquisition strategy. We found that nutrient availability did not mediate competitive interactions between invasive and native species. Instead, two invasive and one native species were always competitively superior irrespective of nutrient availability. Competitively superior species displayed a mixture of both resource conservation and acquisition strategies at low and high nutrient availability. In support of previous studies, we found that the a priori classification of invasive and native species does not predict competitive superiority at varying nutrient levels. Rather, species specific differences in trait values provide a competitive advantage in response to nutrient availability.  相似文献   

19.
A shift in the composition of the herbivore guild in the invasive range is expected to select for plants with a higher competitive ability, a lower regrowth capacity and a lower investment in defence. We show here that parallel evolution took place in three geographically distinct invasive regions that differed significantly in climatic conditions. This makes it most likely that indeed the shifts in herbivore guilds were causal to the evolutionary changes. We studied competitive ability and regrowth of invasive and native Jacobaea vulgaris using an intraspecific competition set‐up with and without herbivory. Without herbivores invasive genotypes have a higher competitive ability than native genotypes. The invasive genotypes were less preferred by the generalist Mamestra brassicae but more preferred by the specialist Tyria jacobaeae, consequently their competitive ability was significantly increased by the first and reduced by the latter. Invasive genotypes showed a lower regrowth ability in both herbivore treatments.  相似文献   

20.
Community assembly and coexistence theories predict that both fitness and plant functional traits should influence competitive interactions between native and invasive species. The evolution of the increased competitive ability hypothesis predicts that species will grow larger (a measure of fitness) in their invaded than native range; hence we hypothesized that species might exert greater competitive effects in their invaded range, lessening the importance of functional traits for competitive outcomes. In a greenhouse experiment we compared traits and competitive interactions between Bromus madritensis (an annual grass) and resident species from its native range in Spain, and its invaded range in Southern California. As predicted, B. madritensis collected in California grew larger and had a greater competitive effect on resident species than B. madritensis collected in Spain. However, residents from California also suppressed the growth of B. madritensis more than species from its native range in Spain. Competitive interaction strengths were predicted by different suites of traits in the native versus invaded range of B. madritensis; surprisingly, however, size of the resident species (fitness), did not predict variation in competitive interactions. This study shows that different suites of traits may aid in identifying those native species likely to strongly compete with invaders, versus those that will be competitively suppressed by invaders, with important implications for the design of restoration efforts aimed at promoting native species growth and preventing invasion. More generally, our study shows that fitness differences may not be as important as traits when predicting competitive outcomes in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号