首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The type-specific substance from Pneumococcus type 13   总被引:3,自引:2,他引:1  
1. The type-specific substance, S.13, from Pneumococcus type 13 was subjected to hydrolysis with alkali, followed by enzymic dephosphorylation, to yield a pentasaccharide. 2. The pentasaccharide, corresponding to the dephosphorylated repeating unit of S.13, was shown to be O-beta-d-galactopyranosyl-(1-->4)-O-beta- d-glucopyranosyl-(1-->3)-O-beta-d- galactofuranosyl-(1-->4)-O-2-acetamido-2-deoxy-beta-d- glucopyranosyl-(1-->2)-ribitol. 3. The phosphodiester linkages in S.13 join the hydroxyl group at position 1 of ribitol and the hydroxyl group at position 4 of a galactopyranosyl residue in the next repeating unit. 4. Ester groups, presumably O-acetyl, are located on positions 2 or 3 of most glucopyranosyl residues in S.13. 5. A partial structure for S.13 is proposed.  相似文献   

2.
1. The type-specific substance, S. 33B, from Pneumococcus type 33B contains P, 2.89; hexose, 51; total sugar, 69; galactosamine, 18; and d-glucose, 20%. 2. After degradation with alkali, followed by enzymic dephosphorylation, S. 33B yielded a hexasaccharide. 3. The hexasaccharide was assigned the structure O-beta-d-glucopyranosyl- (1-->5)-O-beta-d-galactofuranosyl- (1-->3)-O-2-acetamido-2-deoxy-beta-d- galactopyranosyl-(1-->4)-O-[alpha-d- galactopyranosyl-(1-->2)]-alpha-d-galactopyranosyl- (1-->2)-ribitol. 4. Phosphate residues in S. 33B are located on the hydroxyl groups at position 5 of ribitol units and on the hydroxyl groups at position 6 of hexopyranose residues.  相似文献   

3.
Starting from D-mannose, D-glucose and L-fucose, the pentasaccharide derivative methyl 2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl-(1-->3)-2-O-acetyl-4,6-O-benzylidene-alpha-D-mannopyranosyl-(1-->3)-2-O-acetyl-6-O-benzyl-4-O-(2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl)-alpha-D-mannopyranosyl-(1-->4)-[2-(trimethylsilyl)ethyl 2,3-di-O-benzyl-beta-D-glucopyranosid]uronate was synthesized. This compound with two alpha-mannopyranosyl units was transformed, via Walden inversion and subsequent deprotection, into the alpha-D-glucosamine-type target compound, namely methyl alpha-L-fucopyranosyl-(1-->3)-2-acetamido-2-deoxy-alpha-D-glucopyranosyl-(1-->3)-2-acetamido-2-deoxy-4-O-(alpha-L-fucopyranosyl)-alpha-D-glucopyranosyl-(1-->4)-[2-(trimethylsilyl)ethyl beta-D-glucopyranosid]uronate which is related to the repeating unit of the O-antigen from Shigella dysenteriae type 4.  相似文献   

4.
An O-specific polysaccharide was isolated by mild acid degradation of the lipopolysaccharide of Proteus vulgaris O45 and studied by sugar and methylation analyses along with 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, ROESY, H-detected 1H,13C HSQC and HMBC experiments. The following structure of the pentasaccharide repeating unit of the polysaccharide was established:-->6)-alpha-D-GlcpNAc-(1-->4)-alpha-D-GalpNAc-(1-->4)-alpha-D-GalpA-(1-->3)-beta-D-GlcpNAc-(1-->2)-beta-D-Fucp3NAc4Ac-(1-->where Fuc3NAc4Ac is 3-acetamido-4-O-acetyl-3,6-dideoxygalactose. A cross-reactivity of anti-P. vulgaris O45 serum was observed with several other Proteus lipopolysaccharides, which contains Fuc3N derivatives.  相似文献   

5.
1. The specific compound from Pneumococcus type 34 was isolated from capsular material by ion-exchange chromatography. This separated it from a substance with chemical and serological properties corresponding to those reported for C-substance. 2. The configuration of the two galactofuranosyl linkages in the repeating unit of S.34 was determined and the configurations previously assigned to the other glycosidic linkages were confirmed. 3. The dephosphorylated deacetylated repeating unit is thus O-beta-d-galactofuranosyl-(1-->3)-O-alpha-d-glucopyranosyl-(1-->2)-O-beta-d-galactofuranosyl-(1-->3)-O-alpha-d-galactopyranosyl- (1-->2)-ribitol.  相似文献   

6.
A pentasaccharide, 4-methoxyphenyl 2-acetamido-2-deoxy-β-d-galactopyranosyl-(1→4)-α-d-galactopyranosyl-(1→3)-2-acetamido-2-deoxy-β-d-galactopyranosyl-(1→6)-[α-l-fucopyranosyl-(1→2)]-β-d-galactopyranoside (1), representing the repeating unit of Escherichia coli O128 antigen, was successfully prepared in 23% overall yield via a convergent ‘2+3’ glycosylation strategy.  相似文献   

7.
The exopolysaccharide of Bacillus licheniformis ATCC 9945 (formerly B. subtilis ATCC 9945) contains among other glycoses 4-acetamido-2-amino-2,4,6-trideoxy-D-glucose, termed N-acetylbacillosamine (Bac2N4NAc). A similar diamino glycose, 2-acetamido-4-amino-2,4,6-trideoxy-D-glucose, was found in a surface layer (S-layer) glycoprotein preparation of Clostridium symbiosum HB25. Electron microscopic studies, however, showed that B. licheniformis ATCC 9945 is not covered with an S-layer lattice, indicating that the N-acetylbacillosamine present in that organism might be a constituent of a cell wall-associated polymer. For elucidation of the structure of the N-acetylbacillosamine-containing polysaccharide, it was purified from a trichloroacetic acid extract of B. licheniformis ATCC 9945 cells. Using different hydrolysis protocols and a hydrolysate of the S-layer glycoprotein preparation from C. symbiosum HB25 as reference, the purified polysaccharide was found to contain 2,4-diamino-2,4,6-trideoxy-glucose, 2-acetamido-2-deoxy-glucose, 2-acetamido-2-deoxy-galactose and galactose in a molar ratio of 1 : 1 : 1 : 2. One- and two-dimensional NMR spectroscopy, including 800 MHz proton magnetic resonance measurements, in combination with chemical modification and degradation experiments, revealed that the polysaccharide consists of identical pyruvylated pentasaccharide repeating units with the structure: [-->3)-[(S)Py-(3,4)-beta-D-Galp-(1-->6)]-alpha-D-GlcpNAc-(1-->3)-beta-D-Bacp2N4NAc-(1-->3)-[(S)Py-(3,4)-beta-D-Galp-(1-->6)]-beta-D-GalpNAc-(1-->](n)  相似文献   

8.
The structure of the O-antigen polysaccharide from Escherichia coli O172 has been determined. In combination with sugar analysis, NMR spectroscopy shows that the polysaccharide is composed of pentasaccharide repeating units. Sequential information was obtained by mass spectrometry and two-dimensional NMR techniques. An O-acetyl group was present as 0.7 equivalent per repeating unit. Treatment of the O-deacetylated polysaccharide with aqueous 48% hydrofluoric acid rendered cleavage of the phosphodiester in the backbone of the polymer and the pentasaccharide isolated after gel permeation chromatography was structurally characterized. Subsequent NMR experiments on polymeric materials revealed the structure of the repeating unit of the O-polysaccharide from E. coli O172 as:-->P-4)-alpha-D-Glcp-(1-->3)-alpha-L-FucpNAc-(1-->3)-alpha-D- GlcpNAc-(1-->3)-alpha-L-FucpNAc-(1-->4)-alpha-D-Glcp6Ac-(1-->  相似文献   

9.
The acidic O-specific polysaccharide of Proteus vulgaris O22 was studied using 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, NOESY, and H-detected 1H, 13C heteronuclear multiple-quantum coherence (HMQC) experiments, and the following structure for the branched pentasaccharide repeating unit was established: [sequence: see text] where Qui3NAc is 3-acetamido-3,6-dideoxyglucose, O-acetylation of QuiNAc at position 4 is stoichiometric and at position 2 nonstoichiometric. Serological relationships of P. vulgaris O22 with some other Proteus strains were substantiated on the level of the O-antigen structures.  相似文献   

10.
1. The phosphate groups in the type-specific substance S. 10A from Pneumococcus type 10A (34) were shown to join the hydroxyl group at position 1 or 5 of ribitol and the hydroxyl group at position 5 or 6 of a d-galactofuranosyl residue in the next repeating unit. 2. A partial formula of the type-specific substance was derived.  相似文献   

11.
1. A series of oligosaccharides was isolated from Salmonella milwaukee lipopolysaccharide by partial acid hydrolysis. 2. Structural studies on these oligosaccharides indicated that the O-specific side chain of this lipopolysaccharide has a repeating pentasaccharide unit that is probably alpha-d-galactosyl-(1-->3)-beta-d-galactosyl- (1-->3)-N-acetylgalactosaminyl-(1-->3)-N-acetyl- d-glucosaminyl-(1-->4)-l-fucose. 3. Another oligosaccharide, which is not structurally related to the repeating pentasaccharide unit, has also been isolated and it is indistinguishable from an oligosaccharide obtained from Salmonella ;rough' (R) lipopolysaccharides. The isolation of this and similar core oligosaccharides from all chemotype VI lipopolysaccharides supports the view that Salmonella S-lipopolysaccharides have a common core that is probably identical with RII lipopolysaccharide.  相似文献   

12.
Studies by sugar and methylation analyses, Smith degradation, and 1H and 13C NMR spectroscopy revealed a structural heterogeneity in the O-polysaccharides of Pseudomonas syringae pvs. coronafaciens IMV 9030 and atrofaciens IMV 8281 owing to the presence of different types of repeating units. In strain IMV 9030, the major repeating units are a linear alpha-L-rhamnose trisaccharide and a tetrasaccharide (A, n=0 or 1). A minor repeating unit is a branched pentasaccharide with an alpha-L-rhamnose main chain and a lateral 3-acetamido-3,6-dideoxy-D-galactose (D-Fuc3NAc) residue (B, X=2, n=1). In strain IMV 8281, all repeating units are branched and differ in size and position of substitution of one of the alpha-L-rhamnose residues (tetrasaccharide, B, X=3, n=0; pentasaccharides, B, X=2 or 3, n=1). [structure--see text] Reinvestigation of the structure of the branched O-polysaccharide of P. syringae pv. tomato IPGR 140 showed that, together with the major tetrasaccharide repeating unit (B, X=3, n=0) [Knirel, Y. A., et al. Carbohydr. Res. 1993, 243, 199-204], it has a minor pentasaccharide repeating unit (B, X=3, n=1).  相似文献   

13.
Hua Y  Xiao J  Huang Y  Du Y 《Carbohydrate research》2006,341(2):191-197
A pentasaccharide, beta-D-Man-(1-->2)-[beta-D-GlcNAc-(1-->4)]-alpha-L-Rha-(1-->4)-alpha-L-Rha-(1-->4)-alpha-L-Rha-1-OC8H17, representing the repeating unit of latosillan, was convergently synthesized from the building blocks, ethyl 2,3-O-isopropylidene-1-thio-alpha-l-rhamnopyranoside, 2-O-acetyl-3,4,6-tri-O-benzyl-beta-d-glucopyranosyl trichloroacetimidate, and 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-beta-d-glucopyranosyl trichloroacetimidate under standard glycosylation conditions. The target pentasaccharide showed acceptable differentiation-inducing activity on HL-60 cell lines at the dosages of 10-50 microg/mL.  相似文献   

14.
An acidic O-specific polysaccharide was obtained by mild acid degradation of the Shewanella algae strain BrY lipopolysaccharide and was found to contain L-rhamnose, 2-acetamido-4-[D-3-hydroxybutyramido)]-2,4,6-trideoxy-D-glucose (D-BacNAc4NHbu), and 2-amino-2,6-dideoxy-L-galactose, N-acylated by the 4-carboxyl group of L-malic acid (L-malyl-(4-->2)-alpha-L-FucN) in the ratio 2:1:1. 1H and 13C NMR spectroscopy was applied to the intact polysaccharide, and the following structure of the repeating unit was established:-3)-alpha-D-BacNAc4NHbu-(1-->3)-alpha-L-Rha-(1-->2)-alpha-L-Rha-(1-->2)-L-malyl-(4-->2)-alpha-L-FucN-(1-. The repeating unit includes linkage via the residue of malic acid, reported here for the first time as a component of bacterial polysaccharides.  相似文献   

15.
An acidic O-specific polysaccharide was isolated from Hafnia alvei PCM 1196 lipopolysaccharide and studied by sugar and methylation analyses along with one- and two-dimensional 1H and 13C NMR spectroscopy, including NOESY and HMBC experiments. The following structure of the pentasaccharide repeating unit was established: -->4)-alpha-D-GalpA-(1-->3)-beta-D-GlcpNAc-(1-->2)-beta-D-Galp-(1-->6)-alpha-D-Glcp-(1-->6)-alpha-D-GlcpNAc-(1-->.  相似文献   

16.
A novel analogue of sialyl Lewis X ganglioside, N-deacetylsialyl Lewis X ganglioside, was synthesized. Methyl 4,7,8,9-tetra-O-acetyl-3,5-dideoxy-5-trifluoroacetamido-D-glycero-alpha-D-galacto-2-nonulopyranosylonate-(2 --> 3)-2,4,6-tri-O-benzoyl-D-galactopyranosyl trichloroacetimidate was coupled with 2-(trimethylsilyl)ethyl [2-acetamido-6-O-benzyl-2-deoxy-3-O-(4-methoxybenzyl)-beta-D-glucopyranosyl]-(1 --> 3)-[2,4,6-tri-O-benzyl-beta-D-galactopyranosyl]-(1 --> 4)-2,3,6-tri-O-benzyl-beta-D-galactopyranoside to give the desired pentasaccharide in high yield. The glycosylation of the pentasaccharide acceptor, which was derived from its precursor by removal of the 3-methoxybenzyl group, with the phenyl 1-thioglycoside derivative of L-fucose using N-iodosuccinimide-trifluoromethanesulfonic acid as promoter, produced the hexasaccharide. Proper manipulation of the protecting groups of the hexasaccharide afforded the corresponding glycosyl imidate, which was coupled with (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol. Selective reduction of the azido group, N-acylation with octadecanoic acid, and the complete removal of the protecting groups gave the desired N-deacetylsialyl Lewis X ganglioside. L-Selectin bound more strongly to N-deacetylsialyl Lewis X ganglioside than to the sialyl Lewis X ganglioside, whereas E- and P-selectins bound equally well to the two gangliosides.  相似文献   

17.
Ma Z  Zhang J  Kong F 《Carbohydrate research》2004,339(10):1761-1771
Pentasaccharide repeating unit 20 of the lipoarabinomannan from the equine pathogen, Rhodococcus equi, and its dimer 31, were synthesized. The pentasaccharide was obtained by assembling a benzoylated 2,6-branched mannosyl trisaccharide acceptor 13 with a free hydroxyl group at C-2' of the mannose residue attached to the core mannose residue by (1 --> 6)-linkage, followed by coupling with 2,3,5-tri-O-benzoyl-alpha-D-arabinofuranosyl-(1 --> 2)-3,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl trichloroacetimidate (18), and by deacylation. Meanwhile, the decamer 31 was obtained by firstly preparing a benzoylated mannose (1 --> 6)-linked tetrasaccharide backbone 26 with 2-, 2"-O-ClAc, and 2'-, 2'-O-Ac groups, respectively, then by dechloroacetylation and subsequent condensation with perbenzoylated trichloroacetimidate, and then by deacetylation and subsequent coupling with 18, and finally, by deacylation.  相似文献   

18.
1. The phosphate groups in the type-specific substance S.34 from Pneumococcus type 34 (U.S. type 41) were shown to join the hydroxyl group at position 1 or 5 of ribitol and the hydroxyl group at position 3 of a d-galactofuranosyl residue in the next repeating unit. 2. A partial structure of the type-specific substance was derived. 3. New syntheses of d-galactose 2-phosphate and d-galactose 3-phosphate are described.  相似文献   

19.
The structure of the phenol-soluble polysaccharide from Shewanella putrefaciens strain A6 has been elucidated. Chemical modifications of the polymer in conjunction with 1H and 13C NMR spectroscopy, including 2D techniques, were employed in the analysis. It is concluded that the repeating unit is composed of two nine-carbon sugars as follows: -->4)-alpha-NonpA-(2-->3)-beta-Sugp-(1--> where alpha-NonpA is 5-acetamido-7-acetamidino-8-O-acetyl-3,5,7,9-tetradeoxy-L-glycero-alpha-D-galacto-non-2-ulosonic acid (8eLeg) and beta-Sugp is 2-acetamido-2,6-dideoxy-4-C-(3'-carboxamide-2',2'-dihydroxypropyl)-beta-D-galactopyranose, with the proposed name Shewanellose (She).  相似文献   

20.
Chen L  Zhu Y  Kong F 《Carbohydrate research》2002,337(5):383-390
The tetrasaccharide repeating unit of Escherichia coli O9a, alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->3)-alpha-D-Manp-(1-->3)-D-Manp, and the pentasaccharide repeating unit of E. coli O9 and Klebsiella O3, alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->3)-alpha-D-Manp-(1-->3)-D-Manp, were synthesized as their methyl glycosides. Thus, selective 3-O-allylation of p-methoxyphenyl alpha-D-mannopyranoside via a dibutyltin intermediate gave p-methoxyphenyl 3-O-allyl-alpha-D-mannopyranoside (2) in good yield. Benzoylation (-->3), then removal of 1-O-methoxyphenyl (right arrow4), and subsequent trichloroacetimidation afforded the 3-O-allyl-2,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl trichloroacetimidate (5). Condensation of 5 with methyl 4,6-O-benzylidene-alpha-D-mannopyranoside (6) selectively afforded the (1-->3)-linked disaccharide 7. Benzoylation of 7, debenzylidenation, benzoylation, and deallylation gave methyl 2,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->3)-2,4,6-tri-O-benzoyl-alpha-D-mannopyranoside (11) as the disaccharide acceptor. Coupling of 11 with (1-->2)-linked mannose disaccharide donor 17 or trisaccharide donor 21, followed by deacylation, furnished the target tetrasaccharide and pentasaccharide, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号