首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Topoisomerase I is an ubiquitous DNA cleaving enzyme and an important therapeutic target in cancer chemotherapy for the camptothecins as well as for indolocarbazole antibiotics such as rebeccamycin and its synthetic derivatives, which stabilize the cleaved DNA-topoisomerase I complex. The covalent linkage of a triple helixforming oligonucleotide to camptothecin or to the indolocarbazole derivative R-6 directs DNA cleavage by topoisomerase I to specific sequences. Sequence-specific recognition of DNA is achieved by the triple helix-forming oligonucleotide, which binds to the major groove of double-helical DNA and positions the drug at a specific site. The efficacy of topoisomerase I-induced DNA cleavage mediated by the rebeccamycin-conjugate and the camptothecin-conjugate was compared and related to the intrinsic potency of the isolated drugs.  相似文献   

2.
Topoisomerase I (topo I) is a ubiquitous DNA-cleaving enzyme and an important therapeutic target in cancer chemotherapy. Camptothecins (CPTs) reversibly trap topo I in covalent complex with DNA but exhibit limited sequence preference. The utilization of conjugates such as triplex-forming oligonucleotides (TFOs) to target a medicinal agent (like CPT) to a specific genetic sequence and orientation within the DNA has been accomplished successfully. In this study, different attachment points of the TFO to CPT (including positions 7, 9, 10, and 12) were investigated and our findings confirmed and extended previous conclusions. Interestingly, the conjugates induced specific DNA cleavage by topo I at the triplex site even when poorly active or inactive CPT derivatives were used. This suggests that the positioning of the drug in the cleavage complex by the sequence-specific DNA ligand is able to stabilize the ternary complex, even when important interactions between topo I and CPT are disrupted. Finally, certain TFO-CPT conjugates were able to induce sequence-specific DNA cleavage with the topo I mutants R364H and N722S that are resistant to camptothecin. The TFO-CPT conjugates are thus valuable tools to study the interactions involved in the formation of the ternary complex and also to enlarge the family of compounds that poison topo I. The fact that an inactive CPT analogue can act as a topo I poison when appropriately coupled to a TFO provides a new perspective at the level of drug design.  相似文献   

3.
Indolocarbazole and benzopyridoquinoxaline derivatives have been shown to have anti-tumor activity and to stimulate DNA topoisomerase I-mediated cleavage. Two indolocarbazole compounds (R-6 and R-95) and one benzopyridoquinoxaline derivative (BPQ(1256)) were covalently attached to the 3'-end of a 16mer triple helix-forming oligonucleotide (TFO). These conjugates bind to DNA with a higher affinity than the unsubstituted oligonucleotides. Furthermore, they induce topoisomerase I-mediated and triplex-directed DNA cleavage in a sequence-specific manner.  相似文献   

4.
We have studied the effect of the antitumor drug, camptothecin, on the interaction of human topoisomerase I with DNA at the sequence level. At a low molar ratio of enzyme to DNA, cleavage is prominent and unique, located at a previously described hexadecameric recognition sequence, while a number of strong additional cleavage sites appear in the presence of the drug. Camptothecin stimulates cleavage at the recognition sequence less than twofold, whereas cleavage at the additional sites is stimulated up to 200-fold. Camptothecin greatly enhances the stability of the cleavable complexes formed at the additional sites, whereas the complex formed at the hexadecameric sequence is only marginally affected. Cleavage was eliminated at certain sites in the presence of camptothecin. Taken together these observations demonstrate that at least three types of potential eukaryotic topoisomerase I cleavage sites can be distinguished by the use of camptothecin. Comparison of the sequences at the additional cleavage sites in the presence of camptothecin reveals that the most frequently cleaved dinucleotide is TG with no consensus for the flanking nucleotides.  相似文献   

5.
Topoisomerase I is an ubiquitous DNA-cleaving enzyme and an important therapeutic target in cancer chemotherapy for camptothecins as well as for indolocarbazole antibiotics such as rebeccamycin. To achieve a sequence-specific cleavage of DNA by topoisomerase I, a triple helix-forming oligonucleotide was covalently linked to indolocarbazole-type topoisomerase I poisons. The three indolocarbazole-oligonucleotide conjugates investigated were able to direct topoisomerase I cleavage at a specific site based upon sequence recognition by triplex formation. The efficacy of topoisomerase I-mediated DNA cleavage depends markedly on the intrinsic potency of the drug. We show that DNA cleavage depends also upon the length of the linker arm between the triplex-forming oligonucleotide and the drug. Based on a known structure of the DNA-topoisomerase I complex, a molecular model of the oligonucleotide conjugates bound to the DNA-topoisomerase I complex was elaborated to facilitate the design of a potent topoisomerase I inhibitor-oligonucleotide conjugate with an optimized linker between the two moieties. The resulting oligonucleotide-indolocarbazole conjugate at 10 nM induced cleavage at the triple helix site 2-fold more efficiently than 5 microM of free indolocarbazole, while the other drug-sensitive sites were not cleaved. The rational design of drug-oligonucleotide conjugates carrying a DNA topoisomerase poison may be exploited to improve the efficacy and selectivity of chemotherapeutic cancer treatments by targeting specific genes and reducing drug toxicity.  相似文献   

6.
E. coli DNA topoisomerase I catalyzes DNA topoisomerization by transiently breaking and rejoining single DNA strands (1). When an enzyme-DNA incubation mixture is treated with alkaline or detergent, DNA strand cleavage occurs, and the enzyme becomes covalently linked to the 5'-phosphoryl end of the cleaved DNA (2). Using oligonucleotides of defined length and sequence composition, this cleavage reaction is utilized to study the mechanism of E. coli DNA topoisomerase I. dA7 is the shortest oligonucleotide tested that can be cleaved by the enzyme. dT8 is the shortest oligo(dT) that can be cleaved. The site of cleavage in both cases is four nucleotides from the 3' end of the oligonucleotide. No cleavage can be observed for oligo(dC) and oligo(dG) of length up to eleven bases long. dC15 and dC16 are cleaved at one tenth or less the efficiency of oligo(dA) and oligo(dT) of comparable length.  相似文献   

7.
Amsacrine-4-carboxamide-oligonucleotide conjugates were synthesized and studied for their capacity to form DNA triple helices and to alter human topoisomerase II binding and cleavage properties. The intercalating agent was attached to the 3'- or the 5'-end of a 24 nt triple helix-forming oligonucleotide via linkers of different lengths. The stability of these DNA triple helices was investigated by gel retardation and melting temperature studies using a synthetic 70 bp DNA duplex target. The effect of the conjugates on DNA cleavage by topoisomerase II was evaluated using the 70 bp duplex and a 311 bp restriction fragment containing the same triple helix site. The conjugate with the amsacrine derivative linked to the 3' end of the TFO via a hexaethylene glycol linker modulates the extent of DNA cleavage by topoisomerase II at specific sites.  相似文献   

8.
The eukaryotic topoisomerase I (topo I) is the target of the cytotoxic alkaloid camptothecin (CTT). In vitro, CTT enhances the breakage of DNA by topo I when the reaction is stopped with detergent. Although breakage at some sites is enhanced to a great extent while breakage at others is enhanced only minimally, CTT does not significantly change the breakage specificity of topo I in vitro. It has been suggested that CTT acts by slowing the reclosure step of the nicking-closing reaction. To test this hypothesis, we have measured the rate of reclosure for different break sites in the presence of CTT after adding 0.5 M NaCl to a standard low salt reaction. In support of the hypothesis, we find that topo I-mediated DNA breakage is enhanced the greatest at those sites where closure of the break is the slowest. These results suggest a mechanism for the toxicity of CTT in vivo.  相似文献   

9.
Camptothecins constitute a novel class of chemotherapeutics that selectively target DNA topoisomerase I (Top1) by reversibly stabilizing a covalent enzyme-DNA intermediate. This cytotoxic mechanism contrasts with that of platinum drugs, such as cisplatin, which induce inter- and intrastrand DNA adducts. In vitro combination studies using platinum drugs combined with Top1 poisons, such as topotecan, showed a schedule-dependent synergistic activity, with promising results in the clinic. However, whereas the molecular mechanism of these single agents may be relatively well understood, the mode of action of these chemotherapeutic agents in combination necessitates a more complete understanding. Indeed, we recently reported that a functional homologous recombination pathway is required for cisplatin and topotecan synergy yet represses the synergistic toxicity of 1-beta-D-arabinofuranosyl cytidine in combination with topotecan (van Waardenburg, R. C., de Jong, L. A., van Delft, F., van Eijndhoven, M. A., Bohlander, M., Bjornsti, M. A., Brouwer, J., and Schellens, J. H. (2004) Mol. Cancer Ther. 3, 393-402). Here we provide direct evidence for Pt-1,3-d(GTG) poisoning of Top1 in vitro and demonstrate that persistent Pt-DNA adducts correlate with increased covalent Top1-DNA complexes in vivo. This contrasts with a lack of persistent lesions induced by the alkylating agent bis[chloroethyl]nitrosourea, which exhibits only additive activity with topotecan in a range of cell lines. In human IGROV-1 ovarian cancer cells, the synergistic activity of cisplatin with topotecan requires processive DNA polymerization, whereas overexpression of Top1 enhances yeast cell sensitivity to cisplatin. These results indicate that the cytotoxic activity of cisplatin is due, in part, to poisoning of Top1, which is exacerbated in the presence of topotecan.  相似文献   

10.
In order to investigate the mechanism of topoisomerase I inhibition by camptothecin, we studied the induction of DNA cleavage by purified mammalian DNA topoisomerase I in a series of oligonucleotides and analyzed the DNA sequence locations of preferred cleavage sites in the SV40 genome. The oligonucleotides were derived from the sequence of the major camptothecin-induced cleavage site in SV40 DNA (Jaxel, C., Kohn, K. W., and Pommier, Y. (1988) Nucleic Acids Res. 16, 11157 to 11170) with the cleaved bond in their center. DNA length was critical since cleavage was detectable only in 30 and 20 base pair-(bp) oligonucleotides, but not in a 12-bp oligonucleotide. Cleavage was at the same position in the oligonucleotides as in SV40 DNA. Its intensity was greater in the 30- than in the 20-bp oligonucleotide, indicating that sequences more than 10 bp away from the cleavage site may influence intensity. Camptothecin-induced DNA cleavage required duplex DNA since none of the single-stranded oligonucleotides were cleaved. Analysis of base preferences around topoisomerase I cleavage sites in SV40 DNA indicated that camptothecin stabilized topoisomerase I preferentially at sites having a G immediately 3' to the cleaved bond. Experiments with 30-bp oligonucleotides showed that camptothecin produced most intense cleavage in a complementary duplex having a G immediately 3' to the cleavage site. Weaker cleavage was observed in a complementary duplex in which the 3'G was replaced with a T. The identity of the 3' base, however, did not affect topoisomerase I-induced DNA cleavage in the absence of drug. These results indicate that camptothecin traps preferentially a subset of the enzyme cleavage sites, those having a G immediately 3' to the cleaved bond. This strong preference suggests that camptothecin binds reversibly to the DNA at topoisomerase I cleavage sites, in analogy to a model previously proposed for inhibitors of topoisomerase II (Capranico, G., Kohn, K.W., and Pommier, Y. (1990) Nucleic Acids Res. 18, 6611-6619).  相似文献   

11.
Triple helix-forming oligonucleotides covalently linked to topoisomerase I inhibitors, in particular the antitumor agent camptothecin, trigger topoisomerase I-mediated DNA cleavage selectively in the proximity of the binding site of the oligonucleotide vector. In the present study, we have performed a systematic analysis of the DNA cleavage efficiency as a function of the positioning of the camptothecin derivative, either on the 3′ or the 5′ side of the triplex, and the location of the cleavage site. A previously identified cleavage site was inserted at different positions within two triplex site-containing 59 bp duplexes. Sequence-specific DNA cleavage by topoisomerase I occurs only with triplex conjugates bearing the inhibitor at the 3′-end of the oligonucleotide and on the oligopyrimidine strand of the duplex. The lack of targeted cleavage on the 5′ side is attributed to the structural differences of the 3′ and 5′ duplex–triplex DNA junctions. The changes induced in the double helix by the triple-helical structure interfere with the action of the enzyme according to a preferred spatial organization. Camptothecin conjugates of oligonucleotides provide efficient tools to probe the organization of the topoisomerase I–DNA complex and will be useful to understand the functioning of topoisomerase I in living cells.  相似文献   

12.
Topoisomerase I adjusts torsional stress in the genome by breaking and resealing one strand of the helix through a transient covalent coupling between enzyme and DNA. Camptothecin, a specific topoisomerase I poison, traps this covalent intermediate, thereby damaging the genome. Here we examined the activity of topoisomerase I at telomeric repeats to determine whether telomere structures are targets for DNA damage. We show that topoisomerase I is catalytically active in cleaving the G-rich telomeric strand in vitro in the presence of camptothecin but not in cleaving the C-rich strand. The topoisomerase I cleavage site is 5'-TT (downward arrow) AGGG-3' (cleavage site marked by the downward arrow). We also show that endogenous topoisomerase I can access telomeric DNA in vivo and form camptothecin-dependent covalent complexes. Therefore, each telomeric repeat represents a potential topoisomerase I cleavage site in vivo. Because telomere structures are comprised of a large number of repeats, telomeres in fact represent a high concentration of nested topoisomerase I sites. Therefore, more telomeric DNA damage by camptothecin could occur in cells with longer telomeres when cells possess equivalent levels of topoisomerase I. The evidence presented here suggests that DNA damage at telomeric repeats by topoisomerase I is a prominent feature of cell killing by camptothecin and triggers camptothecin-induced apoptosis.  相似文献   

13.
Phenanthroline was attached covalently to the 5′-terminus of the unmodified and modified (3′-terminal phosphorothioate) oligonucleotide sequences, TTTTTTCTTCTCTTTCC (OP-17 mer) and TTTTTTTCTTCTCTTTCsC (OPRp-17 mer or OPSp-17 mer) via a phosphoramidite bond. Simian virus 40 DNA contains a single target site for these oligonucleotides. In the presence of copper ions, the efficient double-stranded cleavage at 37 °C and pH 7.0 was observed by agarose gel electrophoresis. The asymmetric distribution of the cleavage sites on the two strands revealed that the cleavage reaction took place in the minor groove, even though the linker was located in the major groove. Of particular interest are the 3′-terminal phosphorothioate oligonucleotide-phenanthroline derivatives (Rp or Sp), which were found to have cleavage activities of the same order as for the oligonucleotide phenanthroline (OP-17 mer). Furthermore, the OPSp-17 mer was intact after incubation in 10% fetal bovine serum for 24 h, whereas, the OPRp-17 mer was slightly more unstable than the OPSp-17 mer. However, the OP-17 mer was completely degraded. An increased resistance to nucleases has been observed by the introduction of phosphorothioate groups on the 3′-terminus of oligonucleotide-phenanthroline derivatives. This stabilization should help us to design much more efficient chemical recognition enzymes and antisense nucleic acid based anti-viral therapies, which could be used as tools in cellular biology.

The 3′-terminal phosphorothioate oligonucleotide-phenanthroline derivatives (Rp or Sp) were found to have cleavage activities of the same order as for the oligonucleotide phenanthroline (OP-17 mer). Furthermore, the OPSp-17 mer was intact after incubation in 10% fetal bovine serum for 24 h, whereas, the OPRp-17 mer was slightly more unstable than the OPSp-17 mer. However, the OP-17 mer was completely degraded. An increased resistance to nucleases has been observed by the introduction of phosphorothioate groups on the 3′-terminus of oligonucleotide-phenanthroline derivatives. This stabilization should help us to design much more efficient chemical recognition enzymes, which could be used as tools in cellular biology.  相似文献   


14.
In probing the mechanism of inhibition of hypoxia inducible factor (HIF-1) by campothecins, we investigated the ability of human topoisomerase I to bind and cleave HIF-1 response element (HRE), which contains the known camptothecin-mediated topoisomerase I cleavage site 5′-TG. We observed that the selection of 5′-TG by human topoisomerase I and topotecan depends to a large extent on the specific flanking sequences, and that the presence of a G at the −2 position (where cleavage occurs between −1 and +1) prevents the HRE site from being a preferred site for such cleavage. Furthermore, the presence of −2 T/A can induce the cleavage at a less preferred TC or TA site. However, in the absence of a more preferred site, the HRE site is shown to be cleaved by human topoisomerase I in the presence of topotecan. Thus, it is implied that the −2 base has a significant influence on the selection of the camptothecin-mediated Topo I cleavage site, which can overcome the preference for +1G. While the cleavage site recognition has been known to be based on the concerted effect of several bases spanning the cleavage site, such a determining effect of an individual base has not been previously recognized. A possible base-specific interaction between DNA and topoisomerase I may be responsible for this sequence selectivity.  相似文献   

15.
Specific DNA cleavage and binding by vaccinia virus DNA topoisomerase I   总被引:12,自引:0,他引:12  
Cleavage of a defined linear duplex DNA by vaccinia virus DNA topoisomerase I was found to occur nonrandomly and infrequently. Approximately 12 sites of strand scission were detected within the 5372 nucleotides of pUC19 DNA. These sites could be classified as having higher or lower affinity for topoisomerase based on the following criteria. Higher affinity sites were cleaved at low enzyme concentration, were less sensitive to competition, and were most refractory to religation promoted by salt, divalent cations, and elevated temperature. Cleavage at lower affinity sites required higher enzyme concentration and was more sensitive to competition and induced religation. Cleavage site selection correlated with a pentameric sequence motif (C/T)CCTT immediately preceding the site of strand scission. Noncovalent DNA binding by topoisomerase predominated over covalent adduct formation, as revealed by nitrocellulose filter-binding studies. The noncovalent binding affinity of vaccinia topoisomerase for particular subsegments of pUC19 DNA correlated with the strength and/or the number of DNA cleavage sites contained therein. Thus, cleavage site selection is likely to be dictated by specific noncovalent DNA-protein interactions. This was supported by the demonstration that a mutant vaccinia topoisomerase (containing a Tyr----Phe substitution at the active site) that was catalytically inert and did not form the covalent intermediate, nevertheless bound DNA with similar affinity and site selectivity as the wild-type enzyme. Noncovalent binding is therefore independent of competence in transesterification. It is construed that the vaccinia topoisomerase is considerably more stringent in its cleavage and binding specificity for duplex DNA than are the cellular type I enzymes.  相似文献   

16.
In this study, we further examined the sequence selectivity of camptothecin in mammalian topoisomerase I cDNA from human and Chinese hamster. In the absence of camptothecin, almost all the bases at the 3'-terminus of cleavage sites are T for calf thymus and wheat germ topoisomerase I. In addition, wheat germ topoisomerase I exhibits preference for C (or not T) at -3 and for T at -2 position. As for camptothecin-stimulated cleavage with topoisomerase I, G (or not T) at +1 is an additional strong preference. This sequence selectivity of camptothecin is similar to that previously found in SV40 DNA, suggesting that camptothecin preferentially interacts with topoisomerase I-mediated cleavage sites where G is the base at the 5'-terminus. These results support the stacking model of camptothecin (Jaxel et al. (1991) J. Biol. Chem. 266, 20418-20423). Comparison of calf thymus and wheat germ topoisomerase I-mediated cleavage sites in the presence of camptothecin shows that many major cleavage sites are similar. However, the relative intensities are often different. One of the differences was attributable to a bias at position -3 where calf thymus topoisomerase I prefers G and wheat germ topoisomerase I prefers C. This difference may explain the unique patterns of cleavage sites induced by the two enzymes. Sequencing analysis of camptothecin-stimulated cleavage sites in the surrounding regions of point mutations in topoisomerase I cDNA, which were found in camptothecin-resistant cell lines, reveals no direct relationship between DNA cleavage sites in vitro and mutation sites.  相似文献   

17.
A rational design by means of molecular mechanics has been carried out in an effort to extend the range of double-helical DNA sequences that could be recognized by triple helix-forming oligonucleotides. The DNA target is composed of alternating, adjacent fragments of oligopurine·oligopyrimidine sequences, instead of a long stretch of polypurine·polypyrimidine sequence used for canonical triple helix formation. Based on the combination of different triple helix motifs in eitherHoogsteen orreverse Hoogsteen configuration, mini-triple helices can be formed at each oligopurine·oligopyrimidine part of the target sequence with either parallel or antiparallel orientation with respect to the purine strand. As the adjacent purine target sequences are located in the complementary strands, the third strand oligonucleotides can be joined together through a natural phosphodiester backbone at the junctions in either a 5-3 or a 3-5 polarity. There are six distinct junction steps. Molecular modeling was aimed at optimizing the cooperative binding of the so-called switched triple helix-forming oligonucleotides by choosing appropriate nucleotide(s) at the junction between two adjacent minitriple helices. A comprehensiveswitch code describing the rules for forming switched triple helices has been established. Its practical applications in extending DNA recognition by this new generation of tailor-made triple helix-forming oligonucleotides are discussed.  相似文献   

18.
DNA topoisomerases have been shown to be important therapeutic targets in cancer chemotherapy. We found that KT6006 and KT6528, synthetic antitumor derivatives of indolocarbazole antibiotic K252a, were potent inducers of a cleavable complex with topoisomerase I. In DNA cleavage assay using purified calf thymus DNA topoisomerase I and supercoiled pBR322 DNA, KT6006 induced topoisomerase I mediated DNA cleavage in a dose-dependent manner at drug concentrations up to 50 microM, while DNA cleavage induced by KT6528 was saturated at 5 microM. The maximal amount of nicked DNA produced by KT6006 was more than 50% of substrate DNA, which was comparable to that of camptothecin. Heat treatment (65 degrees C) of the reaction mixture containing these compounds and topoisomerase I resulted in a substantial reduction in DNA cleavage, suggesting that topoisomerase I mediated DNA cleavage induced by KT6006 and KT6528 is through the mechanism of stabilizing the reversible enzyme-DNA "cleavable complex". Both KT6006 and KT6528 did not induce topoisomerase II mediated DNA cleavage in vitro. KT6006 and KT6528 were found to induce nearly identical topoisomerase I mediated DNA cleavage patterns, which was distinctly different from that with camptothecin. In contrast to the similarity between KT6006 and KT6528 in their structures and the nature of their cleavable complex with topoisomerase I, these drugs have different properties with respect to their interaction with DNA: KT6006 is a very weak intercalator whereas KT6528 is a strong intercalator with potentials comparable to that of adriamycin. These results indicate that KT6006 and KT6528 represent a new distinct class of mammalian DNA topoisomerase I active antitumor drugs.  相似文献   

19.
A Richter  J Ruff 《Biochemistry》1991,30(40):9741-9748
The intracellular substrate for eukaryotic DNA topoisomerases is chromatin rather than protein-free DNA. Yet, little is known about the action of topoisomerases on chromatin-associated DNA. We have analyzed to what extent the organization of DNA in chromatin influences the accessibility of DNA molecules for topoisomerase I cleavage in vitro. Using potassium dodecyl sulfate precipitation (Trask et al., 1984), we found that DNA in chromatin is cleaved by the enzyme with somewhat reduced efficiency compared to protein-free DNA. Furthermore, using native SV40 chromatin and mononucleosomes assembled in vitro, we show that DNA bound to histone octamer complexes is cleaved by topoisomerase I and that the cleavage sites as well as their overall distribution are identical in histone-bound and in protein-free DNA molecules.  相似文献   

20.
Possibility of stabilization of DNA triple helix is discussed using a covalent conjugation to the third strand (through its terminal phosphate) of ligands that have affinity to double and triple helices. Two types of stabilizers are considered: minor groove binders based on oligopyrroles and triplex-specific interacalators. As a target, a synthetic 29-mer duplex containing a natural polypurinic sequence of the human immunodeficiency provirus was employed. The stabilization with minor groove binders requires several conditions to be respected: a sufficiently long linker capable of reaching out the minor groove from the major one, a specific double-stranded structure of the oligopyrrole fragment and its in-phase fitness to the target sequence. The best stabilizers of a triplex turned out to be novel conjugates in which two parallel molecules containing six pyrrole units each are linked to the same 5'-phosphate of a 16-mer triplex-forming oligonucleotide. The stabilizing properties of these derivatives were comparable with those of benzoindoloquinoline (BIQ) intercalators attached to the terminal phosphate of triple-helix forming oligonucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号