首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The subarcualis rectus I muscle (SAR) in the feeding mechanism of four tiger salamanders (Ambystoma tigrinum) was removed early in ontogeny and these individuals were allowed to complete metamorphosis. This procedure resulted in postmetamorphic tiger salamanders which differed from control individuals in the size (and thus force generating capacity) of the SAR muscle. The experimental manipulation of muscle ontogeny allowed a test of previous hypotheses of SAR function in postmetamorphic individuals. Multivariate analysis of variance for kinematic variables measured from high-speed video records of feeding revealed that experimentally modified tiger salamanders did not protract the hyobranchial apparatus or project the tongue from the mouth during feeding. Removal of the SAR muscle resulted in significantly reduced hyobranchial elevation in the buccal cavity and reduced maximum tongue projection distance.  相似文献   

2.
Although much is known about the ecological significance of metamorphosis and metamorphic timing, few studies have examined the underlying genetic architecture of these traits, and no study has attempted to associate phenotypic variation to molecular variation in specific genes. Here we report on a candidate gene approach (CGA) to test specific loci for a statistical contribution to variation in metamorphic timing. Three segregating populations (SP1, SP2 and SP3) were constructed utilizing three species of paedomorphic Mexican ambystomatid salamander, including the axolotl, Ambystoma mexicanum. We used these replicated species to test the hypothesis that inheritance of alternate genotypes at two thyroid hormone receptor loci (TRalpha, TRbeta) affects metamorphic timing in ambystomatid salamanders. A significant TRalpha*SP effect indicated that variation in metamorphic timing may be influenced by TRalpha genotype, however, the effect was not a simple one, as both the magnitude and direction of the phenotypic effect depended upon the genetic background. These are the first data to implicate a specific gene in contributing to variation in metamorphic timing. In general, candidate gene approaches can be extended to any number of loci and to any organism where simple genetic crosses can be performed to create segregating populations. The approach is thus of particular value in ecological studies where target genes have been identified but the study organism is not one of the few well-characterized model systems that dominate genetic research.  相似文献   

3.
Functional morphology and evolution of tail autotomy in salamanders   总被引:1,自引:0,他引:1  
Basal tail constriction occurs in about two-thirds of the species of plethodontid salamanders. The constriction, which marks the site of tail autotomy, is a result of a reduction in length and diameter of the first caudal segment. Gross and microscopic anatomical studies reveal that many structural specializations are associated with basal constriction, and these are considered in detail. Areas of weakness in the skin at the posterior end of the first caudal segment, at the attachment of the musculature to the intermyotomal septum at the anterior end of the same segment, and between the last caudosacral and first caudal vertebrae precisely define the route of tail breakage. During autotomy the entire tail is shed, and a cylinder of skin one segment long closes over the wound at the end of the body. It is suggested that specializations described in this paper have evolved independently in three different groups of salamanders. Experiments and field observations reveal that, contrary to expectations, frequency of tail breakage is less in species with apparent provisions for tail autotomy than in less specialized species. The tail is a very important, highly functional organ in salamanders and it is suggested that selection has been for behavioral and structural adaptations for control of tail loss, rather than for tail loss per se.  相似文献   

4.
We have begun a comparative study of pigment patterns and their mechanisms of formation in ambystomatid salamanders in an attempt to elucidate the evolution of these traits in this family. In Ambystoma t. tigrinum, the migration of the prospective pigment cells was followed by using scanning electron microscopy and light microscopy combined with markers (dopa incubation for detecting melanophores, ammonia-induced pterin fluorescence for detecting xanthophores). The pigment pattern resulting from the cell migration shares features both with the alternating vertical xanthophore and melanophore bars of A. mexicanum and the horizontal stripes of certain salamandrids and ambystomatids. The pigment pattern of A. t. tigrinum is interpreted here as an intermediate evolutionary step between a primitive horizontal stripe pattern and a derived vertical bar pattern. The initiation of pigment pattern formation resembles the situation in A. mexicanum, probably reflecting the close phylogenetic relationship between the two taxa.  相似文献   

5.
Functional morphologists commonly study feeding behavior in vertebrates by recording electrical activity from head muscles during unrestrained prey capture. Rarely are experiments designed to permit a partitioning variation in muscle electrical activity patterns. Analysis of muscle activity during aquatic prey capture in two morphologically distinct species of salamanders, Ambystoma dumerilii and A. mexicanum, is conducted to assess variation at four levels: between species, among individuals within species, among experiments conducted on different days, and among feedings. The results show that 1) mean correlations among the 11 electromyographic variables measured for each feeding are low and vary considerably among individuals, 2) many of the variables show significant differences among experimental days, 3) only one variable, the difference in timing between the depressor mandibulae and sternohyoideus muscles, showed significant variation between species, and 4) seven of the 11 variables showed significant variation among individuals within species. Overall, the variation between feedings (trials) was high, and there was some variation between days on which the experiments were conducted. Neither electrode position within the muscle nor satiation contributed to the high trial variance. The results suggest that functional analyses of feeding behavior should include an assessment of variation due to individuals, days, and trials, because the amount of variation at these levels may render differences between species nonsignificant.  相似文献   

6.

Introduction

Many species of ambystomatid salamanders are dependent upon highly variable temporary wetlands for larval development. High larval densities may prompt the expression of a distinct head morphology that may facilitate cannibalism. However, few studies have characterized structural cannibalism within natural populations of larval salamanders. In this study we used two species of larval salamanders, long-toed (Ambystoma macrodactylum) and ringed salamanders (A. annulatum). Head morphometrics and stable isotopic values of carbon (δ13C) and nitrogen (δ15N) were used to identify the presence or absence of structural cannibalism. Weather conditions were also analyzed as a potential factor associated with the expression of cannibalistic morphology.

Results

Populations of salamander larvae did not consistently exhibit cannibalistic morphologies throughout collection periods. Larval long-toed salamanders exhibited trophic polymorphisms when relatively lower precipitation amounts were observed. Larval ringed salamanders were observed to be cannibalistic but did not exhibit polymorphisms in this study.

Conclusions

Structural cannibalism may be transient in both species; however in long-toed salamanders this morphology is necessary for cannibalism. Ringed salamanders can be cannibalistic without morphological adaptations; however the cannibal morph may prolong the viable time period for cannibalism. Additionally, weather conditions may alter pond hydroperiod, subsequently influencing head morphology and cannibalism.
  相似文献   

7.
The comparative feeding apparatus of Gadidae and Macrouridae has been studied from a functional point of view. Some important modifications in macrourid species in comparison with the gadid ones were found: rostral end of the cranium, rostral ligaments and disposition of the jaw muscles. Anyways, all the modifications seem secondary, motivated by the habitat. That is true in the case of the beak, in relation with the swimming system which had been already observed by Marshall and Bourne (1964). The question of the rostral ligaments modification would be related with the protraction of the upper jaw, but a further analysis is required. Also discussed are two schemes of possible changes in the jaw musculature.  相似文献   

8.
Presence of the vomeronasal system in aquatic salamanders   总被引:4,自引:0,他引:4  
Previous reports have indicated that members of the proteid family of salamanders lack a vomeronasal system, and this absence has been interpreted as representing the ancestral condition for aquatic amphibians. I examined the anatomy of the nasal cavities, nasal epithelia, and forebrains of members of the proteid family, mudpuppies (Necturus maculosus), as well as members of the amphiumid and sirenid families (Amphiuma tridactylum and Siren intermedia). Using a combination of light and transmission electron microscopy, I found no evidence that mudpuppies possess a vomeronasal system, but found that amphiuma and sirens possess both vomeronasal and olfactory systems. Amphiumids and sirenids are considered to be outgroups relative to proteids; therefore, these data indicate that the vomeronasal system is generally present in salamanders and has been lost in mudpuppies. Given that the vomeronasal system is generally present in aquatic amphibians, and that the last common ancestor of amphibians and amniotes is believed to have been fully aquatic, I conclude that the vomeronasal system arose in aquatic tetrapods and did not originate as an adaptation to terrestrial life. This conclusion has important implications for the hypothesis that the vomeronasal organ is specialized for detection of non-volatile compounds.  相似文献   

9.
Delimiting the boundaries of species involved in radiations is critical to understanding the tempo and mode of lineage formation. Single locus gene trees may or may not reflect the underlying pattern of population divergence and lineage formation, yet they constitute the vast majority of the empirical data in species radiations. In this study we make use of an expressed sequence tag (EST) database to perform nuclear (nDNA) and mitochondrial (mtDNA) genealogical tests of species boundaries in Ambystoma ordinarium, a member of an adaptive radiation of metamorphic and paedomorphic salamanders (the Ambystoma tigrinum complex) that have diversified across terrestrial and aquatic environments. Gene tree comparisons demonstrate extensive nonmonophyly in the mtDNA genealogy of A. ordinarium, while seven of eight independent nuclear loci resolve the species as monophyletic or nearly so, and diagnose it as a well-resolved genealogical species. A differential introgression hypothesis is supported by the observation that western A. ordinarium localities contain mtDNA haplotypes that are identical or minimally diverged from haplotypes sampled from a nearby paedomorphic species, Ambystoma dumerilii, while most nDNA trees place these species in distant phylogenetic positions. These results provide a strong example of how historical introgression can lead to radical differences between gene trees and species histories, even among currently allopatric species with divergent life history adaptations and morphologies. They also demonstrate how EST-based nuclear resources can be used to more fully resolve the phylogenetic history of species radiations.  相似文献   

10.
The morphology and fine structure of the basilar recess and basilar papilla were investigated in four species of salamanders from the family Ambystomatidae. The otic relationships of the recess and papilla to the proximal part of the lagena and saccule are described, and new terminology is suggested for the periotic relationships of the basilar recess to a diverticulum of an intracapsular periotic sac. The basilar papilla consists of supporting cells united laterally by gap junctions, capped by microvilli uniformly arranged around a short, central cilium, and hair cells that typically show several synapses with a single afferent nerve fiber, each marked by a rounded synaptic body surrounded by vesicles. In contrast to anuran basilar papillae, efferent nerve terminals were observed in synapse with hair cells and, rarely, upon afferent fibers. The distal half of the ambystomatid papilla contained hair cells capped by tall ciliary bundles, with kinocilia that show swellings near their tips with delicate attachments to adjacent tall stereocilia. A tectorial body covers only this region of the papilla. Hair cells with shorter stereocilia, situated in the proximal half and at the papillar margins, are related only to filamentous extensions of the tectorial body. The ambystomatid basilar recess and papilla are compared to auditory end-organs in other vertebrates, and it is suggested that a basic distinction can be made between aural neuroepithelia in amniotes versus that in nonamniotic vertebrate ears.  相似文献   

11.
The pigment pattern formation in embryos and larvae of three ambystomatid salamanders was investigated in an evolutionary context. Early neural crest development was studied with scanning electron microscopy. Pigment cell migration and pattern formation were investigated at the light microscopy level with markers that labelled the two pigment cell types specifically before they were fully differentiated. In all three species, the pigment pattern formation started when xanthophores that had first formed aggregates in the crest migrated ventrally. As previously observed in other species, vertical bars always form by a mechanism involving earlier onset of migration in melanophores than in xanthophores and aggregate formation in the crest. In Ambystoma talpoideum and A. annulatum, a pattern of vertical chromatophore bars formed, which was superimposed on a pattern of horizontal stripes. In Ambystoma barbouri, the tendency to form this pattern was obscured by the high density of melanophores. It is suggested that variation among species may be due to differences in the chromatophore density and in the melanophore/xanthophore ratio. Mapping of the evolution of vertical bars onto existing phylogenies for the group was confounded by controversies about how to interpret the phylogenetic data. On the phylogeny that takes all the available evidence into account, there are two equally parsimonious mappings. Vertical bars have either evolved only once and been lost twice, or evolved twice and been lost once. This rather conservative pattern can be explained both as an effect of stabilizing selection and as a result of developmental constraints. © 1994 Wiley-Liss, Inc.  相似文献   

12.
Most previous research on metamorphosis of the musculoskeletal system in vertebrates has focused on the transformation of the skeleton. In this paper we focus on the transformation of the muscles of the head during metamorphosis in tiger salamanders ( Ambystoma tigrinum ) in order (1) to provide new data on changes in myology during ontogeny, and (2) to aid in interpreting previous data on the metamorphosis of function in the head of salamanders.
The physiological cross-sectional area of nine head muscles was calculated by measuring fibre angles, fibre lengths, and muscle mass in two samples of tiger salamanders obtained just before and just after metamorphosis. The major mouth-opening muscles (rectus cervicis and depressor mandibulae) exhibit a significant decrease in estimated maximum tetanic tension (MTT) across metamorphosis of about 36%. The jaw-closing muscles (adductor mandibulae internus and externus) and the head-lifting muscles (epaxials) also decrease in MTT but not significantly. The muscles associated with tongue projection during feeding on land (the subarcualis rectus I, geniohyoideus, interhyoideus and intermandibularis) all show a slight increase in MTT at metamorphosis.
Metamorphic transformation of feeding behaviour in Ambystoma tigrinum involves changes in performance, the design of skeletal elements, changes in muscle force-generating capability, and changes in hydrodynamic design from unidirectional flow in larvae to bidirectional flow during aquatic feeding after metamorphosis. Although muscle activity patterns during aquatic feeding do not change across metamorphosis, tongue-based terrestrial feeding involves a suite of novel muscle activity patterns, morphological characters acquired at metamorphosis, and a metamorphic increase in the masses of muscles important in tongue projection.  相似文献   

13.
The past decade has witnessed a dramatic increase in studies of amphibian and reptile specific dynamic action (SDA). These studies have demonstrated that SDA, the summed energy expended on meal digestion and assimilation, is affected significantly by meal size, meal type, and body size and to some extent by body temperature. While much of this attention has been directed at anuran and reptile SDA, we investigated the effects of meal size, meal type, and body temperature on the postprandial metabolic responses and the SDA of the tiger salamander (Ambystoma tigrinum tigrinum). We also compared the SDA responses among six species of Ambystoma salamanders representing the breadth of Ambystoma phylogeny. Postprandial peaks in VO(2) and VO(2), duration of elevated metabolism, and SDA of tiger salamanders increased with the size of cricket meals (2.5%-12.5% of body mass). For A. tigrinum, as for other ectotherms, a doubling of meal size results in an approximate doubling of SDA, a function of equal increases in peak VO(2) and duration. For nine meal types of equivalent size (5% of body mass), the digestion of hard-bodied prey (crickets, superworms, mealworms, beetles) generated larger SDA responses than the digestion of soft-bodied prey (redworms, beetle larvae). Body temperature affected the profile of postprandial metabolism, increasing the peak and shortening the duration of the profile as body temperature increased. SDA was equivalent among three body temperatures (20 degrees, 25 degrees, and 30 degrees C) but decreased significantly at 15 degrees C. Comparatively, the postprandial metabolic responses and SDA of Ambystoma jeffersonianum, Ambystoma maculatum, Ambystoma opacum, Ambystoma talpoideum, Ambystoma texanum, and the conspecific Ambystoma tigrinum mavortium digesting cricket meals that were 5% of their body mass were similar (independent of body mass) to those of A. t. tigrinum. Among the six species, standard metabolic rate, peak postprandial VO(2), and SDA scaled with body mass with mass exponents of 0.72, 0.78, and 1.05, respectively.  相似文献   

14.
The nurse shark, Ginglymostoma cirratum, is an obligate suction feeder that preys on benthic invertebrates and fish. Its cranial morphology exhibits a suite of structural and functional modifications that facilitate this mode of prey capture. During suction‐feeding, subambient pressure is generated by the ventral expansion of the hyoid apparatus and the floor of its buccopharyngeal cavity. As in suction‐feeding bony fishes, the nurse shark exhibits expansive, compressive, and recovery kinematic phases that produce posterior‐directed water flow through the buccopharyngeal cavity. However, there is generally neither a preparatory phase nor cranial elevation. Suction is generated by the rapid depression of the buccopharyngeal floor by the coracoarcualis, coracohyoideus, and coracobranchiales muscles. Because the hyoid arch of G. cirratum is loosely connected to the mandible, contraction of the rectus cervicis muscle group can greatly depress the floor of the buccopharyngeal cavity below the depressed mandible, resulting in large volumetric expansion. Suction pressures in the nurse shark vary greatly, but include the greatest subambient pressures reported for an aquatic‐feeding vertebrate. Maximum suction pressure does not appear to be related to shark size, but is correlated with the rate of buccopharyngeal expansion. As in suction‐feeding bony fishes, suction in the nurse shark is only effective within approximately 3 cm in front of the mouth. The foraging behavior of this shark is most likely constrained to ambushing or stalking due to the exponential decay of effective suction in front of the mouth. Prey capture may be facilitated by foraging within reef confines and close to the substrate, which can enhance the effective suction distance, or by foraging at night when it can more closely approach prey. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

15.
Regester KJ  Lips KR  Whiles MR 《Oecologia》2006,147(2):303-314
Breeding adults and metamorphosing larval amphibians transfer energy between freshwater and terrestrial ecosystems during seasonal migrations and emergences, although rarely has this been quantified. We intensively sampled ambystomatid salamander assemblages (Ambystoma opacum,A. maculatum, and A. tigrinum) in five forested ponds in southern Illinois to quantify energy flow associated with egg deposition, larval production, and emergence of metamorphosed larvae. Oviposition by female salamanders added 7.0–761.4 g ash-free dry mass (AFDM) year−1 to ponds (up to 5.5 g AFDM m−2 year−1). Larval production ranged from 0.4 to 7.4 g AFDM m−2 year−1 among populations in three ponds that did not dry during larval development, with as much as 7.9 g AFDM m−2 year−1 produced by an entire assemblage. Mean larval biomass during cohort production intervals in these three ponds ranged from 0.1 to 2.3 g AFDM m−2 and annual P/B (production/biomass) ranged from 4 to 21 for individual taxa. Emergent biomass averaged 10% (range=2–35%) of larval production; larval mortality within ponds accounted for the difference. Hydroperiod and intraguild predation limited larval production in some ponds, but emerging metamorphs exported an average of 70.0±33.9 g AFDM year−1 (range=21.0–135.2 g AFDM year−1) from ponds to surrounding forest. For the three ponds where larvae survived to metamorphosis, salamander assemblages provided an average net flux of 349.5±140.8 g AFDM year−1 into pond habitats. Among all ponds, net flux into ponds was highest for the largest pond and decreased for smaller ponds with higher perimeter to surface area ratios (r 2 =0.94, P<0.05, n=5). These results are important in understanding the multiple functional roles of salamanders and the impact of amphibian population declines on ecosystems. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

16.
17.
Organisms are self-producing and self-maintaining, or autopoietic systems. Therefore, the course of evolution and adaptation of an organism is strongly determined by its own internal properties, whatever role external selection may play. The internal properties may either act as constraints that preclude certain changes or they open new pathways: the organism canalizes its own evolution. As an example the evolution of feeding mechanisms in salamanders, especially in the lungless salamanders of the family Plethodontidae, is discussed. In this family a large variety of different feeding mechanisms is found. The authors reconstruct this evolutionary process as a series of bifurcation points of either constraints or opportunities forming a sequence of preconditions for the formation of a high-speed projectile tongue characteristic of tropical salamanders. Furthermore, it is shown how parallel evolution of seemingly unrelated domains within an organism such as respiratory physiology, life history biology and pattern of ontogeny has rather direct relevance to the feeding biology, thus demonstrating that organisms always evolve as wholes.  相似文献   

18.
Plethodontid salamanders capture prey with enhanced tongue protraction relative to other salamander taxa, yet metamorphosing plethodontids are hypothesized to be constrained relative to direct-developing plethodontids in their degree of tongue evolution (protraction length and velocity) by the presence of a larval stage in development. In this biphasic life history the hyobranchial apparatus serves the conflicting functions of larval suction feeding and adult tongue protraction. The deletion of the larval stage removes one of the conflicting functions and has thus permitted direct-developing plethodontids to circumvent this constraint and evolve extremely long tongues, which in some species can be projected to 80% of body length. To evaluate this constraint hypothesis and explore taxonomic diversity of feeding behaviours, we studied feeding in larvae, adults and metamorphosing individuals of seven species of metamorphosing plethodontids from the basal taxa Desmognathinae and Hemidactyliini using direct observations, high-speed videography and kinematic analysis. We found that larval plethodontids suction feed, but feeding is suspended entirely during metamorphosis, and aquatic adults do not suction feed. Adults have exapted the terrestrial modes of tongue and jaw prehension for aquatic prey capture. These findings substantiate the premise that suction feeding and tongue protraction are conflicting functions, and thus our results support the constraint hypothesis. Plethodontid adults have evolved their extreme tongue protraction ability at the expense of adult suction feeding. The rapid metamorphosis that characterizes plethodontids may be an adaptation that minimizes the non-feeding period imposed by the evolution of derived tongue protraction in adults. © 2002 The Linnean Society of London, Zoological Journal of the Linnean Society , 2002, 134 , 375–400.  相似文献   

19.
Robert G. Jaeger 《Oecologia》1981,48(2):190-193
Summary Terrestrial species of salamanders generally have a higher diversity of prey in their stomachs and produce smaller and less frequent clutches than do species living in wetter habitats. This may be a consequence of differences in prey availability in the two types of habitats. Prey frequently fluctuate in availability in terrestrial areas as a result of fluctuations in rainfall and the inability of salamanders to forage efficiently during dry periods; the salamanders respond with a generalist diet and relatively K-selected reproductive tactics. In wetter habitats, prey fluctuations are probably dampened due to more constant conditions of moisture; salamanders respond with a more specialized diet and relatively r-selected reproductive tactics.  相似文献   

20.
Head kinematics during aquatic feeding of the Australian long-necked turtle (Chelodina) were studied by means of high speed video recordings. Buccal expansion was assessed by calculation of elliptical cross-sectional surfaces. Further, displacements of head, carapace, and prey in the earth bound frame, of the prey relative to the center of the gape, and of the head relative to the carapace were determined. Rates of change (velocities) of all these variables were calculated. These data are combined with information on the osteology and myology of the head. The robust development of the large hyobranchial apparatus, the massive intercornuatus muscle, and the presence of the branchiosquamosus muscle were related to aquatic feeding skills. Head kinematics are variable in amplitude and relative timing, but proceed always in a rostrocaudal sequence. According to their effect on the prey, two components are distinguished in the process of expansion. The first compensates for head/body movements (compensatory suction). The second causes distinct acceleration of water and prey (inertial suction). The latter component is mainly driven by the abduction of the second branchial arch. In spite of largely different structural solutions, optimal feeding conditions as deduced for suction in feeding fishes are also employed by Chelodina. This further promotes the assumption that hydrodynamics constrain evolutive solutions for aquatic feeding. J. Morphol. 233:113–125, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号