首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two allelic Mendelian mutations which confer a short flagella phenotype were used to explore flagellar size control in Chlamydomonas reinhardtii. When mutant/wild type quadriflagellate dikaryon cells were constructed, their two short flagella rapidly grew out to near wild type length. The kinetics of elongation suggest that the flagellar assembly process is not intrinsically self-limiting as a number of otherwise attractive models for size control require. Instead, we suggest that there exists a cellular machinery dedicated to flagellar size control and that the short-flagella mutations alter the machinery in some as yet unknown way. One of the mutants shows temperature-sensitive flagellar assembly, and both are flagellaless in acetate media. Genetic analysis indicates that the temperaturesensitive, acetate-sensitive, and short-flagella phenotypes have a common genetic basis. The responsible gene has been named shf-1, and it has been mapped to chromosome VI, approximately 5 map units from the centromere.  相似文献   

2.
Map-based (positional) cloning has traditionally been the preferred strategy for identifying the causal genes underlying the phenotypes of mutants isolated in forward genetic screens. Massively parallel sequencing technologies are enabling the rapid cloning of genes identified in such screens. We have used a combination of linkage mapping and whole-genome re-sequencing to identify the causal mutations in four loss-of-function angulata (anu) mutants. These mutants were isolated in a screen for mutants with defects in leaf shape and leaf pigmentation. Our results show that the anu1-1, anu4-1, anu9-1 and anu12-1 mutants carry new alleles of the previously characterized SECA2, TRANSLOCON AT THE OUTER MEMBRANE OF CHLOROPLASTS 33 (TOC33), NON-INTRINSIC ABC PROTEIN 14 (NAP14) and CLP PROTEASE PROTEOLYTIC SUBUNIT 1 (CLPR1) genes. Re-sequencing the genomes of fine mapped mutants is a feasible approach that has allowed us to identify a moderate number of candidate mutations, including the one that causes the mutant phenotype, in a nonstandard genetic background. Our results indicate that anu mutations specifically affect plastid-localized proteins involved in diverse processes, such as the movement of peptides through chloroplast membranes (ANU1 and ANU4), metal homeostasis (ANU9) and protein degradation (ANU12).  相似文献   

3.
Saccharomyces cerevisiae mutants which exhibit phenotypes (calcium resistance and vanadate sensitivity) similar to those of calcineurin-deficient mutants were isolated. The mutants were classified into four complementation groups (crv1,2,3 and4).crv1 was allelic tocnb1, a mutation in the regulatory subunit of calcineurin. The nucleotide sequences ofCRV2 andCRV3 genes which complemented thecrv2 andcrv3 mutations, respectively, are identical to those ofBCK1/SLK1/SKC1/SSP31 andMPK1/SLT2, respectively, which are both involved in the MAP kinase cascade. A calcineurin-deletion mutation (Δcnb1), which by itself has no detectable effect on growth and morphology, enhanced some phenotypes (slow growth and morphological abnormality) ofcrv2 andcrv3 mutants. These phenotypes ofcrv2 andcrv3 mutants were partially suppressed by Ca2+ or by overproduction of the calcineurin subunits (Cmp2 and Cnb1). Like the calcineurin-deficient mutant,crv2 andcrv3 mutants were defective in recovery from α-factor-induced growth arrest. The defect in recovery of the Δcnb1 mutant was suppressed by overexpression ofMPK1. These results indicated that the calcineurin-mediated and the Mpk1- (Bck1-) mediated signaling pathways act in parallel to regulate functionally redundant cellular events important for growth.  相似文献   

4.
Cyclophilin A is the target of the immunosuppressant cyclosporin A (CsA) and is encoded by a single unique gene conserved from yeast to humans. In the pathogenic fungus Cryptococcus neoformans, two homologous linked genes, CPA1 and CPA2, were found to encode two conserved cyclophilin A proteins. In contrast to Saccharomyces cerevisiae, in which cyclophilin A mutations confer CsA resistance but few other phenotypes, cyclophilin A mutations conferred dramatic phenotypes in C. neoformans. The Cpa1 and Cpa2 cyclophilin A proteins play a shared role in cell growth, mating, virulence and CsA toxicity. The Cpa1 and Cpa2 proteins also have divergent functions. cpa1 mutants are inviable at 39°C and attenuated for virulence, whereas cpa2 mutants are viable at 39°C and fully virulent. cpa1 cpa2 double mutants exhibited synthetic defects in growth and virulence. Cyclophilin A active site mutants restored growth of cpa1 cpa2 mutants at ambient but not at higher temperatures, suggesting that the prolyl isomerase activity of cyclophilin A has an in vivo function.  相似文献   

5.
Nine new colchicine-resistant, three vinblastine-resistant, two colchicine-sensitive and one colchicine-dependent mutant of Chlamydomonas reinhardii have been isolated. Some of the mutants have abnormal cell morphology in the absence of the drug. Some of the mutants have altered levels of resistance to puromycin and to caffeine, which may indicate that their phenotypes involve a non-specific permeability change. However, uptake of labelled colchicine is indistin-guishable from wild type in all of these mutants except two. The discrepancy between these two results is discussed. All the resistant mutants except one behave as if they have a single gene defect in crosses to wild type, although zygote germination is consistently very poor. Strains carrying certain pairs of resistance mutations are much more resistant than those carrying single mutations indicating that gene effects are additive. Recombination frequencies between some genes have been measured. The colchicine-sensitive mutations are thought not to be cell wall deficient mutations because of their appearance in the electron microscope, growth on low agar concentrations and their colony morphology. The colchicine-dependent strain had a very low viability even in the presence of optimal concentrations of colchicine.  相似文献   

6.
Neural tube defects (NTDs) are among the commonest and most severe forms of developmental defect, characterized by disruption of the early embryonic events of central nervous system formation. NTDs have long been known to exhibit a strong genetic dependence, yet the identity of the genetic determinants remains largely undiscovered. Initiation of neural tube closure is disrupted in mice homozygous for mutations in planar cell polarity (PCP) pathway genes, providing a strong link between NTDs and PCP signaling. Recently, missense gene variants have been identified in PCP genes in humans with NTDs, although the range of phenotypes is greater than in the mouse mutants. In addition, the sequence variants detected in affected humans are heterozygous, and can often be detected in unaffected individuals. It has been suggested that interactions between multiple heterozygous gene mutations cause the NTDs in humans. To determine the phenotypes produced in double heterozygotes, we bred mice with all three pairwise combinations of Vangl2Lp, ScribCrc and Celsr1Crsh mutations, the most intensively studied PCP mutants. The majority of double-mutant embryos had open NTDs, with the range of phenotypes including anencephaly and spina bifida, therefore reflecting the defects observed in humans. Strikingly, even on a uniform genetic background, variability in the penetrance and severity of the mutant phenotypes was observed between the different double-heterozygote combinations. Phenotypically, Celsr1Crsh;Vangl2Lp;ScribCrc triply heterozygous mutants were no more severe than doubly heterozygous or singly homozygous mutants. We propose that some of the variation between double-mutant phenotypes could be attributed to the nature of the protein disruption in each allele: whereas ScribCrc is a null mutant and produces no Scrib protein, Celsr1Crsh and Vangl2Lp homozygotes both express mutant proteins, consistent with dominant effects. The variable outcomes of these genetic interactions are of direct relevance to human patients and emphasize the importance of performing comprehensive genetic screens in humans.KEY WORDS: Neural tube defects, Planar cell polarity, Genetic interactions, Craniorachischisis, Multiple heterozygosity  相似文献   

7.
Although it has been 10 years since the discovery that the Escherichia coli UmuD protein undergoes a RecA-mediated cleavage reaction to generate mutagenically active UmuD′, the function of UmuD′ has yet to be determined. In an attempt to elucidate the role of UmuD′ in SOS mutagenesis, we have utilized a colorimetric papillation assay to screen for mutants of a hydroxylamine-treated, low-copy-number umuD′ plasmid that are unable to promote SOS-dependent spontaneous mutagenesis. Using such an approach, we have identified 14 independent umuD′ mutants. Analysis of these mutants revealed that two resulted from promoter changes which reduced the expression of wild-type UmuD′, three were nonsense mutations that resulted in a truncated UmuD′ protein, and the remaining nine were missense alterations. In addition to the hydroxylamine-generated mutants, we have subcloned the mutations found in three chromosomal umuD1, umuD44, and umuD77 alleles into umuD′. All 17 umuD′ mutants resulted in lower levels of SOS-dependent spontaneous mutagenesis but varied in the extent to which they promoted methyl methanesulfonate-induced mutagenesis. We have attempted to correlate these phenotypes with the potential effect of each mutation on the recently described structure of UmuD′.  相似文献   

8.
A fourth mutant of Neurospora crassa, designated frq-4, has been isolated in which the period length of the circadian conidiation rhythm is shortened to 19.3 ± 0.3 hours. This mutant is tightly linked to the three previously isolated frq mutants, and all four map to the right arm of linkage group VII about 10 map units from the centromere. Complementation tests suggest, but do not prove, that all four mutations are allelic, since each of the four mutants is co-dominant with the frq+ allele—i.e., heterokaryons have period lengths intermediate between the mutant and wild-type—and since heterokaryons between pairs of mutants also have period lengths intermediate between those of the two mutants.  相似文献   

9.
In the small nematode, Caenorhabditis elegans, mutants with a disorganized myofilament lattice structure have been identified by polarized light and electron microscopy. Genetic analysis places the mutations in 12 complementation groups which are distributed over the six linkage groups of C. elegans. The phenotypes are described for the mutants from the 9 complementation groups not previously reported on in detail. Most are paralyzed, but some exhibit essentially normal movement; mutants of two loci show changes only in later larval stages and adulthood. Morphological studies show that, in general, all the members of a complementation group show similar changes in muscle structure and that these changes are distinctive for that group. In mutants of several genes, disorganization of the myofilament lattice is general with no one component of the lattice more obviously altered than others. In mutants of other genes specific structures are prominently altered. In one of the instances where thick filaments appear to be abnormal, double mutants combining mutations in this gene (unc-82 IV) with mutations in the gene for a myosin heavy chain (MacLeod et al., 1977a,b) or paramyosin (Waterston et al., 1977) were used to show that the unc-82 gene product probably affects thick filament assembly through its actions on paramyosin. Some possible implications of the morphological features of the mutants as well as the conclusions derived from the genetic studies are discussed.  相似文献   

10.
Twenty-four mutants that alter the normally invariant post-embryonic cell lineages of the nematode Caenorhabditis elegans have been isolated and genetically characterized. In some of these mutants, cell divisions fail that occur in wild-type animals; in other mutants, cells divide that do not normally do so. The mutants differ in the specificities of their defects, so that it is possible to identify mutations that affect some cell lineages but not others. These mutants define 14 complementation groups, which have been mapped. The abnormal phenotype of most of the cell-lineage mutants results from a single recessive mutation; however, the excessive cell divisions characteristic of one strain, CB1322, require the presence of two unlinked recessive mutations. All 24 cell-lineage mutants display incomplete penetrance and/or variable expressivity. Three of the mutants are suppressed by pleiotropic suppressors believed to be specific for null alleles, suggesting that their phenotypes result from the complete absence of gene activity.  相似文献   

11.
In 1988 McCusker and Haber generated a series of mutants which are resistant to the minimum inhibitory concentration of the protein synthesis inhibitor cycloheximide. These cycloheximide-resistant, temperature-sensitive (crl) mutants, in addition, exhibited other pleiotropic phenotypes, e.g., incorrect response to starvation, hypersensitivity against amino acid analogues, and other protein synthesis inhibitors. Temperature sensitivity of one of these mutants, crl3–2, had been found to be suppressed by a mutation, SCL1–1, which resided in an α-type subunit of the 20S proteasome. We cloned the CRL3 gene by complementation and found CRL3 to be identical to the SUG1/CIM3 gene coding for a subunit of the 19S cap complex of the 26S proteasome. Another mutation, crl21, revealed to be allelic with the 20S proteasomal gene PRE3. crl3–2 and crl21 mutant cells show significant defects in proteasome-dependent proteolysis, whereas the SCL1–1 suppressor mutation causes partial restoration of crl3–2-induced proteolytic defects. Notably, cycloheximide resistance was also detected for other proteolytically deficient proteasome mutants (pre1–1, pre2–1, pre3–1, pre4–1). Moreover, proteasomal genes were found within genomic sequences of 9 of 13 chromosomal loci to which crl mutations had been mapped. We therefore assume that most if not all crl mutations reside in the proteasome and that phenotypes found are a result of defective protein degradation.  相似文献   

12.
P22 cro? mutants were isolated as one class of phage P22 mutants (cly mutants) that have a very high frequeney of lysogeny relative to wild-type P22. These mutants: (1) do not form plaques and over-lysogenize relative to wild-type P22 after infection of a wild-type Salmonella host; (2) are defective in anti-immunity; and (3) fail to turn off high-level synthesis of P22 c2-repressor after infection.P22 cro? mutations are recessive and map between the P22 c2 and c1 genes. P22 cro? mutations are suppressed by clear-plaque mutations in the c1 gene, one of which is simultaneously cy?. They are also suppressed, but incompletely, by mutations in the c2 (repressor) gene, especially those that do not completely abolish c2 gene function.Salmonella host mutants have been isolated that are permissive for the lytic growth of the P22 cro? mutants.  相似文献   

13.
spNab2 is a fission yeast, Schizosaccharomyces pombe, homologue of the budding yeast Nab2 protein that is an essential poly(A)+ RNA-binding protein required for both nuclear export of mRNA to cytoplasm and poly(A)+ tail length control. Here we performed a synthetic lethal genetic screen in the fission yeast to isolate mutants that are genetically linked to spnab2. We isolated three mutants that showed synthetic lethality under the repressed condition of the spnab2 expression. These mutants defined in different complementation groups. All the mutants exhibited the accumulation of poly(A)+ RNA in the nucleus under the restricted condition. In addition, the growth defects of one mutant (SLnab2) were complemented partially by some genes (mlo3 and rae1) required for mRNA export, while those of the rest (SLnab1 and SLnab3) were not complemented by any S. pombe genes we tested, which were known to be involved in mRNA export. These results suggest that the isolated mutants might harbor mutations in novel genes functionally linked to the spnab2 gene.  相似文献   

14.
The mammalian ADAMTS superfamily comprises 19 secreted metalloproteinases and 7 ADAMTS-like proteins, each the product of a distinct gene. Thus far, all appear to be relevant to extracellular matrix function or to cell–matrix interactions. Most ADAMTS functions first emerged from analysis of spontaneous human and animal mutations and genetically engineered animals. The clinical manifestations of Mendelian disorders resulting from mutations in ADAMTS2, ADAMTS10, ADAMTS13, ADAMTS17, ADAMTSL2 and ADAMTSL4 identified essential roles for each gene, but also suggested potential cooperative functions of ADAMTS proteins. These observations were extended by analysis of spontaneous animal mutations, such as in bovine ADAMTS2, canine ADAMTS10, ADAMTS17 and ADAMTSL2 and mouse ADAMTS20. These human and animal disorders are recessive and their manifestations appear to result from a loss-of-function mechanism. Genome-wide analyses have determined an association of some ADAMTS loci such as ADAMTS9 and ADAMTS7, with specific traits and acquired disorders. Analysis of genetically engineered rodent mutations, now achieved for over half the superfamily, has provided novel biological insights and animal models for the respective human genetic disorders and suggested potential candidate genes for related human phenotypes. Engineered mouse mutants have been interbred to generate combinatorial mutants, uncovering cooperative functions of ADAMTS proteins in morphogenesis. Specific genetic models have provided crucial insights on mechanisms of osteoarthritis (OA), a common adult-onset degenerative condition. Engineered mutants will facilitate interpretation of exome variants identified in isolated birth defects and rare genetic conditions, as well as in genome-wide screens for trait and disease associations. Mammalian forward and reverse genetics, together with genome-wide analysis, together constitute a powerful force for revealing the functions of ADAMTS proteins in physiological pathways and health disorders. Their continuing use, together with genome-editing technology and the ability to generate stem cells from mutants, presents numerous opportunities for advancing basic knowledge, human disease pathways and therapy.  相似文献   

15.
Isolated dystonia is a disorder characterized by involuntary twisting postures arising from sustained muscle contractions. Although autosomal-dominant mutations in TOR1A, THAP1, and GNAL have been found in some cases, the molecular mechanisms underlying isolated dystonia are largely unknown. In addition, although emphasis has been placed on dominant isolated dystonia, the disorder is also transmitted as a recessive trait, for which no mutations have been defined. Using whole-exome sequencing in a recessive isolated dystonia-affected kindred, we identified disease-segregating compound heterozygous mutations in COL6A3, a collagen VI gene associated previously with muscular dystrophy. Genetic screening of a further 367 isolated dystonia subjects revealed two additional recessive pedigrees harboring compound heterozygous mutations in COL6A3. Strikingly, all affected individuals had at least one pathogenic allele in exon 41, including an exon-skipping mutation that induced an in-frame deletion. We tested the hypothesis that disruption of this exon is pathognomonic for isolated dystonia by inducing a series of in-frame deletions in zebrafish embryos. Consistent with our human genetics data, suppression of the exon 41 ortholog caused deficits in axonal outgrowth, whereas suppression of other exons phenocopied collagen deposition mutants. All recessive mutation carriers demonstrated early-onset segmental isolated dystonia without muscular disease. Finally, we show that Col6a3 is expressed in neurons, with relevant mRNA levels detectable throughout the adult mouse brain. Taken together, our data indicate that loss-of-function mutations affecting a specific region of COL6A3 cause recessive isolated dystonia with underlying neurodevelopmental deficits and highlight the brain extracellular matrix as a contributor to dystonia pathogenesis.  相似文献   

16.
Mischarging mutants of Escherichia coli sup3 tyrosine transfer RNA have been isolated by selecting for suppression of bacterial amber mutations not suppressed by sup3. Five of the mutants have single base changes in the amino acid acceptor stem (A1, A2, U80, U81 and G82). Mutants A1 and A2 are weak thermosensitive suppressors from which thermostable derivatives have been isolated. Some of these derivatives affect the amount of tRNA synthesized but not the sequence (precursor or promoter mutations), and others are double mutants A1U81 and A2U80. The latter mutant does not mischarge. The efficiency of suppression of A1 and A2 can also be increased by recombination events that lead to duplication and triplication of the suppressor gene.The amino acid inserted by some of these mutants at the amber site has been determined. Mutant A1 inserts glutamine, while U81 and A1U81 insert both glutamine and tyrosine.Taken together the results show that the terminal part of the amino acid acceptor stem has an important role in the specificity of aminoacylation by the glutamine and tyrosine synthetase.  相似文献   

17.
The resistance system of Mycobacterium bovis (B.C.G.) to aminoglycoside-and peptide-antibiotics has been studied. The phenotype of mutants isolated from the parent B.C.G. strain by a single-step selection with an antibiotic were classified into the following three types: (1) resistant only to a low concentration (200 μg/ml) of kanamycin in Ogawa egg medium (k1R); (2) resistant to a low concentration (200 μg/ml) of viomycin and of capreomycin (2R); and (3) resistant to a high concentration (1,000 μg/ml or more) of kanamycin and low concentrations (100 to 200 μg/ml) of lividomycin and of paromomycin (KR). The mutants showing these phenotypes, k1R, 2R, and KR, were isolated from the parent strain by inoculating the strain into media containing 100 μg/ml of kanamycin, and 100 μ/g/ml of viomycin or capreomycin, and 1,000 μg/ml of kanamycin, respectively, at rates of 10?5-10?6, 10?5-10?6, and 10?6-10?7, respectively, in a total viable population of the parent strain. Unlike in the case of M. tuberculosis, no mutant could be isolated from the parent strain by use of enviomycin, lividomycin, and/or paromomycin. In contrast to the fact that quadruply resistant mutants were isolated directly from the parent H37Rv strain of M. tuberculosis, such mutants could be isolated only by two-step selections. Furthermore, the phenotypes of the quadruply resistant mutants were those showing a higher resistance or a broader spectrum than expected by the addition of phenotypes of individual mutations. In addition, it was shown that, in contrast to the fact that hextuply resistant mutants could be isolated directly from the parent strain of M. tuberculosis, such mutants were not isolated directly from the parent B.C.G. strain, but could be isolated only after pre-incubation of the strain on a medium containing Tween 80.  相似文献   

18.
Essential genes were identified in the 1.5-map unit dpy-5 unc-13 region of chromosome I in the Caenorhabditis elegans genome by rescuing lethal mutations using the duplication sDp2. In this paper, we report the mapping and complementation testing of lethal mutations, 45 of which identify 18 new, essential genes. This analysis brings the number of essential genes defined by the sDp2 rescue of lethal mutants to 97; 64 of these map between dpy-5 and unc-13. 61% of these essential genes are identified by more than one allele. Positioning of the mutations was done using the breakpoints of six duplications. The mutant phenotypes of 14 loci essential for fertility were characterized by Nomarski microscopy and DAPI staining. None of the mutants were rescued by wild-type male sperm. The cytological data showed that four genes produced mutants with defects in gonadogenesis, let-395, let-603, let-605 and let-610. Mutations in seven genes, let-355, let-367, let-384, let-513, let-544, let-545 and let-606, affected germ cell proliferation or gametogenesis. Mutants for the remaining three genes, let-370, let-599 and let-604, produced eggs that failed to develop or hatch, thereby acting as maternal effect lethals. We observed a nonrandom distribution of arrest phenotypes with regard to map position.  相似文献   

19.
Mutation at either of two genetic loci (Eu2 or Eu3) in soybean (Glycine max [L.] Merr.) results in a pleiotropic elimination of the activity of both major urease isozymes. Surprisingly, the phenotype of a phylloplane bacterium, Methylobacterium mesophilicum, living on the leaves of eu2/eu2 or eu3-e1/eu3-e1 mutants is also affected by these plant mutations. The bacteria isolated from leaves of these soybean mutants have transient urease- and hydrogenase-deficient phenotypes that can be corrected by the addition of nickel to free-living cultures. The same bacterium growing on wild-type soybeans or on urease mutants eu1-sun/eu1-sun or eu4/eu4, each deficient in only one urease isozyme, are urease-positive. These results suggest that the bacterium living on the eu2/eu2 or eu3-e1/eu3-e1 mutant is unable to produce an active urease or hydrogenase because it is effectively starved for nickel. We infer that mutations at Eu2 or Eu3 result in defects in nickel metabolism but not in Ni2+ uptake or transport, because eu2/eu2 and eu3-e1/eu3-e1 mutants exhibit normal uptake of 63NiCl2. Moreover, wild-type plants grafted on mutant rootstocks produce seeds with fully active urease, indicating unimpeded transport of nickel through mutant roots and stems.  相似文献   

20.
A system for genetic analysis in the cellular slime mold P. violaceum has been developed. Two growth-temperature-sensitive mutants were isolated in a haploid strain and used to select rare diploid heterozygotes arising by spontaneous fusion of the haploid cells. A recessive mutations to cycloheximide resistance in one strain enables selection of segregants, which often appear to be aneuploid.—Aggregation-defective (ag- ) mutants having a wide range of phenotypes were isolated in both temperature-sensitive strains after nitrosoguanidine treatment, and complementation tests were performed between pairs of these mutants. Of 380 diploids isolated, 32 showed defective aggregation and were considered to contain 2 noncomplementing ag- mutations. Among noncomplementing mutants interallelic complementation is common. Noncomplementing mutants fall into 4 complementation groups, and those within each complementation group are phenotypically similar. Statistical analysis of the results suggests that the number of complementation units involved in aggregation is about 50.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号