共查询到20条相似文献,搜索用时 15 毫秒
1.
Limitation of bacterial growth by dissolved organic matter and iron in the Southern ocean 总被引:1,自引:0,他引:1
The importance of resource limitation in controlling bacterial growth in the high-nutrient, low-chlorophyll (HNLC) region of the Southern Ocean was experimentally determined during February and March 1998. Organic- and inorganic-nutrient enrichment experiments were performed between 42 degrees S and 55 degrees S along 141 degrees E. Bacterial abundance, mean cell volume, and [(3)H]thymidine and [(3)H]leucine incorporation were measured during 4- to 5-day incubations. Bacterial biomass, production, and rates of growth all responded to organic enrichments in three of the four experiments. These results indicate that bacterial growth was constrained primarily by the availability of dissolved organic matter. Bacterial growth in the subtropical front, subantarctic zone, and subantarctic front responded most favorably to additions of dissolved free amino acids or glucose plus ammonium. Bacterial growth in these regions may be limited by input of both organic matter and reduced nitrogen. Unlike similar experimental results in other HNLC regions (subarctic and equatorial Pacific), growth stimulation of bacteria in the Southern Ocean resulted in significant biomass accumulation, apparently by stimulating bacterial growth in excess of removal processes. Bacterial growth was relatively unchanged by additions of iron alone; however, additions of glucose plus iron resulted in substantial increases in rates of bacterial growth and biomass accumulation. These results imply that bacterial growth efficiency and nitrogen utilization may be partly constrained by iron availability in the HNLC Southern Ocean. 相似文献
2.
The Okefenokee Swamp exhibited levels of microbial biomass and aerobic glucose uptake comparable to those of other organically rich, detritus-based aquatic ecosystems. In contrast to other peat-accumulating systems, this acidic (pH 3.7), low-nutrient environment does not show diminished water column or surface sediment microbial biomass or heterotrophic activity. The total particular ATP varied between 0.03 and 6.6 mug liter (mean, 1.6 mug liter) in water and between 1 and 28 mug g (dry weight) (mean, 10.0 mug g [dry weight] in sediments. The turnover times for dissolved d-glucose were 1.26 to 701.25 h (mean, 110.25 h) in aerobic waters and 2.4 to 72 min (mean, 10.2 min) in aerobic surface sediments. Water column bacterial secondary production, measured as the incorporation of [H]thymidine into cold-trichloroacetic acid-insoluble material, ranged from 0.06 to 1.67 nmol liter day (mean, 0.45 nmol liter day). The kinetics of d-glucose uptake by water column microflora are multiphasic and suggest the presence of a diverse microbial population capable of using labile substrates at nanomolar concentrations and at substantial rates. The presence of a large and active aerobic microbial community in the Okefenokee Swamp is indicative of an important role for microbes in swamp geochemistry and strongly suggests the existence of a detritus-based food web. 相似文献
3.
采用水培试验,研究蚓粪及蚯蚓培养载体牛粪中水溶性有机物(DOM)对不同Cu2+浓度下(0、5、10 mg·L-1)黑麦草吸收Cu2+的影响.结果表明:随着Cu2+浓度的增加,黑麦草地上部、根干质量,以及根系的长度、表面积、体积和根尖数均逐渐下降;DOM显著增加了Cu2+处理下黑麦草地上部及根系生物量,促进了其根系的长度、表面积、体积和根尖数的增长.DOM降低了黑麦草地下部Cu2+浓度,促进了Cu2+从地下部向地上部的运输,显著增加了地上部Cu2+积累量.蚓粪DOM对黑麦草的影响优于牛粪DOM,并且供试高浓度DOM效果优 于低浓度. 相似文献
4.
5.
6.
Influence of cladoceran grazing activity on dissolved organic matter, enzymatic hydrolysis and bacterial growth 总被引:1,自引:0,他引:1
Richardot M.; Debroas D.; Thouvenot A.; Sargos D.; Berthon J. L.; Devaux J. 《Journal of plankton research》2001,23(11):1249-1261
To assess the influence of grazing by cladocerans on dissolvedorganic matter (DOM), glycolytic and proteolytic activitiesand bacterial growth were measured by in situ incubation oflake water from the epilimnion of an oligotrophic reservoirin three different treatments: in absence of zooplankton, andin presence of zooplankton (natural abundance and concentratedfour-fold). These experiments were conducted at two periodsin the succession of plankton populations (May and June 1998),that differed in the quality of the prey ingested (Eudorinasp. compared to Cryptomonas sp. and Rhodomonas sp.) and theirgrazing intensity (31.8 ± 2.2 µg C l1 day1compared to 10.2 ± 0.5 µg C l1 day1).A systematic increase in bacterial biomass was measured in thetreatments containing the highest zooplankton concentrations.The DOM concentrations produced in situ showed few significantdifferences between the three treatments, but the assimilationof DOM was higher in the presence of zooplankton than in theirabsence. These results show that the influence of cladoceranson the DOM was more of a qualitative than a quantitative nature.The protein compounds derived from the grazing activities ofmetazoans seem to be a major nutrient source for growth forbacteria (r = 0.81, P <0.05). In this study, the highesthydrolytic activities were recorded in the presence of highconcentrations of metazoan zooplankton. However, the processesthat regulated these activities differed between the two experimentaldates (repression compared to enzyme stimulation). Grazing activitiescould lead to an increase in phytoplanktonic excretion duringthe growth phase, and therefore the production of low molecularweight compounds that are easily assimilated by the bacterialplankton. 相似文献
7.
We studied the interactive effects of dissolved organic matter (DOM) and solar radiation on the activity and community structure of bacteria from an alpine lake. Activity was assessed both at the community level as leucine incorporation rates and at the single-cell level by microautoradiography. Fluorescent in situ hybridization and signal amplification by catalysed reporter deposition (CARD-FISH) was used to track changes in the bacterial community composition. Bacteria-free filtrates of different DOM sources (lake, algae or soil) were incubated either in the dark or exposed to solar radiation. Afterwards, the natural bacterial assemblage was inoculated and the cultures incubated in the dark for 24-48 h. Bacterial activity was enhanced in the first 24 h in the soil and algal DOM amendments kept in the dark. After 48 h, the enhancement effect was greatly reduced. The initial bacterial community was dominated by Betaproteobacteria followed by Actinobacteria. The relative abundance (expressed as a percentage of DAPI-stained cells) of Betaproteobacteria increased first in dark incubated DOM amendments, but after 48 h no significant differences were detected among treatments. In contrast, the relative abundance of Actinobacteria increased in pre-irradiated DOM treatments. Although Betaproteobacteria dominated at the end of the experiment, the relative abundance of their R-BT subgroup differed among treatments. Changes in bacterial community activity were significantly correlated with those of the relative abundance and activity of Betaproteobacteria, whereas the contribution of Actinobacteria to the bulk activity was very modest. Our results indicate a negative effect of DOM photoalteration on the bulk bacterial activity. The magnitude of this effect was time-dependent and related to rapid changes in the bacterial assemblage composition. 相似文献
8.
Long term records of riverine dissolved organic matter 总被引:1,自引:1,他引:1
This presents the longest, consistent records of dissolved organic carbon in rivers ever published. This study presents long-term records of organic matter as indicated by water colour that were constructed for three catchments in Northern England for as far back as 1962. Observations show that there have been large increases in DOC concentrations over the period of study with in one case a doubling of the concentration over a period of 29 years. However, in one of the catchments no significant change was observed over a 31-year period. All catchments show common inter-annual control on carbon release in response to droughts, but no step increases in DOC concentrations were observed in response to such perturbations with pre-drought levels being restored within a period 3–4 years. Observed increasing trends do not correlate with changes in river discharge, pH, alkalinity or rainfall, but do coincide with increasing average summer temperatures in the region. The times series of DOC concentration over the period of the record appears stationary, but the distribution of daily values suggests a change in sources of colour over the increasing trend. The evidence supports a view that increases in carbon release are in equilibrium with temperature increases accentuated by land-use factors. 相似文献
9.
Romera-Castillo C Sarmento H Alvarez-Salgado XA Gasol JM Marrasé C 《Applied and environmental microbiology》2011,77(21):7490-7498
An understanding of the distribution of colored dissolved organic matter (CDOM) in the oceans and its role in the global carbon cycle requires a better knowledge of the colored materials produced and consumed by marine phytoplankton and bacteria. In this work, we examined the net uptake and release of CDOM by a natural bacterial community growing on DOM derived from four phytoplankton species cultured under axenic conditions. Fluorescent humic-like substances exuded by phytoplankton (excitation/emission [Ex/Em] wavelength, 310 nm/392 nm; Coble's peak M) were utilized by bacteria in different proportions depending on the phytoplankton species of origin. Furthermore, bacteria produced humic-like substances that fluoresce at an Ex/Em wavelength of 340 nm/440 nm (Coble's peak C). Differences were also observed in the Ex/Em wavelengths of the protein-like materials (Coble's peak T) produced by phytoplankton and bacteria. The induced fluorescent emission of CDOM produced by prokaryotes was an order of magnitude higher than that of CDOM produced by eukaryotes. We have also examined the final compositions of the bacterial communities growing on the exudates, which differed markedly depending on the phytoplankton species of origin. Alteromonas and Roseobacter were dominant during all the incubations on Chaetoceros sp. and Prorocentrum minimum exudates, respectively. Alteromonas was the dominant group growing on Skeletonema costatum exudates during the exponential growth phase, but it was replaced by Roseobacter afterwards. On Micromonas pusilla exudates, Roseobacter was replaced by Bacteroidetes after the exponential growth phase. Our work shows that fluorescence excitation-emission matrices of CDOM can be a helpful tool for the identification of microbial sources of DOM in the marine environment, but further studies are necessary to explore the association of particular bacterial groups with specific fluorophores. 相似文献
10.
Gruber DF Simjouw JP Seitzinger SP Taghon GL 《Applied and environmental microbiology》2006,72(6):4184-4191
We studied the effects of a bacterium (Pseudomonas chlororaphis) and a bactivorous protozoan (Uronema sp.) on transformations of labile dissolved organic carbon (DOC). In 36-day time series experiments, bacteria were grown on glucose both with and without protozoa. We measured bulk organic carbon pools and used electrospray ionization mass spectrometry to characterize dissolved organic matter on a molecular level. Bacteria rapidly utilized glucose, depleting it to nondetectable levels and producing new DOC compounds of higher molecular weight within 2 days. Some of these new compounds, representing 3 to 5% of the initial glucose-C, were refractory and persisted for over a month. Other new compounds were produced and subsequently used by bacteria during the lag and exponential growth phases, pointing to a dynamic cycling of organic compounds. Grazers caused a temporary spike in the DOC concentration consisting of labile compounds subsequently utilized by the bacteria. Grazing did not increase the complexity of the DOC pool already established by the bacteria but did continually decrease the particulate organic carbon pool and expedited the conversion of glucose-C to CO2. After 36 days, 29% of initial glucose-C remained in pure bacteria cultures, while only 6% remained in cultures where a grazer was present. In this study the bacteria were the primary shapers of the complex DOC continuum, suggesting higher trophic levels possibly have less of an impact on the qualitative composition of DOC than previously assumed. 相似文献
11.
Ma Ning Gao Li Zhang Yan Ge Zhengkui Hu En Pan Baozhu Wang Jian Li Ming 《Aquatic Ecology》2022,56(3):555-571
Aquatic Ecology - The aim of this study was to reveal the variation in dissolved organic matter (DOM) components, bacterial community composition, and their co-relationships during groundwater... 相似文献
12.
Simultaneous consumption and production of fluorescent dissolved organic matter by lake bacterioplankton 总被引:1,自引:0,他引:1
Recent evidence suggests a key role of bacterioplankton in shaping the composition of the dissolved organic matter (DOM) pool in aquatic systems, not only through consumption but also through production of specific compounds, but the latter process is still not well understood. We used a bioassay approach to assess the patterns in bacterial production and consumption of five fluorescent DOM pools in seven lakes and two streams in Southeastern Québec, Canada, and the links these patterns may have with key aspects of bacterial metabolism, DOM origin and nutrients availability. Total dissolved organic C declined by 3-15% during these incubations, whereas the specific DOM pools had very different dynamics: Two humic-like fractions accumulated in all incubations, with rates of production increasing as a function of bacterial growth efficiency, which itself increased with phosphorus concentrations. In contrast, two protein-like fractions and a third humic-like fraction either increased or declined over the course of the experiments. The net production or consumption of these pools appeared to be a function of the contribution of terrestrial C to bulk DOM (derived from δ(13) C of the DOM) and of total bacterial activity. Our results suggest that lake bacterioplankton play a dual role in DOM dynamics, as consumers and also producers, and that the interplay between DOM origin and nutrient availability appears to determine the net outcome of bacterial DOM processing, thus influencing the bulk DOM composition and its fate in these aquatic systems. 相似文献
13.
Microbial transformation of labile dissolved organic matter into humic-like matter in seawater 总被引:4,自引:0,他引:4
Lars J. Tranvik 《FEMS microbiology ecology》1993,12(3):177-183
Abstract Microbial transformation of labile, low molecular weight dissolved organic matter (DOM) into dissolved humic matter (DHM) was studied in seawater. Surface water samples were amended with [14 C into 14 CO2 , TO14 C (total organic 14 C), and PO14 C (particulate organic 14 C), was measured over time in confined samples. The humic and non-humic fractions of DO14 C (dissolved organic 14 C) were separated according to a common operational definition of DHM based on adsorption on XAD-8 macroporous resin. Both TO14 C and non-humic DO14 C decreased during the experiments. However, 14 C-labelled DHM increased during the first week of the incubations, to a level where it comprised 15% of the TO14 C remaining in the samples, or 3% of the initially added 14 C. Towards the end of experiments (ca 70 days), the humic fraction of DO14 C gradually approached the background level of poisoned control samples. Provided that the XAD-8 operational definition of DHM is accepted, this study indicates that humic matter may be formed in seawater within days from labile monomers such as glucose. 相似文献
14.
15.
AbstractPhoto-oxidation of dissolved organic matter in saline and non- saline samples is monitored by measurement of residual fluorescence intensity. For fulvic acids, the method has a detection limit of 0.005 mg C L?1, and maximum photo-oxidation is achieved with H2O2 oxidant and a low-intensity UV source. 相似文献
16.
Dissolved organic matter (DOM), produced through leaching from particulate organic matter (POM), is an essential component of the carbon cycle in streams. The present study investigated the instream DOM release from POM, varying in size and chemical quality. We produced large and medium sized fine particulate organic matter (L-FPOM, 250–500 μm; M-FPOM, 100–250 μm) of defined quality by feeding five types of coarse particulate organic matter (CPOM) to shredding amphipods (Gammarus spp.). Microscopic observations showed that L-FPOM and M-FPOM mainly consisted of the fecal pellets of amphipods, and incompletely eaten plant fragments, respectively. DOM release experiments were conducted by exposing CPOM and M- and L-FPOM fractions in natural stream water over a two week period. For CPOM, the release of dissolved organic carbon (DOC) by leaching was highest during the first 6 h (3.64–23.9 mg C g C?1 h?1) and decreased rapidly afterwards. For M- and L-FPOM, the DOC release remained low during the entire study period (range: 0.008–0.15 mg C g C?1 h?1). Two-way ANOVA revealed that the DOC release rate significantly differed with POM source and size fraction, both at day 1 and after a week of exposure. Multiple regression analyses revealed a significant correlation of elemental contents and lignin content to DOC release rate after a week of exposure. Overall, the results indicated that DOC release rate of FPOM, on a carbon basis, is comparable to that of CPOM after leaching, while size and source of POM significantly affect DOC release rate. 相似文献
17.
Jürg B Logue Colin A Stedmon Anne M Kellerman Nikoline J Nielsen Anders F Andersson Hjalmar Laudon Eva S Lindstr?m Emma S Kritzberg 《The ISME journal》2016,10(3):533-545
Bacteria play a central role in the cycling of carbon, yet our understanding of the relationship between the taxonomic composition and the degradation of dissolved organic matter (DOM) is still poor. In this experimental study, we were able to demonstrate a direct link between community composition and ecosystem functioning in that differently structured aquatic bacterial communities differed in their degradation of terrestrially derived DOM. Although the same amount of carbon was processed, both the temporal pattern of degradation and the compounds degraded differed among communities. We, moreover, uncovered that low-molecular-weight carbon was available to all communities for utilisation, whereas the ability to degrade carbon of greater molecular weight was a trait less widely distributed. Finally, whereas the degradation of either low- or high-molecular-weight carbon was not restricted to a single phylogenetic clade, our results illustrate that bacterial taxa of similar phylogenetic classification differed substantially in their association with the degradation of DOM compounds. Applying techniques that capture the diversity and complexity of both bacterial communities and DOM, our study provides new insight into how the structure of bacterial communities may affect processes of biogeochemical significance. 相似文献
18.
C Crottereau D Delmas 《Comptes rendus de l'Académie des sciences. Série III, Sciences de la vie》1999,322(7):551-556
The regulation of the bacterial exoproteolytic activity, at natural substrate concentrations, was studied during the survey of an Atlantic coastal marine pond (France). The regulation of this activity occurs at two different levels: on the one hand, at the cellular level, the ectoenzyme synthesis is regulated by hydrolysis substrates, dissolved combined amino acids (DCAA), and end products, dissolved free amino acids (DFAA), in terms of the relative amounts available to the cell, and on the other hand, at the ecosystem level, i.e. the hydrolytic activity, by the total amounts of DCAA and DFAA in situ. The DFAA acts as an inhibitor in enzymatic synthesis; in contrast, dissolved proteins induce the enzymatic synthesis and the exoproteolytic activity. These results, obtained in natural concentration conditions, confirm the functioning in situ of the ectoenzymatic activity regulation model of Chróst, until now only validated in an enriched experimental medium. 相似文献
19.
The influence of dissolved nutrients and particulate organic matter quality on microbial respiration and biomass in a forest stream 总被引:4,自引:0,他引:4
1. Although dissolved nutrients and the quality of particulate organic matter (POM) influence microbial processes in aquatic systems, these factors have rarely been considered simultaneously. We manipulated dissolved nutrient concentrations and POM type in three contiguous reaches (reference, nitrogen, nitrogen + phosphorus) of a low nutrient, third‐order stream at Hubbard Brook Experimental Forest (U.S.A). In each reach we placed species of leaves (mean C : N of 68 and C : P of 2284) and wood (mean C : N of 721 and C : P of 60 654) that differed in elemental composition. We measured the respiration and biomass of microbes associated with this POM before and after nutrient addition. 2. Before nutrient addition, microbial respiration rates and biomass were higher for leaves than for wood. Respiration rates of microbes associated with wood showed a larger response to increased dissolved nutrient concentrations than respiration rates of microbes associated with leaves, suggesting that the response of microbes to increased dissolved nutrients was influenced by the quality of their substrate. 3. Overall, dissolved nutrients had strong positive effects on microbial respiration and fungal, but not bacterial, biomass, indicating that microbial respiration and fungi were nutrient limited. The concentration of nitrate in the enriched reaches was within the range of natural variation in forest streams, suggesting that natural variation in nitrate among forest streams influences carbon mineralisation and fungal biomass. 相似文献
20.
MASAYUKI KAWAHIGASHI KLAUS KAISER† REJ RODIONOV† GEORG GUGGENBERGER† 《Global Change Biology》2006,12(10):1868-1877
Because of low net production in arctic and subarctic surface water, dissolved organic matter (DOM) discharged from terrestrial settings plays an important role for carbon and nitrogen dynamics in arctic aquatic systems. Sorption, typically controlling the export of DOM from soil, may be influenced by the permafrost regime. To confirm the potential sorptive control on the release of DOM from permafrost soils in central northern Siberia, we examined the sorption of DOM by mineral soils of Gelisols and Inceptisols with varying depth of the active layer. Water‐soluble organic matter in the O horizons of the Gelisols was less (338 and 407 mg C kg?1) and comprised more dissolved organic carbon (DOC) in the hydrophobic fraction (HoDOC) (63% and 70%) than in the O horizons of the Inceptisols (686 and 706 mg C kg?1, 45% and 48% HoDOC). All A and B horizons from Gelisols sorbed DOC strongly, with a preference for HoDOC. Almost all horizons of the Inceptisols showed a weaker sorption of DOC than those of the Gelisols. The C horizons of the Inceptisols, having a weak overall DOC sorption, sorbed C in the hydrophilic fraction (HiDOC) stronger than HoDOC. The reason for the poor overall sorption and also the preferential sorption of HiDOC is likely the high pH (pH>7.0) of the C horizons and the smaller concentrations of iron oxides. For all soils, the sorption of HoDOC related positively to oxalate‐ and dithionite–citrate‐extractable iron. The A horizons released large amounts of DOC with 46–80% of HiDOC. The released DOC was significantly (r=0.78, P<0.05) correlated with the contents of soil organic carbon. From these results, we assume that large concentrations of DOM comprising large shares of HiDOC can pass mineral soils where the active layer is thin (i.e. in Gelisols), and enter streams. Soils with deep active layer (i.e. Inceptisols), may release little DOM because of more frequent infiltration of DOM into their thick mineral horizons despite their smaller contents of reactive, poorly crystalline minerals. The results obtained for the Inceptisols are in agreement with the situation observed for streams connecting to Yenisei at lower latitudes than 65°50′ with continuous to discontinuous permafrost. The smaller sorption of DOM by the Gelisols is in agreement with the larger DOM concentrations in more northern catchments. However, the Gelisols preferentially retained the HoDOC which dominates the DOC in streams towards north. This discrepancy can be explained by additional seepage water from the organic horizons that is discharged into streams without intensive contact with the mineral soil. 相似文献