首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Fitness enhancement based on resonating circadian clocks has recently been demonstrated in cyanobacteria [Ouyang et al. (1998). Proc. Natl Acad. Sci. U.S.A.95, 8660-8664]. Thus, the competition between two cyanobacterial strains differing by the free-running period (FRP) of their circadian oscillations leads to the dominance of one or the other of the two strains, depending on the period of the external light-dark (LD) cycle. The successful strain is generally that which has an FRP closest to the period of the LD cycle. Of key importance for the resonance phenomenon are observations which indicate that the phase angle between the circadian oscillator and the LD cycle depends both on the latter cycle's length and on the FRP. We account for these experimental observations by means of a theoretical model which takes into account (i) cell growth, (ii) secretion of a putative cell growth inhibitor, and (iii) the existence of a cellular, light-sensitive circadian oscillator controlling growth as well as inhibitor secretion. Building on a previous analysis in which the phase angle was considered as a freely adjustable parameter [Roussel et al. (2000). J. theor. Biol.205, 321-340], we incorporate into the model a light-sensitive version of the van der Pol oscillator to represent explicitly the cellular circadian oscillator. In this way, the model automatically generates a phase angle between the circadian oscillator and the LD cycle which depends on the characteristic FRP of the strain and varies continuously with the period of the LD cycle. The model provides an explanation for the results of competition experiments between strains of different FRPs subjected to entrainment by LD cycles of different periods. The model further shows how the dominance of one strain over another in LD cycles can be reconciled with the observation that two strains characterized by different FRPs nevertheless display the same growth kinetics in continuous light or in LD cycles when present alone in the medium. Theoretical predictions are made as to how the outcome of competition depends on the initial proportions and on the FRPs of the different strains. We also determine the effect of the photoperiod and extend the analysis to the case of a competition between three cyanobacterial strains.  相似文献   

2.
The length of the endogenous period of the human circadian clock (tau) is slightly greater than 24 hours. There are individual differences in tau, which influence the phase angle of entrainment to the light/dark (LD) cycle, and in doing so contribute to morningness-eveningness. We have recently reported that tau measured in subjects living on an ultradian LD cycle averaged 24.2 hours, and is similar to tau measured using different experimental methods. Here we report racial differences in tau. Subjects lived on an ultradian LD cycle (1.5 hours sleep, 2.5 hours wake) for 3 days. Circadian phase assessments were conducted before and after the ultradian days to determine the change in circadian phase, which was attributed to tau. African American subjects had a significantly shorter tau than subjects of other races. We also tested for racial differences in our previous circadian phase advancing and phase delaying studies. In the phase advancing study, subjects underwent 4 days of a gradually advancing sleep schedule combined with a bright light pulse upon awakening each morning. In the phase delaying study, subjects underwent 4 days of a gradually delaying sleep schedule combined with evening light pulses before bedtime. African American subjects had larger phase advances and smaller phase delays, relative to Caucasian subjects. The racial differences in tau and circadian phase shifting have important implications for understanding normal phase differences between individuals, for developing solutions to the problems of jet lag and shift work, and for the diagnosis and treatment of circadian rhythm based sleep disorders such as advanced and delayed sleep phase disorder.  相似文献   

3.
Administration of anaesthesia may influence specific aspects of in vivo animal experiments and is an especially important consideration for experiments conducted during the daytime. Although chronobiological studies investigating interactions between general anaesthesia and circadian rhythms are sparse, all suggest that general anaesthetic agents have a significant effect on circadian rhythms. To assess the suitability of pentobarbital anaesthesia in chronobiological studies, this study was performed using pentobarbital-anaesthetized (40 mg/kg, intraperitoneal) female Wistar rats after adaptation to a light–dark (LD) cycle (12 h:12 h). Heart rate, rectal temperature (RT), electrocardiographic parameters, autonomic nervous system activity, acid–base balance and plasma concentrations of Na+, K+, Ca2+ and Cl- were evaluated for their dependence on the LD cycle. LD differences were found in heart rate and RT, measured before the administration of the anaesthetic agent. Pentobarbital anaesthesia eliminated LD differences in all electrophysiological parameters, parameters of heart rate variability (except RR intervals) and parameters of acid–base balance and ion concentrations. LD differences with borderline statistical significance were found only for Na+ levels, with a higher level in the light period (i.e. nonactive) of the rat regimen day. During pentobarbital anaesthesia, parasympathetic tone predominates and sympathetic activity is depressed. Spontaneously breathing rats under pentobarbital anaesthesia are in an asphyxic state independent of the LD cycle in in vivo experiments. Results of this study suggest that pentobarbital anaesthesia is not suitable for chronobiological studies. However, it is suitable for cardiovascular research that is done regardless of the circadian rhythmicity, because it does not cause significant changes in heart activity.  相似文献   

4.
The mammalian circadian clock lying in suprachiasmatic nucleus (SCN) is synchronized to about 24 h by the environmental light-dark cycle (LD). The circadian clock exhibits limits of entrainment above and below 24 h, beyond which it will not entrain. Little is known about the mechanisms regulating the limits of entrainment. In this study, we show that wild-type mice entrain to only an LD 24 h cycle, whereas Clock mutant mice can entrain to an LD 24, 28, and 32 h except for LD 20 h and LD 36 h cycle. Under an LD 28 h cycle, Clock mutant mice showed a clear rhythm in Per2 mRNA expression in the SCN and behavior. Light response was also increased. This is the first report to show that the Clock mutation makes it possible to adapt the circadian oscillator to a long period cycle and indicates that the clock gene may have an important role for the limits of entrainment of the SCN to LD cycle.  相似文献   

5.
The indolamine melatonin is an important rhythmic endocrine signal in the circadian system. Exogenous melatonin can entrain circadian rhythms in physiology and behavior, but the role of endogenous melatonin and the two membrane-bound melatonin receptor types, MT1 and MT2, in reentrainment of daily rhythms to light-induced phase shifts is not understood. The present study analyzed locomotor activity rhythms and clock protein levels in the suprachiasmatic nuclei (SCN) of melatonin-deficient (C57BL/6J) and melatonin-proficient (C3H/HeN) mice, as well as in melatonin-proficient (C3H/HeN) mice with targeted deletion of the MT1, MT2, or both receptors, to determine effects associated with phase delays or phase advances of the light/dark (LD) cycle. In all mouse strains and genotypes, reentrainment of locomotor activity rhythms was significantly faster after a 6-h phase delay than a 6-h phase advance. Reentrainment after the phase advance was, however, significantly slower than in melatonin-deficient animals and in mice lacking functional MT2 receptors than melatonin-proficient animals with intact MT2 receptors. To investigate whether these behavioral differences coincide with differences in reentrainment of clock protein levels in the SCN, mPER1, mCRY1 immunoreactions were compared between control mice kept under the original LD cycle and killed at zeitgeber time 04 (ZT04) or at ZT10, respectively, and experimental mice subjected to a 6-h phase advance of the LD cycle and sacrificed at ZT10 on the third day after phase advance. This ZT corresponds to ZT04 of the original LD cycle. Under the original LD cycle, the numbers of mPER1- and mCRY1-immunoreactive cell nuclei were low at ZT04 and high at ZT10 in the SCN of all mouse strains and genotypes investigated. Notably, mouse strains with intact melatonin signaling and functional MT2 receptors showed a significant increase in the number of mPER1- and mCRY1-immunoreactive cell nuclei at the new ZT10 as compared to the former ZT04. These data suggest the endogenous melatonin signal facilitates reentrainment of the circadian system to phase advances on the level of the SCN molecular clockwork by acting upon MT2 receptors.  相似文献   

6.
We used four replicate outbred populations of Drosophila melanogaster to investigate whether the light regimes experienced during the pre-adult (larval and pupal) and early adult stages influence the free-running period (τDD) of the circadian locomotor activity rhythm of adult flies. In a series of two experiments four different populations of flies were raised from egg to eclosion in constant light (LL), in light/dark (LD) 12:12 h cycle, and in constant darkness (DD). In the first experiment the adult male and female flies were directly transferred into DD and their locomotor activity was monitored, while in the second experiment the locomotor activity of the emerging adult flies was first assayed in LD 12:12 h for 15 days and then in DD for another 15 days. The τDD of the locomotor activity rhythm of flies that were raised in all the three light regimes, LL, LD 12:12 h and in DD was significantly different from each other. The τDD of the locomotor activity rhythm of the flies, which were raised in DD during their pre-adult stages, was significantly shorter than that of flies that were raised as pre-adults in LL regime, which in turn was significantly shorter than that of flies raised in LD 12:12 h regime. This pattern was consistent across both the experiments. The results of our experiments serve to emphasise the fact that in order to draw meaningful inferences about circadian rhythm parameters in insects, adequate attention should be paid to control and specify the environment in which pre-adult rearing takes place. The pattern of pre-adult and early adult light regime effects that we see differs from that previously observed in studies of mutant strains of D. melanogaster, and therefore, also points to the potential importance of inter-strain differences in the response of circadian organisation to external influences.  相似文献   

7.
The timing of cell proliferation is a key factor contributing to the regulation of normal growth. Daily rhythms of cell cycle progression have been documented in a wide range of organisms. However, little is known about how environmental, humoral, and cell-autonomous factors contribute to these rhythms. Here, we demonstrate that light plays a key role in cell cycle regulation in the zebrafish. Exposure of larvae to light-dark (LD) cycles causes a range of different cell types to enter S phase predominantly at the end of the day. When larvae are raised in constant darkness (DD), a low level of arrhythmic S phase is observed. In addition, light-entrained cell cycle rhythms persist for several days after transfer to DD, both observations pointing to the involvement of the circadian clock. We show that the number of LD cycles experienced is essential for establishing this rhythm during larval development. Furthermore, we reveal that the same phenomenon exists in a zebrafish cell line. This represents the first example of a vertebrate cell culture system where circadian rhythms of the cell cycle are observed. Thus, we implicate the cell-autonomous circadian clock in the regulation of the vertebrate cell cycle by light.  相似文献   

8.
The circadian rhythm of locomotor activity in hamsters maintained in either constant darkness or constant light can be phase-shifted by a single injection of the short-acting benzodiazepine, triazolam. These results suggest that treatment with triazolam may also alter the entrainment pattern of circadian rhythms in animals that are synchronized to a light-dark (LD) cycle. To test this hypothesis, hamsters maintained on an LD 6:18 light cycle received daily injections of triazolam (or vehicle) for 10-12 days, and any subsequent effects on the phase relationship between the onset of activity and the LD cycle were determined. Daily injections of triazolam (but not vehicle) induced pronounced advances or delays in the phase relationship between the entrained activity rhythm and the LD cycle; the direction of the shift was dependent on the time of the injection. Taken together with data from previous studies, these results suggest that triazolam, and perhaps other short-acting benzodiazepines, can be used to manipulate the mammalian circadian clock under a variety of experimental conditions.  相似文献   

9.
At least two major physiological systems are involved in the adaptation of the organism to environmental challenges: the circadian system and the stress reaction. This study addressed the possibility that interindividual differences in stress sensitivity and in the functioning of the circadian system are related. At 2 months of age, corticosterone secretion in response to a 20-min restraint stress was assessed in 9 Sprague-Dawley rats for which running wheel activity was recorded as a rhythmic behavioral marker of the circadian clock. Two weeks later, the adaptive response of the circadian system to an abrupt shift in the light:dark (LD) cycle was assessed in those rats using a jet-lag paradigm. Finally, after resynchronization to the new LD cycle, rats were transferred to constant darkness to assess the free-running period of their circadian rhythm of running-wheel activity. Results indicate that stress-induced corticosterone secretion was (1) positively correlated with the number of days to resynchronize the circadian activity rhythm to the new LD cycle, and with the value of its free-running period, and (2) negatively correlated with the intensity of daily locomotor activity. Those data, emphasizing the interactions between the stress response of an organism and the functioning of its circadian system, could explain interindividual differences in humans' susceptibility to shift work or other circadian-related disorders.  相似文献   

10.
Early lighting conditions have been described to produce long-term effects on circadian behavior, which may also influence the response to agents acting on the circadian system. It has been suggested that melatonin (MEL) may act on the circadian pacemaker and as a scavenger of reactive oxygen and nitrogen species. Here, we studied the oxidative and behavioral changes caused by prolonged exposure to constant light (LL) in groups of rats that differed in MEL administration and in lighting conditions during suckling. The rats were exposed to either a light–dark cycle (LD) or LL. At 40 days old, rats were treated for 2 weeks with a daily subcutaneous injection of MEL (10?mg/kg body weight) or a vehicle at activity onset. Blood samples were taken before and after treatment, to determine catalase (CAT) activity and nitrite level in plasma. As expected, LL-reared rats showed a more stable motor activity circadian rhythm than LD rats. MEL treatment produced more reactivity in LD- than in LL rats, and was also able to alter the phase of the rhythm in LD rats. There were no significant differences in nitrite levels or CAT activity between the groups, although both variables increased with time. Finally, we also tested depressive signs by means of sucrose consumption, and anhedonia was found in LD males treated with MEL. The results suggest that the lighting conditions in early infancy are important for the long-term functionality of the circadian system, including rhythm manifestation, responses to MEL and mood alterations.  相似文献   

11.
The gymnotid electric fish, Eigenmannia virescens, exhibits electric discharge rhythmicity both in alternate light-dark (LD; 12h light, 12h dark [LD 12:12]) and in constant dark (DD) conditions. It suggests that the electric discharge rhythm is under control of the circadian clock. The free-running periods (FRPs) of electric discharge rhythms at 21°C in DD are greater than, but close to, 24h. The maximum of the electric discharge in the Eigenmannia system peaks approximately at circadian time 6 (CT6) in the middle of the subjective day. The circadian oscillator in the system is temperature compensated. This original report reveals the relationship between electric discharge activity and the circadian pacemaker in Eigenmannia and provides an alternative system to investigate circadian rhythms in vertebrates. (Chronobiology International, 17(1), 43-48, 2000)  相似文献   

12.
Motor activity is among the non-photic stimuli that act on the internal clock. We have tested the role of motor activity in the circadian pattern of rats under conditions near the lower limits of entrainment, that induce circadian rhythm dissociation. Three groups of 8 rats each were used: a) rats kept individually in 25×25×15 cm cages, b) rats in 50×25×15 cm cages, and c) rats in 50×25×15 cm cages with access to a running wheel. All the rats were kept under light-dark cycles of 22 hours (T22, 11L:11D) for 50 days, after which they were transferred to constant darkness. All the rats without a running wheel showed a motor activity pattern with two statistically significant circadian rhythms in the periodogram of Sokolove and Bushell: one circadian component entrained by the LD cycle, and another free-running. The rats with access to a running wheel showed several patterns: 5 rats showed only one rhythm entrained to the LD cycle, 2 rats showed circadian rhythm dissociation, and 1 showed only a free running rhythm. We believe that the simultaneous manifestation of two circadian components reflects the functional dissociation of the oscillators population that constitutes the circadian pacemaker, of the rat. Physical exercise acts on the pacemaker reinforcing the strongest group of oscillators, which, depending on the structure of the circadian system of the rat, is usually the one entrained to the LD cycle. This study supports the hypothesis that motor activity couples the oscillators that form the circadian system of the rat.  相似文献   

13.
Motor activity is among the non-photic stimuli that act on the internal clock. We have tested the role of motor activity in the circadian pattern of rats under conditions near the lower limits of entrainment, that induce circadian rhythm dissociation. Three groups of 8 rats each were used: a) rats kept individually in 25×25×15 cm cages, b) rats in 50×25×15 cm cages, and c) rats in 50×25×15 cm cages with access to a running wheel. All the rats were kept under light-dark cycles of 22 hours (T22, 11L:11D) for 50 days, after which they were transferred to constant darkness. All the rats without a running wheel showed a motor activity pattern with two statistically significant circadian rhythms in the periodogram of Sokolove and Bushell: one circadian component entrained by the LD cycle, and another free-running. The rats with access to a running wheel showed several patterns: 5 rats showed only one rhythm entrained to the LD cycle, 2 rats showed circadian rhythm dissociation, and 1 showed only a free running rhythm. We believe that the simultaneous manifestation of two circadian components reflects the functional dissociation of the oscillators population that constitutes the circadian pacemaker, of the rat. Physical exercise acts on the pacemaker reinforcing the strongest group of oscillators, which, depending on the structure of the circadian system of the rat, is usually the one entrained to the LD cycle. This study supports the hypothesis that motor activity couples the oscillators that form the circadian system of the rat.  相似文献   

14.
The cuticle deposition rhythm, which is observed in the apodeme of the furca in the thorax, is controlled by a peripheral circadian clock in the epidermal cells and entrained to light-dark (LD) cycles via CRYPTOCHROME (CRY) in Drosophila melanogaster. In the present study, we examined the effects of temperature (TC) cycles and the combination of LD and TC cycles on entrainment of the cuticle deposition rhythm. The rhythm was entrained to TC cycles, whose period was 28 h. In T = 21 and 24 h, the rhythm was entrained to TC cycles in some individuals. CRY is not necessary for temperature entrainment of the cuticle deposition rhythm because the rhythm in cry(b) (lacking functional CRY) was entrained to TC cycles. Temperature entrainment of the rhythm was achieved even when the thoraxes or furcae were cultured in vitro, suggesting that the mechanism for temperature entrainment is independent of the central clock in the brain and the site of the thermoreception resides in the epidermal cells. When LD and TC cycles with different periods were applied, the rhythm was entrained to LD cycles with a slight influence of TC cycles. Thus, the LD cycle is a stronger zeitgeber than the TC cycle. The variance of the number of the cuticle layers decreased in the flies kept under LD and TC cycles with the same period in which the thermophase coincided with the photophase. Therefore, we conclude that LD and TC cycles synergistically entrain the rhythm. Synergistic effects of LD and TC cycles on entrainment were also observed even when the thoraxes were cultured in vitro, suggesting that the light and temperature information is integrated within the peripheral circadian system.  相似文献   

15.
The indolamine melatonin is an important rhythmic endocrine signal in the circadian system. Exogenous melatonin can entrain circadian rhythms in physiology and behavior, but the role of endogenous melatonin and the two membrane-bound melatonin receptor types, MT1 and MT2, in reentrainment of daily rhythms to light-induced phase shifts is not understood. The present study analyzed locomotor activity rhythms and clock protein levels in the suprachiasmatic nuclei (SCN) of melatonin-deficient (C57BL/6J) and melatonin-proficient (C3H/HeN) mice, as well as in melatonin-proficient (C3H/HeN) mice with targeted deletion of the MT1, MT2, or both receptors, to determine effects associated with phase delays or phase advances of the light/dark (LD) cycle. In all mouse strains and genotypes, reentrainment of locomotor activity rhythms was significantly faster after a 6-h phase delay than a 6-h phase advance. Reentrainment after the phase advance was, however, significantly slower than in melatonin-deficient animals and in mice lacking functional MT2 receptors than melatonin-proficient animals with intact MT2 receptors. To investigate whether these behavioral differences coincide with differences in reentrainment of clock protein levels in the SCN, mPER1, mCRY1 immunoreactions were compared between control mice kept under the original LD cycle and killed at zeitgeber time 04 (ZT04) or at ZT10, respectively, and experimental mice subjected to a 6-h phase advance of the LD cycle and sacrificed at ZT10 on the third day after phase advance. This ZT corresponds to ZT04 of the original LD cycle. Under the original LD cycle, the numbers of mPER1- and mCRY1-immunoreactive cell nuclei were low at ZT04 and high at ZT10 in the SCN of all mouse strains and genotypes investigated. Notably, mouse strains with intact melatonin signaling and functional MT2 receptors showed a significant increase in the number of mPER1- and mCRY1-immunoreactive cell nuclei at the new ZT10 as compared to the former ZT04. These data suggest the endogenous melatonin signal facilitates reentrainment of the circadian system to phase advances on the level of the SCN molecular clockwork by acting upon MT2 receptors. (Author correspondence: )  相似文献   

16.
17.
Animals placed under short light-dark (LD) cycles show a dissociation of their circadian rhythms. However, this effect has only been studied in Wistar rats and with the motor activity (MA) rhythm. Thus, in the present experiment, we studied in TGR(mREN2)27 (TGR) rats, a strain of hypertensive rats, the effect of a short LD cycle on the circadian rhythms of MA, heart rate (HR), and blood pressure (BP). Our aim was [1] to investigate whether the exposure of TGR rats to a short LD cycle induced a dissociation of their circadian rhythms, [2] to study the effect of short LD cycles on the development of the circadian rhythms of TGR rats, and [3] to compare the effect of short LD cycles on young and adult TGR rats. One group of TGR rats was maintained under LD cycles of 22h periods (group G22). The progress in time of their rhythms was compared to that of TGR rats of the same age that had been kept under LD cycles of 24h periods (group G24). For the third point, the rhythms of a group of 5-week-old TGR rats kept under LD 22h cycles (young rats) were compared to those of a group of 11-week-old TGR rats (adult rats). Results showed that there is a dissociation of the circadian rhythms of all the variables monitored in TGR rats maintained under LD 22h cycles, independent of age. We have also found that group G22 showed a higher increase in BP with age and a higher mortality due to malignant hypertension compared to group G24. Finally, it seems that it is harder for young rats to entrain to short LD cycles than for adult rats, and young rats have a higher mortality due to malignant hypertension than adult rats. In conclusion, we demonstrated that short LD cycles produce a dissociation in the HR, BP, and MA circadian rhythms. The results of this experiment, compared to those previously obtained in Wistar rats, suggest that the light perception, the responses of the circadian system to light, or both are altered in the TGR rats. (Chronobiology International, 18(4), 641-656, 2001)  相似文献   

18.

Background

Previous studies have implicated a role for circadian clocks in regulating pre-adult development of organisms. Among them two approaches are most notable: 1) use of insects whose clocks have different free-running periods and 2) imposition of artificial selection on either rate of development, timing of emergence or circadian period in laboratory populations. Using these two approaches, influence of clock on rate of development has been elucidated. However, the contribution of circadian clocks in determining time taken for pre-adult development has remained unclear. Here we present results of our studies aimed to understand this influence by examining populations of fruit flies carrying three different alleles of the period gene and hence having different free-running periods. We tried to achieve similarity of genetic background among the three strains while also ensuring that they harbored sufficient variation on loci other than period gene.

Results

We find that under constant conditions, flies with long period have slower development whereas in presence of light-dark cycles (LD) of various lengths, the speed of development for each genotype is influenced by whether their eclosion rhythms can entrain to them. Under LD 12:12 (T24), where all three strains entrain, they do not show any difference in time taken for emergence, whereas under LD 10:10 (T20) where long period flies do not entrain and LD 14:14 (T28) where short period flies do not entrain, they have slower and faster pre-adult development, respectively, compared to the controls. We also show that a prior stage in development namely pupation is not rhythmic though time taken for pupation is determined by both the environmental cycle and period allele.

Conclusion

We discuss how in presence of daily time cues, interaction of the cyclic environmental factors with the clock determines the position and width of the gate available for a fly to emerge (duration of time within a cycle when adult emergence can occur) resulting in an altered developmental duration from that observed under constant conditions. We also discuss the relevance of genetic background influencing this regulation.
  相似文献   

19.
A role for the circadian system in photoperiodic time measurement in Japanese quail is controversial. The authors undertook studies of the circadian and photoperiodic system of Japanese quail to try to identify a role for the circadian system in photoperiodic time measurement. The circadian studies showed that the circadian system acts like a low-amplitude oscillator: It is readily reset by light without significant transients, has a Type 0 phase response curve (PRC), and has a large range of entrainment. In fact, a cycle length that is often used in resonance protocols (LD 6:30) is within the range of entrainment. The authors employed T-cycle experiments; that is, LD cycles with 6- and 14-h photoperiods and period lengths ranging from 18 to 36 h to test for circadian involvement in photoperiodic time measurement. The results did not give evidence for circadian involvement in photoperiodic time measurement: T-cycles utilizing 6-h photoperiods were uniformly noninductive (that is, did not stimulate the reproductive system), whereas T-cycles utilizing 14-h photoperiods were inductive (stimulatory). A good match was observed between the phase-angles exhibited on the T-cycles employing 6-h photoperiods and the predicted phase-angles calculated from a PRC generated from 6-h light pulses.  相似文献   

20.
This study is aimed at verifying the causal relationship of chronic circadian desynchronization and changes in body weight control. Eight male albino F344 rats aged between 12-15 wk were subjected to twice weekly 12-h shifts of the daily light-dark (LD) cycle for 13 wk (3 mo). Continuous circadian phase shifts consisting of intermittent phase delay and advance and reduced circadian amplitudes were consistently displayed in all five experimental rats implanted intraperitoneally with heart rate, body temperature, and activity transponders. The experimental rat maintained a greater body weight during LD shifts and even after 10 days of recovery than that of the age-matched control rat, which was maintained on a regular LD cycle. Body weight gain was greater in the first 2 mo of LD shifts in the experimental rat than in the control rat. Relative to the baseline, food intake and activity percentages were increased and reduced, respectively, for the experimental rats. Features of these results, such as increased body weight gain and food intake, and reduced activity, suggest a causal relationship of chronic circadian desynchronization and changes in body weight control in male albino F344 rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号