首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reversed-phase microbore high-performance liquid chromatography was investigated for high-sensitivity analysis of phenylthiohydantoin (PTH) amino acids. A mixed nitrile alkylsilane bonded phase was developed and ternary gradient elution conditions were devised for resolution 150 × 4.6 mm I.D. column and transferred to a 150 × 1 mmI.D. microbore column. The performance of these columns was evaluated in terms of PTH amino acid resolution, enhanced sample detectability, and retention time precision. For this work a general purpose high-performance liquid chromatograph was modified to reduce extra column band broadening and a preformed gradient elution technique was developed to achieve rapid analysis times at microbore flow-rates. The microbore high-performance liquid chromatographic system is useful for high-sensitivity analysis of PTH amino acids in micro-sequencing applications.  相似文献   

2.
Eighteen side-chain-protected amino acids, routinely employed in solid-phase peptide synthesis, were derivatized to their phenylthiohydantoins (PTH) by one cycle of the Edman degradation. All of these side-chain-protected PTH amino acids elute, with almost-baseline resolution, in less than 18 min by high-performance liquid chromatography, utilizing a biphasic gradient of acetonitrile in 0.01 n sodium acetate, pH 4.5, or a linear gradient of 0 to 100% acetonitrile with the exception of the coelution of a O-benzyl-threonine and carbobenzoxy-lysine phenylthiohydantoin amino acids. The derivatized amino acids were subjected to reverse-phase chromatography on a Zorbax ODS column and monitored at 254 nm. None of the PTH amino acids coelute with side-chain-protected PTH amino acid counterparts, although PTH-tosyl-histidine undergoes deprotection to PTH-histidine in the Edman degradation. A protected decapeptide attached to a chloromethylated polystyrene resin was degraded on a solid-phase sequencer in 16 h. The PTH amino acids resulting from the automated Edman degradation on the decapeptide were fully resolved and quantified in less than 3 h demonstrating that automated high-performance liquid chromatography can keep pace with both the automated sequencer and synthesizer which requires minimally 2–3 h for attachment of each residue to the growing peptide chain.  相似文献   

3.
Using photographic detection and high resolution, the potential of field desorption mass spectrometry for mixture analysis is exemplified by means of synthetic mixtures of up to 15 amino acid phenylthiohydantoins (PTH amino acids). The high molecular ion intensities, low fragmentation, and relatively small intermolecular interaction allow the easy discrimination of individual components of these mixtures. The sensitivity and selectivity of the field desorption method is tested on PTH amino acids obtained from automated Edman sequenator degradations of a ribosomal protein. The field desorption spectra show the molecular ions and significant fragment ions of the PTH derivatives of all 10 degradation steps investigated. Even in cases where conventional electron impact mass spectrometry fails to show the molecular ions and only characteristic fragment ions are found, the field desorption method gives rise to the molecular ions in high yields (e.g., PTH-arginine and PTH-(?-PTC)-lysine). Therefore the use of the method as a complementary technique for the confirmation of PTH amino acids released in the Edman sequenator appears to be advantageous.  相似文献   

4.
Phenylthiohydantoin (PTH) amino acids, the derivatives of amino acids liberated in the course of automated N-terminal sequence analysis of peptides and proteins, are most commonly identified by high-performance liquid chromatography. This communication describes an extension to the methodology for PTH amino acid identification which exploits thermospray liquid chromatography/mass spectrometry for use in the confirmation of PTH amino acid identifications previously made solely on the basis of retention times. Thermospray mass spectra of the 19 synthetic PTH amino acids corresponding to the residues commonly observed during N-terminal sequencing have been acquired. These spectra show strong signals for the protonated molecular ion, accompanied in several cases by ions produced by limited fragmentation of the amino acid side chain and/or the PTH ring system. A reverse-phase separation protocol has been adapted for use with thermospray. The method permits recognition of the protonated molecular ions of all the standard PTH amino acids at the 150-pmol level on the basis of signal-to-noise ratios of 10:1 or better with full scanning. The method has been tested on the N-terminal amino acid sequence analysis of 200 pmol of the standard protein beta-lactoglobulin A, and has been found useful in the study of selected side-products of the sequencing chemistry.  相似文献   

5.
Parathyroid hormone (PTH) secretion is acutely regulated by the extracellular Ca(2+)-sensing receptor (CaR). Thus, Ca(2+) ions, and to a lesser extent Mg(2+) ions, have been viewed as the principal physiological regulators of PTH secretion. Herein we show that in physiological concentrations, l-amino acids acutely and reversibly activated the extracellular Ca(2+)-sensing receptor in normal human parathyroid cells and inhibited parathyroid hormone secretion. Individual l-amino acids, especially of the aromatic and aliphatic classes, as well as plasma-like amino acid mixtures, stereoselectively mobilized Ca(2+) ions in normal human parathyroid cells in the presence but not the absence of the CaR agonists, extracellular Ca(2+) (Ca(2+)(o)), or spermine. The order of potency was l-Trp = l-Phe > l-His > l-Ala > l-Glu > l-Arg = l-Leu. CaR-active amino acids also acutely and reversibly suppressed PTH secretion at physiological ionized Ca(2+) concentrations. At a Ca(2+)(o) of 1.1 mm and an amino acid concentration of 1 mm, CaR-active amino acids (l-Phe = l-Trp > l-His = l-Ala), but not CaR-inactive amino acids (l-Leu and l-Arg), stereoselectively suppressed PTH secretion by up to 40%, similar to the effect of raising Ca(2+)(o) to 1.2 mm. A physiologically relevant increase in the -fold concentration of the plasma-like amino acid mixture (from 1x to 2x) also reversibly suppressed PTH secretion in the Ca(2+)(o) concentration range 1.05-1.25 mm. In conclusion, l-amino acids acutely and reversibly activate endogenous CaRs and suppress PTH secretion at physiological concentrations. The results indicate that l-amino acids are physiological regulators of PTH secretion and thus whole body calcium metabolism.  相似文献   

6.
Resolution of enantiomers is very important particularly in the fields of asymmetric synthesis, mechanistic studies, geochronology, studies of structure-function relationship of proteins, pharmacology, and medicine. Various chromatographic methods have replaced the classical fractional crystallization, seeding and enzymatic procedures. Of these, t.l.c. provides a direct, simple, and inexpensive method for resolution of enantiomers of amino acids and their derivatives. Ligand exchange, ion exchange, and molecular inclusion complexation have been the basis of t.l.c. resolution of enantiomers of amino acids and their derivatives. The innovation of new plate types, and methods of development and detection have renewed interest in the direct resolution of enantiomers of amino acids, their derivatives and a variety of other compounds by t.l.c. The present report provides an overview of some of the more recent approaches to the direct t.l.c. resolution of amino acids and their derivatives together with special advantages and scope of t.l.c.  相似文献   

7.
Separation of the phenylthiohydantoin (PTH) derivatives of all 20 common amino acids is accomplished in approximately 11 min with excellent resolution by using high-pressure liquid chromatography. The chromatography is achieved at 50 degrees C on an Altex reversed-phase PTH-C18 column in an ammonium acetate-buffered acetonitrile, pH 4.5, mobile phase. Simple isocratic and linear gradient steps are used. Retention times for the various PTH-amino acids are very reproducible. Because the baseline is flat and free of background noise, PTH-amino acids can be detected in the low picomole range. The simplicity of this chromatographic system allows it to be easily automated.  相似文献   

8.
It is now routine using automatic Edman microsequencing to determine the primary structure of peptides or proteins containing natural amino acids; however, a deficiency in the ability to readily sequence peptides containing unnatural amino acids remains. With the advent of synthetic peptide chemistry, combinatorial chemistry, and the large number of commercially available unnatural amino acids, there is a need for efficient and accurate structure determination of short peptides containing many unnatural amino acids. In this study, 35 commercially available alpha-unnatural amino acids were selected to determine their elution profile on an ABI protein sequencer. Using a slightly modified gradient program, 19 of these 35 PTH amino acids can be readily resolved and distinguished from common PTH amino acids at low picomole levels. These unnatural amino acids in conjunction with the 20 natural amino acids can be used as building blocks to construct peptide libraries, and peptide beads isolated from these libraries can be readily microsequenced. To demonstrate this, we synthesized a simple tripeptide "one-bead one-compound" combinatorial library containing 14 unnatural and 19 natural amino acids and screened this library for streptavidin-binding ligands. Microsequencing of the isolated peptide-beads revealed the novel motif Bpa-Phe(4-X)-Aib, wherein X = H, OH, and CH3.  相似文献   

9.
The parathyroid hormone (PTH)1 receptor is a member of the class B G protein-coupled receptor (GPCR) family and regulates bone and mineral metabolism of vertebrates. A truncated highly active parathyroid hormone fragment PTH (1-34) exerts stimulatory effects on the receptor and is used for treatment of osteoporosis. To study the interacting amino acids of the natural peptide ligand PTH (1-84) with the ectodomain of its receptor we used peptide micro arrays on solid cellulose membranes. The amino acids Arg20 and Trp23 within the identified core binding stretch PTH (20-26) were found to be most important for affinity to the ectodomain of PTH1R. Isothermal titration calorimetry and NMR spectroscopy allowed peptide binding studies in solution and verified peptide positions required for high affinity. With this combination of biochemical and biophysical methods we extend former findings on this essential interaction and can now provide a strategy to screen for optimized therapeutic peptides.  相似文献   

10.
The determination of the primary structure of peptides and proteins is routine in many laboratories; however, many of the obtained sequences are incomplete or can be misinterpreted when the samples contain unusual amino acids. Here we report the development of an automated peptide sequenator coupled to an electrospray-ionization (ESI) mass spectrometer (MS) that, in conjunction with minor modifications to the sequencing conditions and, in some cases, prior derivatization of amino acids, allows the detection of the phenylthiohydantoin (PTH) derivatives of a number of unusual amino acids. Using the coupled sequenator-ESI-MS system we were able to determine the complete sequence of the lantibiotic gallidermin, a partial sequence of the calcium-dependent peptide antibiotic CDA2 as well as the pool sequence of a mixture of synthetic peptides containing nonproteinogenic amino acids. In addition to the 20 proteinogenic amino acids, the procedure was able to detect PTH derivatives of hydroxyphenylglycine, 2,3-didehydroasparagine, 3-methylglutamic acid, oxytryptophan, ornithine, N-methylglycine, dihydroxyphenylalanine, and alpha-aminoisobutyric acid. Similarly, after a simple derivatization procedure, we were also able to correctly identify educts of 2,3-didehydroalanine, 2,3-didehydrobutyrine, lanthionine, and 3-methyllanthionine.  相似文献   

11.
Ten phenylthiohydantoin (PTH) amino acids possessing allyl (Al) or allyloxycarbonyl (Aloc) side-chain-protecting groups have been characterized by high-performance liquid chromatography for use in Edman degradation sequence analysis. Optimized separation of side-chain-protected and -unprotected PTH amino acids was achieved on a C-18 reversed-phase column with a two-step gradient spanning 32 min. Five of the side-chain-protected amino acids [Cys(Al), Cys(Aloc), Lys(Aloc), Thr(Aloc), Tyr(Al)] were completely stable to the conditions of PTH derivatization, four [Asp(OAl), Arg(Aloc)2, Glu(OAl), Ser(Aloc)] were partially deprotected during PTH derivatization, and one [His(Aloc)] was completely deprotected during PTH derivatization. All allyl-based derivatives were well resolved from their side-chain-unprotected counterparts. Studies on the stability to piperidine treatment showed Asp(OAl), Cys(Al), Glu(OAl), Lys(Aloc), Thr(Aloc), and Tyr(Al), and possibly Arg(Aloc)2 and Ser(Aloc), to be suitable for peptide synthesis by 9-fluorenylmethoxycarbonyl (Fmoc)-based chemistry. Edman degradation of Al and Aloc side-chain-protected Conus geographus Lys9-alpha-conotoxin GI synthesized on 4-methylbenzhydrylamine-copoly(styrene-1%-DVB)-resin demonstrated the usefulness of these derivatives for solid-phase preview sequence analysis.  相似文献   

12.
An improved and very simple procedure for thiazolinone conversion to thiohydantoin derivatives and their separation by reverse-phase high-pressure liquid chromatography is described. Trifluoroacetic acid (10%) in ethyl acetate has been employed as a conversion reagent to circumvent the deamidation of acid amides and methylation of acidic amino acids, with a concomitant increase in the detection limits of these residues. Additionally, a very simple procedure has been developed for the separation of phenylthiohydantoin (PTH) derivatives of amino acids. The system takes advantage of the computer-controlled precise mixing of the solvents A and B to achieve accurate pH and thus avoid the necessity of pH adjustment of a buffer. The procedure is simple and highly reproducible, and separates all the 20 known PTH amino acids. The efficiency of the method has been examined on synthetic and natural proteins/peptides, in manual and autoconversion systems, over a period of more than 18 months.  相似文献   

13.
It was recently shown that the covalent tethering of the N-terminus of parathyroid hormone (PTH) to the seventh helical bundle of the G-protein coupled PTH-receptor (PTH1R) leads to autoactivation [Shimizu et al., J. Biol. Chem. 275 (2000) 19456-19460]. Here, we have developed molecular models for the interaction of PTH(1-11) tethered to PTH1R and refined them with molecular dynamics simulations. The starting structure of the ligand/receptor complex is based on experimental data from a series of spectroscopic structural studies of PTH(1-34) and the extracellular domains of PTH1R and intermolecular contact points derived from photoaffinity labeling. The resulting PTH1R/[Arg(11)]PTH(1-11) complex has the N-terminus of PTH interacting with residues of the third extracellular loop of PTH1R, as a possible mode for receptor activation. The hydrophobic residues leucine-5 and methionine-8, centrally located in the N-terminal alpha-helix of PTH(1-11), are located in deep, well-defined hydrophobic pockets in the central core of the seventh helical bundle, consistent with the requirement of these amino acids for autoactivation. We postulate that the improved signaling properties of [Arg(11)]PTH(1-11) over wild type PTH(1-11) is due to a stable hydrogen bond between Arg(11) and E444, at the beginning of TM7. The model provides atomic insight into currently available biochemical data as well as numerous putative ligand/receptor interactions, and thereby may further the rational design of reduced-size PTH agonists at the PTH1 receptor.  相似文献   

14.
The formation of parathyroid hormone (PTH) in the parathyroid gland occurs via two successive proteolytic cleavages from larger biosynthetic precursors. The initial product coded for by PTH mRNA is pre-proparathyroid hormone (PreProPTH), a polypeptide of 115 amino acids. Within 1 min of synthesis, the polypeptide, proparathyroid hormone (ProPTH), is formed as a result of the proteolytic removal of the NH2-terminal 25 amino acids from Pre-ProPTH. After a delay of 15-20 min, the NH2-terminal six-amino acid sequence of ProPTH is removed to give PTH of 84 amino acids. To investigate the subcellular sites in the parathyroid cell where the biosynthetic precursors undergo specific proteolytic cleavages, we examined, by electron microscopy autoradiography, the spatiotemporal migration of autoradiographic grains and, by electrophoresis, the kinetics of the disappearance of labeled Pre-ProPTH and the conversion of labeled ProPTH to PTH in bovine parathyroid gland slices incubated with [3H]leucine for 5 min (pulse incubation) followed by incubations with unlabeled leucine for periods up to 85 min (chase incubations). By 5 min, 85% of the autoradiographic grains were confined to the rough endoplasmic reticulum (RER). Autoradiographic grains increased rapidly in number in the Golgi region after 15 min of incubation; from 15 to 30 min they migrated within secretory vesicles still in the Golgi region and then migrated to mature secretory granules outside the Golgi area. Electrophoretic analyses showed that Pre-ProPTH disappeared rapidly (by 5 min) and that conversion of ProPTH to PTH was first detectable at 15 min and was completed by 30 min. At later times of incubation (30-90 min), autoradiographic grains within the secretion glanules migrated to the periphery of the cell and to the plasma membrane, in correlation with the release of PTH first detected by 30 min. We conclude that proteolytic conversion of Pre-ProPTH to ProPTH takes place in the RER and that subsequent conversion of ProPTH to PTH occurs in the Golgi complex.  相似文献   

15.
Native intact bovine PTH was studied by proton nuclear magnetic resonance (NMR) techniques, at pH 3.5 and pH 6.3. The 1H-NMR spectra had good resolution and many multiplet structures were observed. Assignment of the NMR resonances corresponding to specific amino acids was approached using 1H chemical shifts, coupling constants, and pH dependence in the one-dimensional spectra and the 1H-1H connectivities revealed in two-dimensional homonuclear correlated spectroscopy (COSY) experiments. All the aromatic proton resonances were assigned. Two histidine residues had lower pK than the other two. The methyl groups of two residues were moved significantly downfield: using COSY and two-dimensional nuclear Overhauser enhancement spectroscopy (NOESY) correlations, these were assigned to an alanine residue close to both Trp-23 and Tyr-43, and a valine residue in close spatial proximity to Trp-23. The NOESY spectrum also showed cross-peaks between the residues of the upfield valine-leucine-isoleucine methyl envelope. Many of the H alpha protons moved upfield as the pH was increased. These results indicate that intact native PTH exists in a preferred conformation in solution at pH 6.5. Our studies have provided new information on the three-dimensional spatial proximity of several amino acids along the polypeptide chain. The observed interactions are consistent with the currently accepted model suggesting that the hormone has two separate structural domains associated with the amino- and carboxy-terminal regions of the molecule respectively. The potential implications of this model for the expression of biological activity are discussed.  相似文献   

16.
Phenylthiohydantoin (PTH) derivatives of all 20 common amino acids can be separated by high-pressure liquid chromatography. By using a Waters reversed-phase C18 column eluted with a concave ethanol gradient in ammonium acetate, pH 5.1, all PTH derivatives were eluted in less than 30 min. The NH2-terminal amino acid sequence of the human retinolbinding protein could unambiguosly be established for the first 40 residues. Likewise, HLA-DR antigens biosynthetically labeled with [3H]tyrosine and [3H]phenylalanine were subjected to automatic sequential degradation. Labeled PTH-amino acids were easily identified by the described chromatographic procedure.  相似文献   

17.
Studies of humoral hypercalcemia of malignancy (HHM) have provided evidence that tumors produce a protein that acts through the parathyroid (PTH) receptor but is immunologically distinct from PTH. We have recently purified and cloned a parathyroid hormone-related protein (PTHrP) implicated in HHM from a human lung cancer cell line (BEN). Full-length cDNA clones have been isolated and found to encode a prepropeptide of 36 amino acids and a mature protein of 141 amino acids. Eight of the first 13 amino-terminal residues are identical with human PTH, although antisera directed to the amino-terminus of PTHrP do not recognize PTH. The striking homology with PTH about the amino-terminal region is not maintained in the remainder of the molecule. PTHrP therefore represents a previously unrecognized hormone. A 34-amino acid synthetic peptide, PTHrP(1-34) was 2-4 times more potent than bovine or human PTH(1-34) in bioassays promoting the formation of cAMP and plasminogen activity in osteogenic sarcoma cells and activation of adenylate cyclase in chick kidney membranes. Like PTH, PTHrP peptides of less than 30 residues from the amino-terminus showed substantially reduced activity. PTHrP(1-34) was also more potent than hPTH(1-34) in stimulating cAMP and phosphate excretion and reducing calcium excretion in the isolated perfused rat kidney. Immunohistochemical localization of PTHrP was consistently demonstrated in squamous cell carcinomas. In normal tissues PTHrP has been immunohistochemically localized in keratinocytes and PTHrP-like activity has been extracted from ovine placenta and fetal ovine parathyroids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
C R?lz  M Pellegrini  D F Mierke 《Biochemistry》1999,38(20):6397-6405
Molecular models for the interaction of parathyroid hormone (PTH) with its G-protein-coupled receptors (PTH1 and PTH2) have been developed. The proposed ligand-receptor complex is based on experimental data from spectroscopic investigations of the hormone and receptor fragments as well as theoretical structure predictions based on homology analysis with proteins of known structure. From the insight afforded by the models, biochemical and pharmacological observations can be correlated with specific molecular or atomic interactions. The ligand selectivity of PTH2, specifically the lack of binding of His5-containing analogues, can be ascribed to unfavorable steric interactions (the binding pocket is markedly smaller in PTH2 than PTH1) as well as repulsive Coulombic forces between amino acids of like-charge (a positively charged H384 is located in the binding pocket in PTH2). The model of PTH1 suggests that the constitutive activity observed from the incorporation of a positively charged amino acid at position 223, found at the cytoplasmic end of TM2, is caused by a Coulombic attraction to E465, at the cytoplasmic end of TM7, leading to an association of TM2 and TM7 and thereby ligand-free activation. Additionally, a number of important interactions in the ligand-receptor complex are described along with predictions of the pharmacological profile which will result from specific modifications at these sites. In this regard, the models described here allow for atomic insight into the biochemical data currently available and allow targeting of future mutations to probe specific ligand/receptor interactions and thereby further our understanding of the functioning of this important hormone system.  相似文献   

19.
Three sulfur-free analogues of bovine parathyroid hormone (bPTH) containing D-amino acids were synthesized by the solid-phase method and their biological properties compared in an in vitro bioassay (rat renal adenylate cyclase assay), a receptor assay for parathyroid hormone (PTH) (canine renal membranes), and an in vivo bioassay (chick hypercalcemia assay). The analogue [Nle8,Nle18,D-Tyr34]-bPTH-(1-34)-amide, which was found to be more than 4 times as potent in vitro as unsubstituted PTH, is the most potent analogue of PTH yet synthesized. The enhanced potency was largely attributable to increased affinity for the PTH receptor. In vivo, however, this analogue was only one-third as potent as bPTH-(1-34). Cumulative evidence suggests that the nearly 15-fold decline in the relative potency when the compound was assayed in vivo is due to the substitution of norleucine for methionine. The other analogues, [D-Val2,Nle8,D-Tyr34]bPTH-(1-34)-amide and [D-Val2,Nle8,Nle18,D=Tyr34]bPTH-(2-34)-amide, were only weakly active in vitro and in vivo, indicating that substitution with D-amino acids at the NH2 terminus of PTH causes markedly diminished receptor affinity. In fact, the placement of a D-amino acid at the NH2 terminus is more deleterious to biological activity than is omission of amino acids at positions 1 and 2.  相似文献   

20.
Parathyroid hormone (amino acids 1-34) (PTH) regulates bone and calcium homeostasis. The magnitude of the effects of PTH on bone varies in osteoporosis patients. We employed ProteinChip technology to generate protein profiles from sera of mice treated once daily with PTH or vehicle for 3 or 11 days. Data analyses on selected arrays indicated significant increases in serum proteins or peptides in PTH-treated groups, compared to vehicle-controls. The magnitude of change increased with duration of treatment. Anion-exchange fractionation of sera prior to profiling on array surfaces increased the number of proteins detected that were regulated by PTH. The optimized purification conditions developed "on-chip" for subsets of proteins, reflected corresponding behavior with process-compatible chromatographic resins under elution chromatography. We have identified and evaluated subsets of serum proteins regulated by PTH treatment, using a combination of ProteinChip technology, column chromatography, PAGE and LC-MS/MS. Our data demonstrate the feasibility of using a panel of serum proteins to detect PTH responsiveness in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号