首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morishita M  Engebrecht J 《Genetics》2005,170(4):1561-1574
During sporulation in Saccharomyces cerevisiae, vesicles transported to the vicinity of spindle pole bodies are fused to each other to generate bilayered prospore membranes (PSMs). PSMs encapsulate the haploid nuclei that arise from the meiotic divisions and serve as platforms for spore wall deposition. Membrane trafficking plays an important role in supplying vesicles for these processes. The endocytosis-deficient mutant, end3Delta, sporulated poorly and the spores produced lost resistance to ether vapor, suggesting that END3-mediated endocytosis is important for sporulation. End3p-GFP localized to cell and spore peripheries in vegetative and sporulating cells and colocalized with actin structures. Correspondingly, the actin cytoskeleton appeared aberrant during sporulation in end3Delta. Analysis of meiosis in end3Delta mutants revealed that the meiotic divisions occurred with wild-type kinetics. Furthermore, PSMs were assembled normally. However, the levels of proteins required for spore wall synthesis and components of the spore wall layers at spores were reduced, indicating that end3Delta mutants are defective in spore wall synthesis. Thus, END3-mediated endocytosis is important for spore wall formation. Additionally, cytological analyses suggest that trafficking between the plasma membrane and PSMs is important earlier during sporulation.  相似文献   

2.
3.
Btn2p, a novel cytosolic coiled-coil protein in Saccharomyces cerevisiae, was previously shown to interact with and to be necessary for the correct localization of Rhb1p, a regulator of arginine uptake, and Yif1p, a Golgi protein. We now report the biochemical and physical interactions of Btn2p with Ist2p, a plasma membrane protein that is thought to have a function in salt tolerance. A deletion in Btn2p (btn2Delta strains) results in a failure to correctly localize Ist2p, and strains lacking Btn2p and Ist2p (btn2Delta ist2Delta strains) are unable to grow in the presence of 0.5 or 1.0 M NaCl. Btn2p was originally identified as being up-regulated in a btn1Delta strain, which lacks the vacuolar-lysosomal membrane protein, Btn1p, and serves as a model for Batten disease. This up-regulation of Btn2p was shown to contribute to the maintenance of a stable vacuolar pH in the btn1Delta strain. Btn1p was subsequently shown to be required for the optimal transport of arginine into the vacuole. Interestingly, btn1Delta ist2Delta strains are also unable to grow in the presence of 0.5 or 1.0 M NaCl, and ist2Delta suppresses the vacuolar arginine transport defect in btn1Delta strains. Although further investigation is required, we speculate that altered vacuolar arginine transport in btn1Delta strains represents a mechanism for maintaining or balancing cellular ion homeostasis. Btn2p interacts with at least three proteins that are seemingly involved in different biological functions in different subcellular locations. Due to these multiple interactions, we conclude that Btn2p may play a regulatory role across the cell in response to alterations in the intracellular environment that may be caused by changes in amino acid levels or pH, a disruption in protein trafficking, or imbalances in ion homeostasis resulting from either genetic or environmental manipulation.  相似文献   

4.
The yeast Saccharomyces cerevisiae is able to overcome cell dehydration; cell metabolic activity is arrested during this period but restarts after rehydration. The yeast genes encoding hydrophilin proteins were characterised to determine their roles in the dehydration-resistant phenotype, and STF2p was found to be a hydrophilin that is essential for survival after the desiccation-rehydration process. Deletion of STF2 promotes the production of reactive oxygen species and apoptotic cell death during stress conditions, whereas the overexpression of STF2, whose gene product localises to the cytoplasm, results in a reduction in ROS production upon oxidative stress as the result of the antioxidant capacity of the STF2p protein.  相似文献   

5.
In the yeast Saccharomyces cerevisiae, the endoplasmic reticulum (ER) is found at the periphery of the cell and around the nucleus. The segregation of ER through the mother-bud neck may occur by more than one mechanism because perinuclear, but not peripheral ER, requires microtubules for this event. To identify genes whose products are required for cortical ER inheritance, we have used a Tn3-based transposon library to mutagenize cells expressing a green fluorescent protein-tagged ER marker protein (Hmg1p). This approach has revealed that AUX1/SWA2 plays a role in ER inheritance. The COOH terminus of Aux1p/Swa2p contains a J-domain that is highly related to the J-domain of auxilin, which stimulates the uncoating of clathrin-coated vesicles. Deletion of the J-domain of Aux1p/Swa2p leads to vacuole fragmentation and membrane accumulation but does not affect the migration of peripheral ER into daughter cells. These findings suggest that Aux1p/Swa2p may be a bifunctional protein with roles in membrane traffic and cortical ER inheritance. In support of this hypothesis, we find that Aux1p/Swa2p localizes to ER membranes.  相似文献   

6.
The Saccharomyces cerevisiae mitotic exit network (MEN) is a conserved set of genes that mediate the transition from mitosis to G(1) by regulating mitotic cyclin degradation and the inactivation of cyclin-dependent kinase (CDK). Here, we demonstrate that, in addition to mitotic exit, S. cerevisiae MEN gene MOB1 is required for cytokinesis and cell separation. The cytokinesis defect was evident in mob1 mutants under conditions in which there was no mitotic-exit defect. Observation of live cells showed that yeast myosin II, Myo1p, was present in the contractile ring at the bud neck but that the ring failed to contract and disassemble. The cytokinesis defect persisted for several mitotic cycles, resulting in chains of cells with correctly segregated nuclei but with uncontracted actomyosin rings. The cytokinesis proteins Cdc3p (a septin), actin, and Iqg1p/ Cyk1p (an IQGAP-like protein) appeared to correctly localize in mob1 mutants, suggesting that MOB1 functions subsequent to actomyosin ring assembly. We also examined the subcellular distribution of Mob1p during the cell cycle and found that Mob1p first localized to the spindle pole bodies during mid-anaphase and then localized to a ring at the bud neck just before and during cytokinesis. Localization of Mob1p to the bud neck required CDC3, MEN genes CDC5, CDC14, CDC15, and DBF2, and spindle pole body gene NUD1 but was independent of MYO1. The localization of Mob1p to both spindle poles was abolished in cdc15 and nud1 mutants and was perturbed in cdc5 and cdc14 mutants. These results suggest that the MEN functions during the mitosis-to-G(1) transition to control cyclin-CDK inactivation and cytokinesis.  相似文献   

7.
8.
The new member of the Ras superfamily of G-proteins, Rheb, has been identified in rat and human, but its function has not been defined. We report here the identification of Rheb homologues in the budding yeast Saccharomyces cerevisiae (ScRheb) as well as in Schizosaccharomyces pombe, Drosophila melanogaster, zebrafish, and Ciona intestinalis. These proteins define a new class of G-proteins based on 1) their overall sequence similarity, 2) high conservation of their effector domain sequence, 3) presence of a unique arginine in their G1 box, and 4) presence of a conserved CAAX farnesylation motif. Characterization of an S. cerevisiae strain deficient in ScRheb showed that it is hypersensitive to growth inhibitory effects of canavanine and thialysine, which are analogues of arginine and lysine, respectively. Accordingly, the uptake of arginine and lysine was increased in the ScRheb-deficient strain. This increased arginine uptake requires the arginine-specific permease Can1p. The function of ScRheb is dependent on having an intact effector domain since mutations in the effector domain of ScRheb are incapable of complementing canavanine hypersensitivity of scrheb disruptant cells. Furthermore, the conserved arginine in the G1 box plays a role in the activity of ScRheb, as a mutation of this arginine to glycine significantly reduced the ability of ScRheb to complement canavanine hypersensitivity of ScRheb-deficient yeast. Finally, a mutation in the C-terminal CAAX farnesylation motif resulted in a loss of ScRheb function. This result, in combination with our finding that ScRheb is farnesylated, suggests that farnesylation plays a key role in ScRheb function. Our findings assign the regulation of arginine and lysine uptake as the first physiological function for this new farnesylated Ras superfamily G-protein.  相似文献   

9.
Stomatal guard cells play a key role in gas exchange for photosynthesis and in minimizing transpirational water loss from plants by opening and closing the stomatal pore. The bulk of the osmotic content driving stomatal movements depends on ionic fluxes across both the plasma membrane and tonoplast, the metabolism of organic acids, primarily Mal (malate), and its accumulation and loss. Anion channels at the plasma membrane are thought to comprise a major pathway for Mal efflux during stomatal closure, implicating their key role in linking solute flux with metabolism. Nonetheless, little is known of the regulation of anion channel current (I(Cl)) by cytosolic Mal or its immediate metabolite OAA (oxaloacetate). In the present study, we have examined the impact of Mal, OAA and of the monocarboxylic acid anion acetate in guard cells of Vicia faba L. and report that all three organic acids affect I(Cl), but with markedly different characteristics and sidedness to their activities. Most prominent was a suppression of ICl by OAA within the physiological range of concentrations found in vivo. These findings indicate a capacity for OAA to co-ordinate organic acid metabolism with I(Cl) through the direct effect of organic acid pool size. The findings of the present study also add perspective to in vivo recordings using acetate-based electrolytes.  相似文献   

10.
11.
The vacuole of Saccharomyces cerevisiae projects a stream of tubules a and vesicles (a segregation structure) into the bud in early S phase. We have described an in vitro reaction, requiring physiological temperature, ATP, and cytosol, in which isolated vacuoles form segregation structures and fuse. This in vitro reaction is defective when reaction components are prepared from vac mutants that are defective in this process in vivo, Fractionation of the cytosol reveals at least three components, each of which can support the vacuole fusion reaction, and two stimulatory fractions. Purification of one low molecular weight activity (LMA1) yields a heterodimeric protein with a thioredoxin subunit. Most of the thioredoxin of yeast is in this complex rather than the well-studied monomer. A deletion of both S. cerevisiae thioredoxin genes causes a striking vacuole inheritance defect in vivo, establishing a role for thioredoxin as a novel factor in this trafficking reaction.  相似文献   

12.
The reversibility of arginine accumulation was followed in exponentially growing cells of Saccharomyces cerevisiae and in the same cells transferred to non-growing energized conditions. Under non-growing conditions the accumulated arginine is retained in the cells while in exponentially growing cells the accumulated radioactivity is released after the addition of high external concentrations of arginine. There are indications that the process is saturable. The accumulated arginine is not exchanged for other related amino acids (l-citrulline, l-histidine). Only l-lysine (a low-affinity substrate of the specific arginine permease) provokes partial radioactivity efflux from the cells. The switch of the arginine-related radioactive label efflux to its complete retention in the cells after changing the growth conditions occurs within a few minutes and is tentatively attributed to two concomitantly occurring events: (1) the actual presence of radioactive arginine (not its metabolite(s)) in the cell and (2) a modification of the specific arginine permease. The specific exchange of arginine described in the present study contrasts with the currently widely accepted opinion of unidirectionality of amino acid fluxes in yeast. The reasons why this phenomenon has not been observed before are discussed.  相似文献   

13.
Cells have evolved molecular mechanisms for the efficient transmission of organelles during cell division. Little is known about how peroxisomes are inherited. Inp1p is a peripheral membrane protein of peroxisomes of Saccharomyces cerevisiae that affects both the morphology of peroxisomes and their partitioning during cell division. In vivo 4-dimensional video microscopy showed an inability of mother cells to retain a subset of peroxisomes in dividing cells lacking the INP1 gene, whereas cells overexpressing INP1 exhibited immobilized peroxisomes that failed to be partitioned to the bud. Overproduced Inp1p localized to both peroxisomes and the cell cortex, supporting an interaction of Inp1p with specific structures lining the cell periphery. The levels of Inp1p vary with the cell cycle. Inp1p binds Pex25p, Pex30p, and Vps1p, which have been implicated in controlling peroxisome division. Our findings are consistent with Inp1p acting as a factor that retains peroxisomes in cells and controls peroxisome division. Inp1p is the first peroxisomal protein directly implicated in peroxisome inheritance.  相似文献   

14.
Pinto I  Winston F 《The EMBO journal》2000,19(7):1598-1612
Histones are structural and functional components of the eukaryotic chromosome, and their function is essential for normal cell cycle progression. In this work, we describe the characterization of two Saccharomyces cerevisiae cold-sensitive histone H2A mutants. Both mutants contain single amino acid replacements of residues predicted to be on the surface of the nucleosome and in close contact with DNA. We show that these H2A mutations cause an increase-in-ploidy phenotype, an increased rate of chromosome loss, and a defect in traversing the G(2)-M phase of the cell cycle. Moreover, these H2A mutations show genetic interactions with mutations in genes encoding kinetochore components. Finally, chromatin analysis of these H2A mutants has revealed an altered centromeric chromatin structure. Taken together, these results strongly suggest that histone H2A is required for proper centromere-kinetochore function during chromosome segregation.  相似文献   

15.
《The Journal of cell biology》1995,131(5):1163-1171
To clarify the roles of Kar2p (BiP) and Sec63p in translocation across the ER membrane in Saccharomyces cerevisiae, we have utilized mutant alleles of the essential genes that encode these proteins: kar2-203 and sec63-1. Sanders et al. (Sanders, S. L., K. M. Whitfield, J. P. Vogel, M. D. Rose, and R. W. Schekman. 1992. Cell. 69:353-365) showed that the translocation defect of the kar2-203 mutant lies in the inability of the precursor protein to complete its transit across the membrane, suggesting that the lumenal hsp70 homologue Kar2p (BiP) binds the transiting polypeptide in order to facilitate its passage through the pore. We now show that mutation of a conserved residue (A181-->T) (Nelson, M. K., T. Kurihara, and P. Silver. 1993. Genetics. 134:159- 173) in the lumenal DnaJ box of Sec63p (sec63-1) results in an in vitro phenotype that mimics the precursor stalling defect of kar2-203. We demonstrate by several criteria that this phenotype results specifically from a defect in the lumenal interaction between Sec63p and BiP: Neither a sec62-1 mutant nor a mutation in the cytosolically exposed domain of Sec63p causes precursor stalling, and interaction of the sec63-1 mutant with the membranebound components of the translocation apparatus is unimpaired. Additionally, dominant KAR2 suppressors of sec63-1 partially relieve the stalling defect. Thus, proper interaction between BiP and Sec63p is necessary to allow the precursor polypeptide to complete its transit across the membrane.  相似文献   

16.
17.
18.
19.
20.
The biosynthesis of 60 S ribosomal subunits in Saccharomyces cerevisiae requires Tif6p, the yeast homologue of mammalian eIF6. This protein is necessary for the formation of 60 S ribosomal subunits because it is essential for the processing of 35 S pre-rRNA to the mature 25 S and 5.8 S rRNAs. In the present work, using molecular genetic and biochemical analyses, we show that Hrr25p, an isoform of yeast casein kinase I, phosphorylates Tif6p both in vitro and in vivo. Tryptic phosphopeptide mapping of in vitro phosphorylated Tif6p by Hrr25p and (32)P-labeled Tif6p isolated from yeast cells followed by mass spectrometric analysis revealed that phosphorylation occurred on a single tryptic peptide at Ser-174. Sucrose gradient fractionation and coimmunoprecipitation experiments demonstrate that a small but significant fraction of Hrr25p is bound to 66 S preribosomal particles that also contain bound Tif6p. Depletion of Hrr25p from a conditional yeast mutant that fails to phosphorylate Tif6p was unable to process pre-rRNAs efficiently, resulting in significant reduction in the formation of 25 S rRNA. These results along with our previous observations that phosphorylatable Ser-174 is required for yeast cell growth and viability, suggest that Hrr25p-mediated phosphorylation of Tif6p plays a critical role in the biogenesis of 60 S ribosomal subunits in yeast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号