首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary cilium constitutes an organelle that orchestrates signal transduction independently from the cell body. Dysregulation of this intricate molecular architecture leads to severe human diseases, commonly referred to as ciliopathies. However, the molecular underpinnings how ciliary signaling orchestrates a specific cellular output remain elusive. By combining spatially resolved optogenetics with RNA sequencing and imaging, we reveal a novel cAMP signalosome that is functionally distinct from the cytoplasm. We identify the genes and pathways targeted by the ciliary cAMP signalosome and shed light on the underlying mechanisms and downstream signaling. We reveal that chronic stimulation of the ciliary cAMP signalosome transforms kidney epithelia from tubules into cysts. Counteracting this chronic cAMP elevation in the cilium by small molecules targeting activation of phosphodiesterase‐4 long isoforms inhibits cyst growth. Thereby, we identify a novel concept of how the primary cilium controls cellular functions and maintains tissue integrity in a specific and spatially distinct manner and reveal novel molecular components that might be involved in the development of one of the most common genetic diseases, polycystic kidney disease.  相似文献   

2.
The primary cilium is a non‐motile cilium whose structure is 9+0. It is involved in co‐ordinating cellular signal transduction pathways, developmental processes and tissue homeostasis. Defects in the structure or function of the primary cilium underlie numerous human diseases, collectively termed ciliopathies. The presence of single cilia in the central nervous system (CNS) is well documented, including some choroid plexus cells, neural stem cells, neurons and astrocytes, but the presence of primary cilia in differentiated neurons of the enteric nervous system (ENS) has not yet been described in mammals to the best of our knowledge. The enteric nervous system closely resembles the central nervous system. In fact, the ultrastructure of the ENS is more similar to the CNS ultrastructure than to the rest of the peripheral nervous system. This research work describes for the first time the ultrastructural characteristics of the single cilium in neurons of rat duodenum myenteric plexus, and reviews the cilium function in the CNS to propose the possible role of cilia in the ENS cells.  相似文献   

3.
Cilia play a major role in the regulation of numerous signaling pathways and are essential for embryonic development. Mutations in genes affecting ciliary function can cause a variety of diseases in humans summarized as ciliopathies. To facilitate the detection and visualization of cilia in a temporal and spatial manner in mouse tissues, we generated a Cre‐inducible cilium‐specific reporter mouse line expressing an ARL13B‐tRFP fusion protein driven by a CMV enhancer/chicken β actin promotor (pCAG) from the Hprt locus. We detected bright and specific ciliary signals by immunostainings of various mono‐ and multiciliated tissues and by time‐lapse live‐cell analysis of cultured embryos and organ explant cultures. Additionally, we monitored cilium assembly and disassembly in embryonic fibroblast cells using live‐cell imaging. Thus, the ARL13B‐tRFP reporter mouse strain is a valuable tool for the investigation of ciliary structure and function in a tissue‐specific manner to understand processes, such as ciliary protein trafficking or cilium‐dependent signaling in vitro and in vivo.  相似文献   

4.
《Organogenesis》2013,9(1):62-68
The primary cilium is an antenna-like organelle that plays a vital role in organ generation and maintenance. It protrudes from the cell surface where it receives signals from the surrounding environment and relays them into the cell. These signals are then integrated to give the required outputs in terms of proliferation, differentiation, migration and polarization that ultimately lead to organ development and homeostasis. Defects in cilia function underlie a wide range of diverse but related human developmental or degenerative diseases. Collectively known as ciliopathies, these disorders present with varying severity and multiple organ involvement. The appreciation of the medical importance of the primary cilium has stimulated a huge effort into studies of the underlying cellular mechanisms. These in turn have revealed that ciliopathies result not only from defective assembly or organization of the primary cilium, but also from impaired ciliary signaling. This special edition of Organogenesis contains a set of review articles that highlight the role of the primary cilium in organ development and homeostasis, much of which has been learnt from studies of the associated human diseases. Here, we provide an introductory overview of our current understanding of the structure and function of the cilium, with a focus on the signaling pathways that are coordinated by primary cilia to ensure proper organ generation and maintenance.  相似文献   

5.
Recent findings show that cilia are sensory organelles that display specific receptors and ion channels, which transmit signals from the extracellular environment via the cilium to the cell to control tissue homeostasis and function. Agenesis of primary cilia or mislocation of ciliary signal components affects human pathologies, such as polycystic kidney disease and disorders associated with Bardet-Biedl syndrome. Primary cilia are essential for hedgehog ligand-induced signaling cascade regulating growth and patterning. Here, we show that the primary cilium in fibroblasts plays a critical role in growth control via platelet-derived growth factor receptor alpha (PDGFRalpha), which localizes to the primary cilium during growth arrest in NIH3T3 cells and primary cultures of mouse embryonic fibroblasts. Ligand-dependent activation of PDGFRalphaalpha is followed by activation of Akt and the Mek1/2-Erk1/2 pathways, with Mek1/2 being phosphorylated within the cilium and at the basal body. Fibroblasts derived from Tg737(orpk) mutants fail to form normal cilia and to upregulate the level of PDGFRalpha; PDGF-AA fails to activate PDGFRalphaalpha and the Mek1/2-Erk1/2 pathway. Signaling through PDGFRbeta, which localizes to the plasma membrane, is maintained at comparable levels in wild-type and mutant cells. We propose that ciliary PDGFRalphaalpha signaling is linked to tissue homeostasis and to mitogenic signaling pathways.  相似文献   

6.
The non-motile primary cilium is a single, microtubule-based hair-like projection that emanates from most, if not all, non-dividing mammalian cells. Enriched in a variety of signalling receptors and accessories, the cilium mediates crucial sensory and regulatory functions during development and postnatal tissue homoeostasis. Maintenance of ciliary morphology and function requires continuous IFT (intraflagellar transport), and recent findings have shed light on some molecular details of how ciliogenesis is dependent on targeted exocytic membrane trafficking from the Golgi. The ARL [Arf (ADP ribosylation factor)-related] small GTPase Arf4 functions in TGN (trans-Golgi network) sorting of cilia-targeted rhodopsin into carrier vesicles, while Arl6 (Arf-like 6) and Arl13b regulate aspects of ciliary transport and IFT. Ciliogenesis and ciliary functions are also regulated by small Rabs. Rab8a, in conjunction with Rab11a, and via its interaction with a multitude of proteins associated with the ciliary basal body and axoneme/membrane, appears to be critical for ciliogenesis. Rab8's close homologue Rab10 may also play a ciliogenic role in some cells. Rab23, the depletion or inactivation of which affects cilia formation, may regulate specific ciliary protein targeting and turnover, particularly those involved in Shh (Sonic hedgehog) signalling. Recent findings have also implicated Ran, a small GTPase better known for nuclear import, in ciliary targeting of the KIF17 motor protein. We highlight and discuss recent findings on how Rabs and other small GTPases mediate ciliogenesis and ciliary traffic.  相似文献   

7.
Background information. The assembly and maintenance of cilia depend on IFT (intraflagellar transport) mediated by molecular motors and their interplay with IFT proteins. Here, we have analysed the involvement of IFT proteins in the ciliogenesis of mammalian photoreceptor cilia. Results. Electron microscopy revealed that ciliogenesis in mouse photoreceptor cells follows an intracellular ciliogenesis pathway, divided into six distinct stages. The first stages are characterized by electron‐dense centriolar satellites and a ciliary vesicle, whereas the formations of the ciliary shaft and the light‐sensitive outer segment discs are features of the later stages. IFT proteins were associated with ciliary apparatus during all stages of photoreceptor cell development. Conclusions. Our data conclusively provide evidence for the participation of IFT proteins in photoreceptor cell ciliogenesis, including the formation of the ciliary vesicle and the elongation of the primary cilium. In advanced stages of ciliogenesis the ciliary localization of IFT proteins indicates a role in IFT as is seen in mature cilia. A prominent accumulation of IFT proteins in the periciliary cytoplasm at the base of the cilia in these stages most probably resembles a reserve pool of IFT molecules for further delivery into the growing ciliary shaft and their subsequent function in IFT. Nevertheless, the cytoplasmic localization of IFT proteins in the absence of a ciliary shaft in early stages of ciliogenesis may indicate roles of IFT proteins beyond their well‐established function for IFT in mature cilia and flagella.  相似文献   

8.
Mechanisms of signal transduction regulation remain a fundamental question in a variety of biological processes and diseases. Previous evidence indicates that the primary cilium can act as a signalling hub, but its exact role in many of the described pathways has remained elusive. Here, we investigate the mechanism of cilia-mediated regulation of the canonical Wnt pathway. We found that primary cilia dampen canonical Wnt signalling through a spatial mechanism involving compartmentalization of signalling components. The cilium, through regulated intraflagellar transport, diverts Jouberin (Jbn), a ciliopathy protein and context-specific Wnt pathway regulator, away from the nucleus and limits β-catenin nuclear entry. This repressive regulation does not silence the pathway, but instead maintains a discrete range of Wnt responsiveness; cells without cilia have potentiated Wnt responses, whereas cells with multiple cilia have inhibited responses. Furthermore, we show that this regulation occurs during embryonic development and is disrupted in cancer cell proliferation. Together these data explain a spatial mechanism of Wnt signalling regulation that may provide insight into ciliary regulation of other signalling pathways.  相似文献   

9.
Polycystic kidney disease (PKD) and other renal ciliopathies are characterized by cysts, inflammation, and fibrosis. Cilia function as signaling centers, but a molecular link to inflammation in the kidney has not been established. Here, we show that cilia in renal epithelia activate chemokine signaling to recruit inflammatory cells. We identify a complex of the ciliary kinase LKB1 and several ciliopathy‐related proteins including NPHP1 and PKD1. At homeostasis, this ciliary module suppresses expression of the chemokine CCL2 in tubular epithelial cells. Deletion of LKB1 or PKD1 in mouse renal tubules elevates CCL2 expression in a cell‐autonomous manner and results in peritubular accumulation of CCR2+ mononuclear phagocytes, promoting a ciliopathy phenotype. Our findings establish an epithelial organelle, the cilium, as a gatekeeper of tissue immune cell numbers. This represents an unexpected disease mechanism for renal ciliopathies and establishes a new model for how epithelial cells regulate immune cells to affect tissue homeostasis.  相似文献   

10.
Cilia and flagella are closely related centriole-nucleated protrusions of the cell with roles in motility and signal transduction. Two of the best-studied signalling pathways organized by cilia are the transduction cascade for the morphogen Hedgehog in vertebrates and the mating pathway that initiates gamete fusion in the unicellular green alga Chlamydomonas reinhardtii. What is the role of cilia in these signalling transduction cascades? In both Hedgehog and mating pathways, all signalling intermediates have been found to localize to cilia, and, for some signalling factors, ciliary localization is regulated by pathway activation. Given a concentration factor of three orders of magnitude provided by translocating a protein into the cilium, the compartment model proposes that cilia act as miniaturized reaction tubes bringing signalling factors and processing enzymes in close proximity. On the other hand, the scaffolding model views the intraflagellar transport machinery, whose primary function is to build cilia and flagella, as a molecular scaffold for the mating transduction cascade at the flagellar membrane. While these models may coexist, it is hoped that a precise understanding of the mechanisms that govern signalling inside cilia will provide a satisfying answer to the question ‘how do cilia organize signalling?’. This review covers the evidence supporting each model of signalling and outlines future directions that may address which model applies in given biological settings.  相似文献   

11.
Loss of primary cilia is frequently observed in tumor cells, including pancreatic ductal adenocarcinoma (PDAC) cells, suggesting that the absence of this organelle may promote tumorigenesis through aberrant signal transduction and the inability to exit the cell cycle. However, the molecular mechanisms that explain how PDAC cells lose primary cilia are still ambiguous. In this study, we found that inhibition or silencing of histone deacetylase 2 (HDAC2) restores primary cilia formation in PDAC cells. Inactivation of HDAC2 results in decreased Aurora A expression, which promotes disassembly of primary cilia. We further showed that HDAC2 controls ciliogenesis independently of Kras, which facilitates Aurora A expression. These studies suggest that HDAC2 is a novel regulator of primary cilium formation in PDAC cells.  相似文献   

12.
13.
纤毛-多囊蛋白复合物的功能或者结构异常,是导致常染色体显性多囊肾病的主要原因.该复合物除了被认为在正常的肾上皮细胞上起着机械和化学感受器的作用,可能在骨细胞中也有类似的作用.本文总结了多囊蛋白和纤毛的结构、分布特点以及在肾发育过程中所发挥的作用;着重综述了纤毛 多囊蛋白复合物在肾上皮细胞上作为机械和化学感受器,通过影响细胞内一系列的信号途径,调控细胞的基因转录和蛋白合成的最新研究进展,包括与细胞内钙离子变化有关的钙调神经磷酸酶-NFAT途径和PI3K-Atk途径,调控细胞周期的JAK-STAT途径,及维持正常肾结构的Wnt/β连环蛋白信号途径等;还将通过比较在肾上皮细胞上纤毛 多囊蛋白复合物所激活的信号传导途径和在骨细胞中传导机械刺激的信号转导途径的类同,提示在骨细胞中,纤毛 多囊蛋白复合物可能起着在肾上皮细胞上类似的机械感受器作用,为系统性阐明多囊肾病的发病机制,以及揭示失重或负重状态下骨细胞机械感受的分子机制提供了一个新思路.  相似文献   

14.
Cilia and flagella are highly conserved eukaryotic microtubule-based organelles that protrude from the surface of most mammalian cells. These structures require large protein complexes and motors for distal addition of tubulin and extension of the ciliary membrane. In order for ciliogenesis to occur, coordination of many processes must take place. An intricate concert of cell cycle regulation, vesicular trafficking, and ciliary extension must all play out with accurate timing to produce a cilium. Here, we review the stages of ciliogenesis as well as regulation of the length of the assembled cilium. Regulation of ciliogenesis during cell cycle progression centers on centrioles, from which cilia extend upon maturation into basal bodies. Centriole maturation involves a shift from roles in cell division to cilium nucleation via migration to the cell surface and docking at the plasma membrane. Docking is dependent on a variety of proteinaceous structures, termed distal appendages, acquired by the mother centriole. Ciliary elongation by the process of intraflagellar transport (IFT) ensues. Direct modification of ciliary structures, as well as modulation of signal transduction pathways, play a role in maintenance of the cilium. All of these stages are tightly regulated to produce a cilium of the right size at the right time. Finally, we discuss the implications of abnormal ciliogenesis and ciliary length control in human disease as well as some open questions.  相似文献   

15.
Primary cilia and their anchoring basal bodies are important regulators of a growing list of signaling pathways. Consequently, dysfunction in proteins associated with these structures results in perturbation of the development and function of a spectrum of tissue and cell types. Here, we review the role of cilia in mediating the development and function of the pancreas. We focus on ciliary regulation of major pathways involved in pancreatic development, including Shh, Wnt, TGF‐β, Notch, and fibroblast growth factor. We also discuss pancreatic phenotypes associated with ciliary dysfunction, including pancreatic cysts and defects in glucose homeostasis, and explore the potential role of cilia in such defects. Birth Defects Research (Part C) 102:139–158, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
Human embryonic stem cells (hESCs) are potential therapeutic tools and models of human development. With a growing interest in primary cilia in signal transduction pathways that are crucial for embryological development and tissue differentiation and interest in mechanisms regulating human hESC differentiation, demonstrating the existence of primary cilia and the localization of signaling components in undifferentiated hESCs establishes a mechanistic basis for the regulation of hESC differentiation. Using electron microscopy (EM), immunofluorescence, and confocal microscopies, we show that primary cilia are present in three undifferentiated hESC lines. EM reveals the characteristic 9 + 0 axoneme. The number and length of cilia increase after serum starvation. Important components of the hedgehog (Hh) pathway, including smoothened, patched 1 (Ptc1), and Gli1 and 2, are present in the cilia. Stimulation of the pathway results in the concerted movement of Ptc1 out of, and smoothened into, the primary cilium as well as up-regulation of GLI1 and PTC1. These findings show that hESCs contain primary cilia associated with working Hh machinery.  相似文献   

17.
Primary cilia play an essential role in modulating signaling cascades that shape cellular responses to environmental cues to maintain proper tissue development. Mutations in primary cilium proteins have been linked to several rare developmental disorders, collectively known as ciliopathies. Together with other disorders associated with dysfunctional cilia/centrosomes, affected individuals have increased risk of developing metabolic syndrome, neurologic disorders, and diabetes. In pancreatic tissues, cilia are found exclusively in islet and ductal cells where they play an essential role in pancreatic tissue organization. Their absence or disorganization leads to pancreatic duct abnormalities, acinar cell loss, polarity defects, and dysregulated insulin secretion. Cilia in pancreatic tissues are hubs for cellular signaling. Many signaling components, such as Hh, Notch, and Wnt, localize to pancreatic primary cilia and are necessary for proper development of pancreatic epithelium and β‐cell morphogenesis. Receptors for neuroendocrine hormones, such as Somatostatin Receptor 3, also localize to the cilium and may play a more direct role in controlling insulin secretion due to somatostatin's inhibitory function. Finally, unique calcium signaling, which is at the heart of β‐cell function, also occurs in primary cilia. Whereas voltage‐gated calcium channels trigger insulin secretion and serve a variety of homeostatic functions in β‐cells, transient receptor potential channels regulate calcium levels within the cilium that may serve as a feedback mechanism, regulating insulin secretion. This review article summarizes our current understanding of the role of primary cilia in normal pancreas function and in the diseased state. Birth Defects Research (Part C) 102:126–138, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
The primary cilium is a ubiquitous, non-motile microtubular organelle lacking the central pair of microtubules found in motile cilia. Primary cilia are surrounded by a membrane, which has a unique complement of membrane proteins, and may thus be functionally different from the plasma membrane. The function of the primary cilium remains largely unknown. However, primary cilia have important sensory transducer properties, including the response of renal epithelial cells to fluid flow or mechanical stimulation. Recently, renal cystic diseases have been associated with dysfunctional ciliary proteins. Although the sensory properties of renal epithelial primary cilia may be associated with functional channel activity in the organelle, information in this regard is still lacking. This may be related to the inherent difficulties in assessing electrical activity in this rather small and narrow organelle. In the present study, we provide the first direct electrophysiological evidence for the presence of single channel currents from isolated primary cilia of LLC-PK1 renal epithelial cells. Several channel phenotypes were observed, and addition of vasopressin increased cation channel activity, which suggests the regulation, by the cAMP pathway of ciliary conductance. Ion channel reconstitution of ciliary versus plasma membranes indicated a much higher channel density in cilia. At least three channel proteins, polycystin-2, TRPC1, and interestingly, the alpha-epithelial sodium channel, were immunodetected in this organelle. Ion channel activity in the primary cilium of renal cells may be an important component of its role as a sensory transducer.  相似文献   

19.
Primary cilia are sensory, antennae‐like organelles present on the surface of many cell types. They have been involved in a variety of diseases collectively termed ciliopathies. As cilia are essential regulators of cell signaling, the composition of the ciliary membrane needs to be strictly regulated. To understand regulatory processes at the ciliary membrane, we report the targeting of a genetically engineered enzyme specifically to the ciliary membrane to allow biotinylation and identification of the membrane‐associated proteome. Bioinformatic analysis of the comprehensive dataset reveals high‐stoichiometric presence of actin‐binding proteins inside the cilium. Immunofluorescence stainings and complementary interaction proteomic analyses confirm these findings. Depolymerization of branched F‐actin causes further enrichment of the actin‐binding and actin‐related proteins in cilia, including Myosin 5a (Myo5a). Interestingly, Myo5a knockout decreases ciliation while enhanced levels of Myo5a are observed in cilia upon induction of ciliary disassembly. In summary, we present a novel approach to investigate dynamics of the ciliary membrane proteome in mammalian cells and identify actin‐binding proteins as mechanosensitive components of cilia that might have important functions in cilia membrane dynamics.  相似文献   

20.
The membrane of the primary cilium is continuous with the plasma membrane but compositionally distinct. Although some membrane proteins concentrate in the cilium, others such as podocalyxin/gp135 are excluded. We found that exclusion reflects a saturable selective retention mechanism. Podocalyxin is immobilized by its PDZ interaction motif binding to NHERF1 and thereby to the apical actin network via ERM family members. The retention signal was dominant, autonomous, and transferable to membrane proteins not normally excluded from the cilium. The NHERF1-binding domains of cystic fibrosis transmembrane conductance regulator and Csk-binding protein were also found to act as transferable retention signals. Addition of a retention signal could inhibit the ciliary localization of proteins (e.g., Smoothened) containing signals that normally facilitate concentration in the ciliary membrane. Proteins without a retention signal (e.g., green fluorescent protein-glycosylphosphatidylinositol) were found in the cilium, suggesting entry was not impeded by a diffusion barrier or lipid microdomain. Thus, a hierarchy of interactions controls the composition of the ciliary membrane, including selective retention, selective inclusion, and passive diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号