共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetic and thermodynamic characterization of the R17 coat protein-ribonucleic acid interaction 总被引:17,自引:0,他引:17
A filter retention assay is used to examine the kinetic and equilibrium properties of the interaction between phage R17 coat protein and its 21-nucleotide RNA binding site. The kinetics of the reaction are consistent with the equilibrium association constant and indicate a diffusion-controlled reaction. The temperature dependence of Ka gives delta H = -19 kcal/mol. This large favorable delta H is partially offset by a delta S = -30 cal mol-1 deg-1 to give a delta G = -11 kcal/mol at 2 degrees C in 0.19 M salt. The binding reaction has a pH optimum centered around pH 8.5, but pH has no effect on delta H. While the interaction is insensitive to the type of monovalent cation, the affinity decreases with the lyotropic series among monovalent anions. The ionic strength dependence of Ka reveals that ionic contacts contribute to the interaction. Most of the binding free energy, however, is a result of nonelectrostatic interactions. 相似文献
2.
Characterization of the coronavirus M protein and nucleocapsid interaction in infected cells 总被引:10,自引:0,他引:10
下载免费PDF全文

Coronavirus contains three envelope proteins, M, E and S, and a nucleocapsid, which consists of genomic RNA and N protein, within the viral envelope. We studied the macromolecular interactions involved in coronavirus assembly in cells infected with a murine coronavirus, mouse hepatitis virus (MHV). Coimmunoprecipitation analyses demonstrated an interaction between N protein and M protein in infected cells. Pulse-labeling experiments showed that newly synthesized, unglycosylated M protein interacted with N protein in a pre-Golgi compartment, which is part of the MHV budding site. Coimmunoprecipitation analyses further revealed that M protein interacted with only genomic-length MHV mRNA, mRNA 1, while N protein interacted with all MHV mRNAs. These data indicated that M protein interacted with the nucleocapsid, consisting of N protein and mRNA 1, in infected cells. The M protein-nucleocapsid interaction occurred in the absence of S and E proteins. Intracellular M protein-N protein interaction was maintained after removal of viral RNAs by RNase treatment. However, the M protein-N protein interaction did not occur in cells coexpressing M protein and N protein alone. These data indicated that while the M protein-N protein interaction, which is independent of viral RNA, occurred in the M protein-nucleocapsid complex, some MHV function(s) was necessary for the initiation of M protein-nucleocapsid interaction. The M protein-nucleocapsid interaction, which occurred near or at the MHV budding site, most probably represented the process of specific packaging of the MHV genome into MHV particles. 相似文献
3.
4.
Even though neutralizing antibodies against the Hantaan virus (HTNV) has been proven to be critical against viral infections, the cellular immune responses to HTNV are also assumed to be important for viral clearance. In this report, we have examined the cellular and humoral immune responses against the HTNV nucleocapsid protein (NP) elicited by virus infection or DNA vaccination. To examine the cellular immune response against HTNV NP, we used H-2K(b) restricted T-cell epitopes of NP. The NP-specific CD8(+) T cell response was analyzed using a (51)Cr-release assay, intracellular cytokine staining assay, enzyme-linked immunospot assay and tetramer binding assay in C57BL/6 mice infected with HTNV. Using these methods, we found that HTNV infection elicited a strong NP-specific CD8(+) T cell response at eight days after infection. We also found that several different methods to check the NP-specific CD8(+) T cell response showed a very high correlation among analysis. In the case of DNA vaccination by plasmid encoding nucleocapsid gene, the NP-specific antibody response was elicited 2 approximately 4 weeks after immunization and maximized at 6 approximately 8 weeks. NP-specific CD8(+) T cell response reached its peak 3 weeks after immunization. In a challenge test with the recombinant vaccinia virus expressing NP (rVV-HTNV-N), the rVV-HTNV-N titers in DNA vaccinated mice were decreased about 100-fold compared to the negative control mice. 相似文献
5.
6.
Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. 总被引:15,自引:41,他引:15
下载免费PDF全文

The two envelope glycoproteins and the viral nucleocapsid of the coronavirus A59 were isolated by solubilization of the viral membrane with Nonidet P-40 at 4 degrees C followed by sucrose density gradient sedimentation. Isolated E2 consisted of rosettes of peplomers, whereas E1, the membrane glycoprotein, was irregular and amorphous. Under certain conditions significant interactions occurred between components of Nonidet P-40-disrupted virions. Incubation of the Nonidet P-40-disrupted virus at 37 degrees C resulted in formation of a complex between one of the viral glycoproteins, E1, and the viral nucleocapsid. This was caused by a temperature-dependent conformational change in E1, resulting in aggregation of E1 and interaction with the viral RNA in the nucleocapsid. E1 also bound rRNA. The E1-nucleocapsid complexes can be distinguished on sucrose and Renografin density gradients from native viral nucleocapsids. The separation of the membrane glycoprotein E1 from the peplomeric glycoprotein E2 permitted preparation of antisera against these isolated proteins. A model is proposed for the arrangement of the three major structural proteins in the coronavirus A59 virion in relation to the viral envelope and RNA. 相似文献
7.
Characterization of nucleocapsid binding by the measles virus and mumps virus phosphoproteins 总被引:1,自引:0,他引:1
下载免费PDF全文

We report an analysis of the interaction between the P protein and the RNA-associated N protein (N-RNA) for both measles and mumps viruses with proteins produced in a bacterial expression system. During this study, we verified that the C-terminal tail of the N protein is not required for nucleocapsid formation. For both measles and mumps virus N, truncated proteins encompassing amino acids 1 to 375 assemble into nucleocapsid-like particles within the bacterial cell. For measles virus N, the binding site for the P protein maps to residues 477 to 505 within the tail of the molecule, a sequence relatively conserved among the morbilliviruses. For mumps virus N, a binding site for the P protein maps to the assembly domain of N (residues 1 to 398), while no strong binding of the P protein to the tail of N was detected. These results suggest that the site of attachment for the polymerase varies among the paramyxoviruses. Pulldown experiments demonstrate that the last 50 amino acids of both measles virus and mumps virus P (measles virus P, 457 to 507; mumps virus P, 343 to 391) by themselves constitute the nucleocapsid-binding domain (NBD). Spectroscopic studies show that the NBD is predominantly alpha-helical in both viruses. However, only in measles virus P is the NBD stable and folded, having a lesser degree of tertiary organization in mumps virus P. With isothermal titration calorimetry, we demonstrate that the measles virus P NBD binds to residues 477 to 505 of measles virus N with 1:1 stoichiometry. The dissociation constant (K(d)) was determined to be 13 microM at 20 degrees C and 35 microM at 37 degrees C. Our data are consistent with a model in which an alpha-helical nucleocapsid binding domain, located at the C terminus of P, is responsible for tethering the viral polymerase to its template yet also suggest that, in detail, polymerase binding in morbilliviruses and rubulaviruses differs significantly. 相似文献
8.
Specific interaction between coronavirus leader RNA and nucleocapsid protein. 总被引:4,自引:20,他引:4
下载免费PDF全文

S A Stohlman R S Baric G N Nelson L H Soe L M Welter R J Deans 《Journal of virology》1988,62(11):4288-4295
9.
Characterization of the nuclear export signal in the coronavirus infectious bronchitis virus nucleocapsid protein
下载免费PDF全文

The nucleocapsid (N) protein of infectious bronchitis virus (IBV) localizes to the cytoplasm and nucleolus and contains an eight-amino-acid nucleolar retention motif. In this study, a leucine-rich nuclear export signal (NES) (291-LQLDGLHL-298) present in the C-terminal region of the IBV N protein was analyzed by using alanine substitution and deletion mutagenesis to investigate the relative contributions that leucine residues make to nuclear export and where these residues are located on the structure of the IBV N protein. The analysis indicated that Leu296 and Leu298 are required for efficient nuclear export of the protein. Structural information indicated that both of these amino acids are available for interaction with protein complexes involved in this process. However, export of N protein from the nucleus/nucleolus was not inhibited by leptomycin B treatment, indicating that N protein nuclear export is independent of the CRM1-mediated export pathway. 相似文献
10.
A unimolecular oligonucleotide switch, termed here an AlloSwitch, binds the mature HIV-1 nucleocapsid protein, NCp7. This switch can be used as an indicator for the presence of free NCp7 and NC domains in precursor and fusion proteins. It is thermodynamically stable in two conformations, H and O. A FRET pair is covalently attached to the strands to report on the molecular state of the switch. The results show that NC has an affinity for O 170 times higher than its affinity for H and that in the absence of NC the equilibrium ratio K1 = [O]/[H] = 0.10 +/- 0.03 for the switch sequence reported here. The change between the two states happens on a rapid kinetic time scale. A framework is introduced to aid in the design of AlloSwitches aimed at other targets. A high-affinity probe segment must be available to bind the target in the O-form, while a cover segment hides the probe in H. A key is adjusting the cover sequence to favor the H-form by a factor of 10-1000. This affords a robust response to small changes in target concentration, while saturation produces more than 90% of the maximal change in fluorescence. When a competitor displaces the switch from the NC-O complex, the released switch reverts to the H-form. This is the basis for a mix-and-read strategy for high-throughput screening of anti-nucleocapsid drug candidates that is much simpler to execute than traditional assays that require immobilization and washing steps. 相似文献
11.
Colocalization and interaction of the porcine arterivirus nucleocapsid protein with the small nucleolar RNA-associated protein fibrillarin
下载免费PDF全文

Porcine reproductive and respiratory syndrome virus (PRRSV) replicates in the cytoplasm of infected cells, but its nucleocapsid (N) protein localizes specifically to the nucleus and nucleolus. The mechanism of nuclear translocation and whether N associates with particular nucleolar components are unknown. In the present study, we show by confocal microscopy that the PRRSV N protein colocalizes with the small nucleolar RNA (snoRNA)-associated protein fibrillarin. Direct and specific interaction of N with fibrillarin was demonstrated in vivo by the mammalian two-hybrid assay in cells cotransfected with the N and fibrillarin genes and in vitro by the glutathione S-transferase pull-down assay using the expressed fibrillarin protein. Using a series of deletion mutants, the interactive domain of N with fibrillarin was mapped to a region of amino acids 30 to 37. For fibrillarin, the first 80 amino acids, which contain the glycine-arginine-rich region (the GAR domain), was determined to be the domain interactive with N. The N protein was able to bind to the full-length genomic RNA of PRRSV, and the RNA binding domain was identified as the region overlapping with the nuclear localization signal situated at positions 41 to 47. These results suggest that the N protein nuclear transport may be controlled by the binding of RNA to N. The PRRSV N protein was also able to bind to both 28S and 18S ribosomal RNAs. The protein-protein interaction between N and fibrillarin was RNA dependent but independent of N protein phosphorylation. Taken together, our studies demonstrate a specific interaction of the PRRSV nucleocapsid protein with the host cell protein fibrillarin in the nucleolus, and they imply a potential linkage of viral strategies for the modulation of host cell functions, possibly through rRNA precursor processing and ribosome biogenesis. 相似文献
12.
Fang X Ye L Timani KA Li S Zen Y Zhao M Zheng H Wu Z 《Journal of biochemistry and molecular biology》2005,38(4):381-385
Severe acute respiratory syndrome (SARS) is an emerging infectious disease associated with a novel coronavirus (CoV) that was identified and molecularly characterized in 2003. Previous studies on various coronaviruses indicate that protein-protein interactions amongst various coronavirus proteins are critical for viral assembly and morphogenesis. It is necessary to elucidate the molecular mechanism of SARS-CoV replication and rationalize the anti-SARS therapeutic intervention. In this study, we employed an in vitro GST pull-down assay to investigate the interaction between the membrane (M) and the nucleocapsid (N) proteins. Our results show that the interaction between the M and N proteins does take place in vitro. Moreover, we provide an evidence that 12 amino acids domain (194-205) in the M protein is responsible for binding to N protein. Our work will help shed light on the molecular mechanism of the virus assembly and provide valuable information pertaining to rationalization of future anti-viral strategies. 相似文献
13.
Urbaneja MA McGrath CF Kane BP Henderson LE Casas-Finet JR 《The Journal of biological chemistry》2000,275(14):10394-10404
The nucleocapsid protein of simian immunodeficiency virus (SIV) NCp8 has two copies of conserved sequences (termed zinc fingers, ZF) of 14 amino acids with 4 invariant residues (CCHC) that coordinate Zn(II). Each of its two ZFs has a Trp residue. A significant quenching of NCp8 Trp fluorescence was seen in nucleic acid complexes, suggesting stacking of the indole ring with nucleobases and the simultaneous involvement of both ZFs in the binding process. Both ZFs contribute to the nucleic acid binding free energy of NCp8, albeit in a not additive manner. NCp8 exhibited a base preference analogous to that of NCp7: G approximately I > T > U > C > A. Alternating base sequences that bind HIV-1 NCp7 in a sequence-specific manner were also bound selectively by NCp8. Specific sequence recognition required at least five bases and the presence of bound Zn(II). The two ZFs account for the net displacement of 3 out of 4 sodium ions upon binding (2 by the first and one by the second finger), and for most (85%) of the hydrophobic stabilization in complex formation. Based on the sequence and functional similarity of SIV NCp8 and HIV-1 NCp7, and using available structural information for free and oligonucleotide bound NCp7, we propose a structural model for NCp8-oligonucleotide complexes. 相似文献
14.
Stewart-Maynard KM Cruceanu M Wang F Vo MN Gorelick RJ Williams MC Rouzina I Musier-Forsyth K 《Journal of virology》2008,82(20):10129-10142
Human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein (NC) is a nucleic acid chaperone that facilitates the remodeling of nucleic acids during various steps of the viral life cycle. Two main features of NC's chaperone activity are its abilities to aggregate and to destabilize nucleic acids. These functions are associated with NC's highly basic character and with its zinc finger domains, respectively. While the chaperone activity of HIV-1 NC has been extensively studied, less is known about the chaperone activities of other retroviral NCs. In this work, complementary experimental approaches were used to characterize and compare the chaperone activities of NC proteins from four different retroviruses: HIV-1, Moloney murine leukemia virus (MLV), Rous sarcoma virus (RSV), and human T-cell lymphotropic virus type 1 (HTLV-1). The different NCs exhibited significant differences in their overall chaperone activities, as demonstrated by gel shift annealing assays, decreasing in the order HIV-1 ~ RSV > MLV HTLV-1. In addition, whereas HIV-1, RSV, and MLV NCs are effective aggregating agents, HTLV-1 NC, which exhibits poor overall chaperone activity, is unable to aggregate nucleic acids. Measurements of equilibrium binding to single- and double-stranded oligonucleotides suggested that all four NC proteins have moderate duplex destabilization capabilities. Single-molecule DNA-stretching studies revealed striking differences in the kinetics of nucleic acid dissociation between the NC proteins, showing excellent correlation between nucleic acid dissociation kinetics and overall chaperone activity. 相似文献
15.
16.
Amino acid sequence of human respiratory syncytial virus nucleocapsid protein. 总被引:6,自引:2,他引:6
下载免费PDF全文

Amino acid sequence of the human respiratory syncytial (RS) virus nucleocapsid (NC) protein, deduced from the DNA sequence of a recombinant plasmid, is presented. The cDNA plasmid (pRSB11) has 1412 bp of RS viral NC sequence and lacks six nucleotides of the 5' end of mRNA. There is a single long open reading frame encoding 467 amino acids. This 51540 dal protein is rich in basic amino acids and has no homologies with other known viral capsid proteins. 相似文献
17.
Analysis of the nucleic acid annealing activities of nucleocapsid protein from HIV-1. 总被引:13,自引:5,他引:13
下载免费PDF全文

Retroviral nucleocapsid (NC) protein is an integral part of the virion nucleocapsid where it is in tight association with genomic RNA and the tRNA primer. NC protein is necessary for the dimerization and encapsidation of genomic RNA, the annealing of the tRNA primer to the primer binding site (PBS) and the initial strand transfer event. Due to the general nature of NC protein-promoted annealing, its use to improve nucleic acid interactions in various reactions can be envisioned. Parameters affecting NC-promoted nucleic acid annealing of NCp7 from HIV-1 have been analyzed. The promotion of RNA:RNA and RNA:DNA annealing by NCp7 is more sensitive to the concentration of MgCl2 than the promotion of DNA:DNA hybridization. Stimulation of complex formation for all three complexes was efficient at 0-90 mM NaCl, between 23 and 55 degrees C and at pH values between 6.5 and 9.5, inclusive. Parameters affecting NCp7-promoted hybridization of tRNA(Lys,3) to the PBS, which appears to be specific for NC protein, will be discussed. Results implicate the basic regions of NCp7, but not the zinc fingers, in promoting the annealing of complementary nucleic acid sequences. Finally, NCp7 strand transfer activity aids the formation of the most stable nucleic acid complex. 相似文献
18.
Battisti AJ Chu YK Chipman PR Kaufmann B Jonsson CB Rossmann MG 《Journal of virology》2011,85(2):835-841
Hantaan virus is the prototypic member of the Hantavirus genus within the family Bunyaviridae and is a causative agent of the potentially fatal hemorrhagic fever with renal syndrome. The Bunyaviridae are a family of negative-sense RNA viruses with three-part segmented genomes. Virions are enveloped and decorated with spikes derived from a pair of glycoproteins (Gn and Gc). Here, we present cryo-electron tomography and single-particle cryo-electron microscopy studies of Hantaan virus virions. We have determined the structure of the tetrameric Gn-Gc spike complex to a resolution of 2.5 nm and show that spikes are ordered in lattices on the virion surface. Large cytoplasmic extensions associated with each Gn-Gc spike also form a lattice on the inner surface of the viral membrane. Rod-shaped ribonucleoprotein complexes are arranged into nearly parallel pairs and triplets within virions. Our results differ from the T=12 icosahedral organization found for some bunyaviruses. However, a comparison of our results with the previous tomographic studies of the nonpathogenic Tula hantavirus indicates a common structural organization for hantaviruses. 相似文献
19.
The interaction betweenTreponema pallidum and rabbit plasma fibronectin was characterized. Fibronectin was isolated from rabbit plasma and radioiodinated by the lactoperoxidase method. Fibronectin bound to the surface ofT. pallidum, reaching saturation at approximately 54 g/ml. The association affinity constant was 2.85×107
M
–1, much lower than that ofStaphylococcus aureus (5.6×109
M
–1) Fibronectin binding plateaued within 15 min at 20° and 37°C, with some reelution at 37°C by 30 min. Little fibronectin, bound toT. pallidum at 4°C. The greatest amount of fibronectin was bound at the lowest pH tested (pH 6.0); the poorest binding was at pH 7.5. Approximately 90% of the binding was reversible in the presence of excess unlabeled fibronectin. The data indicate a more dynamic and weaker interaction betweenT. pallidum and fibronectin than that seen withS. aureus. 相似文献
20.
Che Fengxiang Lu Jianchun Meng Lingyin Li Jingsong Li Junbao Tong Yongyi Zhang Chaolong Zhang Songle Hu Qingxuan Lui Mingxia 《Aerobiologia》1998,14(4):333-339
We studied some important aspects constituting aerosol transmission of Hantaan virus, including the possibility of viral aerosol
generated by rodents, airborne stability, rodent’s susceptibility to aerosol challenge, and field air sampling for the virus.
Our results showed that Hantaan virus aerosol could be generated through the activities of infected mice, and cause specific
infection among the exposed animals. Several kinds of rodents such asApodemus agrarius, weaning mice and suckling mice were found to be rather sensitive to the aerosol challenge of Hantaan virus. The 50% of inhaled
lethal dose (LD50) of suckling mice is 0.73 (1.4–0.37) plaque-forming unit (pfu). Hantaan virus aerosol was relatively stable in the air at
18–20°C and 70–90% relative humidity. The biological decay rate of the viral aerosol was 4.1% per min during 90 min. We also
successfully sampled and isolated Hantaan virus from the working field atmosphere. The data obtained in the study provided
more solid evidence for Hantaan virus aerosol transmission among rodents and from rodents to human-beings. 相似文献