首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Encapsidation of simian virus 40 is a complex biological process involving DNA-protein and protein-protein interactions in the formation of a unique three-dimensional structure around the viral minichromosome. A pseudoviral system developed in our laboratory, in which the viral early and late gene products are supplied in trans (by helpers), was used to analyze the encapsidation process independent of viral gene expression. With this experimental system we have discovered a requirement for a specific DNA signal for encapsidation, ses (for simian virus 40 encapsidation signal).ses is present within a 200-bp DNA fragment, which includes, in addition to the viral origin of replication (ori), six GGGCGG repeats (GC boxes) and 26 bp of the enhancer element. Deletion of the GC boxes and the enhancer sequences almost abolished encapsidation, while DNA replication was only moderately decreased. The ability to encapsidate was not regained by reinserting a DNA fragment carrying ses in the sesdeleted plasmid 2 kbp away from the ori, suggesting that for encapsidation the two DNA elements have to be close to each other. These findings afford novel strategies for the investigation of viral encapsidation.  相似文献   

2.
Summary A hybrid Cauliflower Mosaic Virus (CaMV) genome containing a selectable marker gene was constructed by replacing the gene VI coding region with the aminoglycoside (neomycin) phosphotransferase type II [APH(3)II] gene from Tn5. This modified viral genome was tested for its infectivity both in planta and in a protoplast transformation system of Brassica campestris var. rapa. Stable, genetically transformed cell lines of B. campestris var. rapa were obtained after transformation. DNA of the hybrid CaMV genome was found to be integrated into high molecular weight plant genomic DNA. Transformation was achieved only when the hybrid genome was supplied together with wild type viral DNA. A possible complementation of the modified CaMV genome with the wild type viral DNA as a helper molecule in planta and in the protoplast system is discussed.  相似文献   

3.
A DNA polymerase activity is found within the Cauliflower Mosaic Virus (CaMV) particle. Analysis of the reaction product reveals that the linear form of the virion DNA is preferentially labelled. The molecular weight of the DNA polymerase as determined on an "activity gel" is 76 kDa.  相似文献   

4.
Both Wheat Spindle Streak Mosaic Virus (WSSMV) and Soil-borne Wheat Mosaic Virus (SBWMV) were found on durum wheat plants (Triticum durum Desf.) grown in a field near Rome (Italy). The simultaneous occurrence of these pathogens was demonstrated by host-symptomatology, pattern of disease occurrence in the field, mechanical transmission tests, as well as by the morphology of viral particles and of ultrastructural modifications. Negatively stained preparates of diseased leaves collected in early, spring showed WSSMV particles and cytoplasmic cylindrical inclusions. SBWMV particles were found only in samples collected later in the season. Ultrathin sections of infected leaves collected in early spring showed characteristic WSSMV modifications such as pinwheels and membranous bodies, whereas samples collected later in the season contained also SBWMV-like crystalline aggregates. WSSMV infection appeared to develop and decline earlier than SBWMV in the leaves of durum wheat plants infected by both, viruses. WSSMV had not been reported in Italy before.  相似文献   

5.
Analysis of DNA-protein complexes induced by chemical carcinogens.   总被引:1,自引:0,他引:1  
DNA-protein complexes induced in intact cells by chromate have been isolated and compared with those formed by other agents such as cis-platinum. Actin has been identified as one of the major proteins that is complexed to the DNA by chromate based upon a number of criteria including, a molecular weight and isoelectric point identical to actin, positive reaction with actin polyclonal antibody, and proteolytic mapping. Chromate and cis-platinum both complex proteins of very similar molecular weight and isoelectric points and these complexes can be disrupted by exposure to chelating or reducing agents. These results suggest that the metal itself is participating in rather than catalyzing the formation of a DNA-protein complex. An antiserum which was raised to chromate-induced DNA-protein complexes reacted primarily with a 97,000 protein that could not be detected by silver staining. Western blots and slot blots were utilized to detect p97 DNA-protein complexes formed by cis-platinum, UV, formaldehyde, and chromate. Other work in this area, involving studying whether DNA-protein complexes are formed in actively transcribed DNA compared with genetically inactive DNA, is discussed. Methods to detect DNA-protein complexes, the stability and repair of these lesions, and characterization of DNA-protein complexes are reviewed. Nuclear matrix proteins have been identified as a major substrate for the formation of DNA-protein complexes and these findings are also reviewed.  相似文献   

6.
Viruses are compact biological nanoparticles whose elastic and dynamical properties are hardly known. Inelastic (Brillouin) light scattering was used to characterize these properties, from microcrystals of the Satellite Tobacco Mosaic Virus, a nearly spherical plant virus of 17-nm diameter. Longitudinal sound velocities in wet and dry Satellite Tobacco Mosaic Virus crystals were determined and compared to that of the well-known protein crystal, lysozyme. Localized vibrational modes of the viral particles (i.e., particle modes) were sought in the relevant frequency ranges, as derived assuming the viruses as full free nanospheres. Despite very favorable conditions, regarding virus concentration and expected low damping in dry microcrystals, no firm evidence of virus particle modes could be detected.  相似文献   

7.
A rapidly sedimenting DNA-protein complex was isolated from nuclear lysates in 2 M NaCl and characterized with regard to its polypeptide composition and the DNA-binding properties of the purified proteins. The complex consists of the nuclear matrix with attached DNA. Electrophoresis in SDS-polyacrylamide gels revealed two major and five minor polypeptide bands, mainly in the 60 to 75 kDa molecular weight region. The DNA-matrix complex dissociated into free DNA and proteins in the presence of 2 M NaCl and 5 M urea. The proteins could be purified by chromatography on hydroxyapatite and showed a strong tendency to reassociate at 0.15 M NaCl concentration in the absence of urea. DNA was bound to the reassociated proteins at 0.15 M NaCl concentration. Part of the DNA-protein complex was stable at 1 M NaCl concentration. The binding appeared to be random with regard to the DNA sequence.  相似文献   

8.
Transgenic Nicotiana benthamiana and N. clevelandii plants expressing the coat protein of Plum Pox Virus under the control of the 35S promoter from Cauliflower Mosaic Virus were engineered by Agrobacterium tumefaciens mediated transformation. The phenomenon of virus resistance was observed at different levels when transgenic plants, expressing the coat protein and control plants were compared after challenge infection with Plum Pox Virus. N. clevelandii coat protein transgenic plants circumvent virus accumulation. After an initial increase in virus titer similar to the control plants, some coat protein expressing plants showed a reduced accumulation of virus and inhibition of the systemic spread, characterized by decrease of the virus titer and formation of new symptomless leaves. In other N. clevelandii coat protein expressing plants virus accumulation was inhibited and disease symptoms never appeared. N. benthamiana coat protein expressing plants were also protected. After a temporary virus accumulation, virus titer decreased without the appearance of symptoms with the exception of a few plants, which showed a delay of thirty days in the development of symptoms post challenge infection.Abbreviations PPV Plum Pox Virus - CP coat protein - CaMV Cauliflower Mosaic Virus - CP+ coat protein expressing plant - CP– control plant = non coat protein expressing plant - TMV Tobacco Mosaic Virus - NPTII neomycin phosphotransferaseII - IBA indole-3-butyric acid - BAP 6-benzylaminopurine; - MS Murashige Skoog - ELISA enzyme linked immunosorbent assay  相似文献   

9.
Summary The sugarcane mosaic virus is a pathogen that causes severe disease to sugarcane. New varieties resistant to insects and pathogens have been developed in the last 70 yr through sugarcane breeding programs, but this takes between 10 and 15 yr. Tissue culture techniques are used as an aid for sugarcane improvement to increase desirable agronomic characteristics, such as disease resistance. In the present work, we report the generation of somaclonal variants from sugarcane (Saccharum spp.) cultivar PR62258 susceptible to Sugarcane Mosaic Virus, by somatic embryogenesis. These new variants identified as AT626 and BT627 are resistant to Sugarcanes Mosaic Virus strains A and B, respectively. We established an indirect enzyme linked inmunosorbent assay (ELISA) to test the presence of the viral particles in plants, and its was demonstrated that the leaves of resistant somaclones do not contain viral particles. The field performance of the somaclones AT626 and BT627 was similar to the field performance of the mother plant PR62258.  相似文献   

10.
Arabidopsis thaliana has emerged as a model species for the analysis of genes controlling plant development. However, its small size has impaired biochemical analyses, and the absence of a transient expression system has hampered promoter analysis. Here, we report a method for rapidly establishing A. thaliana suspension cultures that yield protoplasts that can be readily transfected. We have optimized transient expression conditions using a modified polyethylene glycol / calcium nitrate transformation protocol and a Cauliflower Mosaic Virus 35S promoter-luciferase reporter gene construct. Our methods permit isolation of large quantities of rapidly growing cells and analysis of Arabidopsis promoters in vivo in a homologous system.Abbreviations CaMV Cauliflower Mosaic Virus - 2,4D 2,4-dichlorophenoxyacetic acid - MES 2-(N-morpholino)ethanesulfonic acid - PEG polyethylene glycol  相似文献   

11.
Upon gentle lysis of exponentially growing mouse carcinoma cells FM3A by sodium dodecyl sulfate, DNA was released as a "DNA-protein complex" in a folded conformation. No histones could be detected in the DNA-protein complex. The proteins bound to DNA were found to be composed of several kinds of nonhistone proteins with a molecular weight range of 50,000 to 60,000; they appear to play a key role in stabilizing and maintaining the compact and folded structure of the complex. Removal of the proteins by Pronase or 2-mercaptoethanol produced a more relaxed structure sedimenting about half as fast as the original complex in a neutral sucrose gradient. DNA in the folded complex is supercoiled, as indicated by the characteristic biphasic response of its sedimentation rate to increasing concentration of various intercalating agents, actinomycin D, ethidium bromide and acriflavine, with which the cells were treated before lysis. Pronase- or 2-mercaptoethanol-treated relaxed DNA still possessed the characteristic of closed-circular structure as judged from its response to intercalating agents. Nicking with gamma-ray or 4NQO broke these superhelical turns and relaxed the folded complex to slower sedimenting forms equivalent to the relaxed DNA obtained on treatment with Pronase or 2-mercaptoethanol. Viscometric observations of DNA-protein complex were consistent with the above results. A tentative model for the structure of this DNA-protein complex is proposed in which supercoiled DNA is folded into loops by several kinds of nonhistone proteins. Autoradiographic examination of the complex appeared to support this model.  相似文献   

12.
 The genetic structure of the rym5 locus was studied in a population comprising 391 doubled-haploid lines that were evaluated for resistance to two strains of Barley Yellow Mosaic Virus (BaYMV-1, 2) and to Barley Mild Mosaic Virus (BaMMV). The absence of recombinants that are able to differentiate between the reaction to these different bymoviruses provides evidence that rym5 is a complex locus, which is either composed of several closely linked genes or of an allelic series of a single gene. For marker-assisted introgression of this locus into adapted barley germplasm, a CAPS (cleaved amplified polymorphic sequence) and a microsatellite marker were developed that flank the gene at distances of 0.8 and 1.3% recombination, respectively. Received: 19 June 1998 / Accepted: 24 July 1998  相似文献   

13.
The transforming activity of sonicated Haemophilus influenzae DNA   总被引:1,自引:0,他引:1  
Summary The inactivation of transforming Haemophilus influenzae DNA by sonication in aqueous solution was investigated. The molecular weight decrease of the molecules is the major factor in DNA inactivation. It impairs strongly the uptake of the DNA by the recipient bacteria, especially when the molecular weight is lower than 3x106 daltons. The uptake of sonicated DNA by the bacterial cells seems not to be further reduced when molecules of about 0.5x106 daltons are submitted to further depolymerisation. However the transforming activity of these molecules is still sensitive to further sonication. The transforming activity of the sonicated DNA is related in the last resort to the intact length of the DNA molecules, at the level of their single-strand structure, available for recombination. Rupture by ultrasound was found to be twice as efficient in reducing transforming activity as a nick induced by pancreatic DNAse.  相似文献   

14.
Summary Multiplication of TMV-strains vulgare (light-green/dark-green mosaic symptoms) and flavum (severe yellow/green mosaic) had different effects on the ribosomal RNA of tobacco leaf chloroplasts. Vulgare inhibited chloroplast ribosomal RNA synthesis while having no effect on cytoplasmic ribosomal RNA synthesis (Fig. 2). Flavum inhibited chloroplast ribosomal RNA synthesis more severely than vulgare, and caused an earlier degradation of chloroplast ribosomal RNA than in control or vulgare-infected leaves (Fig. 1). Flavum also inhibited cytoplasmic ribosomal RNA synthesis. A connection between these differing effects on chloroplast ribosomal RNA metabolism and severity of visible symptoms is suggested, and discussed in relation to a possible influence on symptoms of denatured virus coat protein.Abbreviations TMV Tobacco Mosaic Virus - RNA Ribonucleic acid - DNA Deoxyribonucleic acid - m millions (in molecular weight values)  相似文献   

15.
Adenovirus 5 DNA-protein complex is isolated from virions as a duplex DNA molecule covalently attached by the 5' termini of each strand to virion protein of unknown function. The DNA-protein complex can be digested with E. coli exonuclease III to generate molecules analogous to DNA replication intermediates in that they contain long single stranded regions ending in 5' termini bound to terminal protein. The infectivity of pronase digested Adenovirus 5 DNA is greatly diminished by exonuclease III digestion. However, the infectivity of the DNA-protein complex is not significantly altered when up to at least 2400 nucleotides are removed from the 3' ends of each strand. This indicates that the terminal protein protects 5' terminated single stranded regions from digestion by a cellular exonuclease. DNA-protein complex prepared from a host range mutant with a mutation mapping in the left 4% of the genome was digested with exonuclease III, hybridized to a wild type restriction fragment comprising the left 8% of the genome, and transfected into HeLa cells. Virus with wild type phenotype was recovered at high frequency.  相似文献   

16.
Summary Bacteriophage lambda particles, yeast cells, and bacterial cells were tested as projectiles to deliver marker/reporter genes into plant cells via the biolistic process. When phage particles were complexed to tungsten or gold particles and used to bombard tobacco cells, fewer than 15 cell clusters per plate transiently expressed β-glucuronidase (GUS). Cells of wildtype Saccharomyces cerevisiae were too large to be effective projectiles, but use of a reduced-size mutant resulted in a small number of transformants. Escherichia coli cells complexed with tungsten were the most effective projectile for plant transformation. Various methods to prepare E. coli were tested to reduce particle size, improve binding of bacteria to metal particles, and/or minimize particle clumping. In maize, the number of transformants was highest when bacteria/tungsten particles were air-dried onto macrocarriers from an aqueous solution. When maize cells were bombarded with bacteria/tungsten projectiles, rates of transient gene expression (2000 per plate) and stable transformation (50 per plate) were only two- to threefold lower than when purified DNA was used. Transformation of tobacco with E. coli projectiles was improved when the bacteria were treated with a series of ethanol and ether washes, then dried into a powder. Nevertheless, tobacco transformation was still 24- (transient) and 200-fold (stable) less than when purified DNA was used. Biological projectiles can be effective for plant transformation and are advantageous because once a DNA construct is made and put into the appropriate microorganism, the need to isolate and purify DNA for the biolistic process is eliminated, which saves time and lessens DNA shear. Such projectiles may be especially well suited where high molecular weight DNA constructs are needed.  相似文献   

17.
Human immunodeficiency virus type 1 (HIV-1) integrase is essential for viral replication. Integrase inserts the viral DNA into the host DNA. We studied the association of integrase to fluorescently labeled oligonucleotides using fluorescence correlation spectroscopy. The binding of integrase to the fluorescent oligonucleotides resulted in the appearance of bright spikes during fluorescence correlation spectroscopy measurements. These spikes arise from the formation of high molecular mass protein-DNA complexes. The fluorescence of the free DNA was separated from the spikes with a statistical method. From the decrease of the concentration of free oligonucleotides, a site association constant was determined. The DNA-protein complexes were formed rapidly in a salt-dependent manner with site association constants ranging between 5 and 40 microm(-1) under different conditions. We also analyzed the kinetics of the DNA-protein complex assembly and the effect of different buffer components. The formation of the fluorescent protein-DNA complex was inhibited by guanosine quartets, and the inhibition constant was determined at 1.8 +/- 0.6 x 10(8) m(-1). Displacement of bound DNA with G-quartets allowed the determination of the dissociation rate constant and proves the reversibility of the association process.  相似文献   

18.
The intimate structure of the complexes located at the sites of DNA loops attachment to the nuclear skeleton was analysed. It is shown that: there are at least three components of the attachment site complex: DNA, protein, RNA; protein moiety consists of 7-8 species with Mr 70-17 kDa. Their association with DNA is resistant to ionic detergents, high salt and urea treatments. The DNA-protein complex is also resistant to the SDS-pronase-phenol deproteinisation procedure; the buoyant density of the complex is the same as DNA density. RNase digestion at low ionic strength reduces density of the complex while the same treatment at 0,4 M NaCl has no effect; DNA-protein complexes isolated with urea-high salt treatment are visualised as globular particles 25-35 nm in diameter with DNA loops attached. These particles were not observed after detergent treatment although protein composition of the complex remained the same.  相似文献   

19.
用免疫电镜技术研究长叶车前花叶病毒株系的血清学关系   总被引:3,自引:0,他引:3  
徐均焕 《病毒学报》1992,8(2):174-178
  相似文献   

20.
Transforming deoxyribonucleic acid (DNA) from Haemophilus influenzae was exposed to sonic radiation of various durations. Reductions in transforming ability of the DNA, cellular DNA uptake, and integration into the genome, and single- and double-stranded molecular weights of the transforming DNA were measured and compared. We conclude that (i) sonic radiation causes DNA strand breaks (almost always double-strand breaks with relatively few alkaline-labile bonds), the number increasing with exposure until the double-stranded molecular weight is reduced to less than 10(6) daltons; and (ii) since transformation is reduced about as much as integration and much more than uptake, inactivation of transforming DNA by sonic radiation appears to be caused mostly by failure of Haemophilus cells to integrate the transforming DNA that is taken into the cells. These results are similar to those for inactivation by X radiation but differ from those for ultraviolet radiation. A strand break caused by sonic radiation, however, does not necessarily inactivate the transforming DNA, whereas in the case of ionizing radiation it may. The results may be fit by the model proposed by Cato and Guild. From our data and the equation of Lacks, the minimum active site of DNA necessary for transformation and the frequency of exchanges between donor and recipient strands upon integration of transforming DNA were estimated as 0.35 x 10(6) to 0.7 x 10(6) daltons and 0.15 to 0.4 switches per 10(6) daltons, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号