首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
1. Functional response models (e.g. Holling's disc equation) that do not take the spatial distributions of prey and predators into account are likely to produce biased estimates of predation rates. 2. To investigate the consequences of ignoring prey distribution and predator aggregation, a general analytical model of a predator population occupying a patchy environment with a single species of prey is developed. 3. The model includes the density and the spatial distribution of the prey population, the aggregative response of the predators and their mutual interference. 4. The model provides explicit solutions to a number of scenarios that can be independently combined: the prey has an even, random or clumped distribution, and the predators show a convex, sigmoid, linear or no aggregative response. 5. The model is parameterized with data from an acarine predator-prey system consisting of Phytoseiulus persimis and Tetranychus urticae inhabiting greenhouse cucumbers. 6. The model fits empirical data quite well and much better than if prey and predators were assumed to be evenly distributed among patches, or if the predators were distributed independently of the prey. 7. The analyses show that if the predators do not show an aggregative response it will always be an advantage to the prey to adopt a patchy distribution. On the other hand, if the predators are capable of responding to the distribution of prey, then it will be an advantage to the prey to be evenly distributed when its density is low and switch to a more patchy distribution when its density increases. The effect of mutual interference is negligible unless predator density is very high. 8. The model shows that prey patchiness and predator aggregation in combination can change the functional response at the population level from type II to type III, indicating that these factors may contribute to stabilization of predator-prey dynamics.  相似文献   

3.
Spatial aggregation and association of conspecific and allospecific eggs over resource patches have often been estimated based on emergence data. However, intra-specific competition reduces the number of emergents of conspecifics, and inter-specific competition reduces the number of emergents of allospecifics, causing biases in the estimation of spatial distribution of eggs using emergence data. The present study investigated, by laboratory experiments using drosophilids and simulation models, how the use of emergence data causes such biases. In the laboratory experiments, females were allowed to oviposit over resource patches, and spatial aggregation and association of eggs were examined. The number of emergents from each resource patch was then estimated from the density-survival relationship, and spatial aggregation and association of emerging adults thus estimated were compared with those of eggs. In the simulation models, the spatial distributions of adults emerging from eggs that varied in their degree of spatial aggregation were evaluated under different intensities of intra- and/or inter-specific competition. Both laboratory experiments and simulations indicate that the use of emergence data always causes an underestimation of spatial aggregation and association of eggs. Relaxation of intra- and inter-specific competition by addition of extra resources would improve the estimation of spatial egg distribution based on emergence data.  相似文献   

4.
长白山阔叶红松林物种多度和空间分布格局的关系   总被引:4,自引:0,他引:4  
应用随机分布多度模型和聚集分布多度模型,探讨不同研究尺度下物种多度和空间分布格局的关系.结果表明,预测的物种多度不仅受物种分布面积大小的影响,还受其聚集程度的影响.物种多度和空间分布格局的关系存在着明显的尺度效应,即随着研究尺度的增加,无论是随机分布多度模型还是聚集分布多度模型,通过物种空间分布格局来预测物种多度的准确度都在下降.聚集分布多度模型预测物种多度的结果要好于随机分布多度模型,这表明该区大多数物种是聚集分布的.由于物种的空间分布格局不同,不同物种多度的预测值和真实值之间的差异也不同.因此,为了进一步提高模型预测的准确性,进一步考虑不同物种的生活史特性是必要的.  相似文献   

5.
In the aggregation theory, aggregation of eggs is one of important conditions for the coexistence of species. However, aggregation of eggs by clutch laying does not always promote coexistence, whereas aggregation of eggs by aggregated distributions of ovipositing females always has a significant contribution to the coexistence. In this study, spatial distributions of three Drosophila species across naturally occurring cherry fruits were studied with relation to their clutch sizes. Drosophila suzukii oviposited eggs mainly on fresh fruits on trees, and its eggs were randomly distributed across cherry fruits. The emergence data also indicated random spatial distributions of this species. Random egg distributions of this species are explained by random visits of females to fruits and the production of clutches of mostly single eggs. On the other hand, D. lutescens and D. rufa oviposited on fallen fruits, showed aggregated distributions in the emergence data, and frequently produced clutches of a few eggs. In these species, the degree of aggregation was usually significantly lower than the expectation based on random visits of females to fruits and their clutch sizes observed in the present experiments, indicating that their aggregation is unlikely to arise from aggregated distributions of ovipositing females. Thus, the spatial aggregation of these species does not necessarily lead to their coexistence.  相似文献   

6.
The spatial population patterns of an assemblage of meiobenthic harpacticoid copepod species were analysed for two sets of samples resulting from a systematic survey of an intertidal, estuarine, sandy beach in spring. The fauna was characterised by mesopsammic species, the 6 most abundant of which showed a great degree of interassociation, such that they could not be considered to distribute themselves independently. Populations of each of the 6 species were overdispersed, such that a negative binomial distribution adequately fitted all population samples. Spatial segregation of closely related species was indicated during the late spring sample, so leading to a patchy population distribution. It is proposed that during early spring, during periods of extreme disturbance in the seasonal r-selecting environment, the species populations do not interact, but that during periods of less extreme perturbation an interactive community evolves.  相似文献   

7.
1. Predicting population dynamics at large spatial scales requires integrating information about spatial distribution patterns, inter-patch movement rates and within-patch processes. Advective dispersal of aquatic species by water movement is considered paramount to understanding their population dynamics. Rivers are model advective systems, and the larvae of baetid mayflies are considered quintessential dispersers. Egg laying of baetids along channels is patchy and reflects the distribution of oviposition sites, but larvae are assumed to drift frequently and far, thereby erasing patterns created during oviposition. Dispersal kernels are often overestimated, however, and empirical tests of such assumptions are warranted because of the pivotal role distribution patterns can have on populations. 2. We tested empirically whether the egg distribution patterns arising from oviposition behaviours persisted and were reflected in the distribution patterns of larval Baetis rhodani. In field surveys, we tested for associations between egg mass and larval densities over 1 km lengths of four streams. A control species, the mayfly Ephemerella ignita, was employed to test for covarying environmental factors. We estimated drift rates directly to test whether larvae dispersed between riffles (patches of high egg mass density) and whether drift rates were density-dependent or density-related - expected outcomes if drift erases patterns established by maternal behaviours. 3. Positive associations between egg masses and larval benthic densities were found for neonate and mid-stage larvae of Baetis, but not the control species, suggesting persistence of the patchy distribution patterns established at oviposition. Drift rates were high, and riffles were net exporters of neonate and mid-stage larvae, but drift rates were unrelated to benthic densities and few drifters reached the next riffle. Riffles were sinks for large larvae, suggesting ontogenetic shifts in habitat use, but little long-distance dispersal. 4. Overall, the results suggest that most neonate and mid-stage larvae of B. rhodani remain close to the natal riffle, and late-stage larvae disperse shorter distances than routinely assumed. The persistence of maternal effects on distribution patterns well into juvenile life of an allegedly iconic disperser suggests that traditional models of how dispersal influences the population dynamics of many lotic invertebrates may be incorrect.  相似文献   

8.
Spatial relationships of mate acquisition probability for individuals of both sexes of a gregariously-mating coreid bug, Colpula lativentris, were studied in relation to aggregation size. Operational sex ratio was always strongly male biased. Mate acquisition probability of females was rather constant and independent of aggregation size, as predicted by an ideal free distribution. Moreover laboratory experiments showed that both multiple mating and rearing density little affected female fecundity, suggesting ideal free distribution of females in terms of reproductive success. On the other hand, mate acquisition probability of males was higher in larger aggregations, where more receptive females were available. This male discrepancy from an ideal free distribution was similar to the patterns predicted by an ideal free distribution under perceptual constraints (Abrahams, 1986), but not by that under unequal competitive ability.  相似文献   

9.
Inouye BD 《Oecologia》2005,145(2):188-196
Species that live in patchy and ephemeral habitats can compete strongly for resources within patches at a small scale. The ramifications of these interactions for population dynamics and coexistence at regional scales will depend on the intraspecific and interspecific distributions of individuals among patches. Spatial heterogeneity due to independent aggregation of competitors among patchy habitats is an important mechanism maintaining species diversity. I describe regional patterns of aggregation for four species of insect larvae in the fruits of Apeiba membranacea, a Neotropical rainforest tree. This aggregation results from variation in densities at a small scale (among the fruits under a single tree), compounded by significant variation among trees in both mean densities and degrees of aggregation. Both the degrees of aggregation and mean densities are statistically independent within and across species at both spatial scales. I evaluate the regional consequences of these spatial patterns by using maximum likelihood methods to parameterize a model that includes both explicit measures of the strength of competition and spatial variation at both within- and among-tree spatial scales. Despite strong competitive interactions among these species, during 2 years the observed spatial variation at both scales combined was sufficient to explain the coexistence of these species, although other coexistence mechanisms may also operate simultaneously. The observed spatial variation at small spatial scales may not be sufficient for coexistence, indicating the importance of considering multiple sources of spatial heterogeneity when scaling up from experiments that investigate local interactions to regional patterns of coexistence.  相似文献   

10.
Spatial distribution patterns of basidiocarps of Agaricales were studied in aCastanopsis-dominated forest in Kyoto. Sixty-seven species were recorded, of which 45 species and 99% of total dry weight were ectomycorrhizal fungi belonging to Amanitaceae, Cortinariaceae, Russulaceae, Boletaceae and Strobilomycetaceae. The data were analyzed statistically by using the m-m regression method. Three distribution patterns were recognized: aggregated, random and uniform. Although total basidiocarps were distributed randomly, basidiocarps of most species showed aggregated distributions, suggesting mycelium of ectomycorrhizal and saprotrophic fungi extend in a limited area in the soil. The degree of aggregation was different among species and this difference was suggested to reflect the difference of niche among the species.  相似文献   

11.
Chen B  Kang L 《Oecologia》2005,144(2):187-195
Species that live in patchy and ephemeral habitats can compete strongly for resources within patches at a small scale. The ramifications of these interactions for population dynamics and coexistence at regional scales will depend on the intraspecific and interspecific distributions of individuals among patches. Spatial heterogeneity due to independent aggregation of competitors among patchy habitats is an important mechanism maintaining species diversity. I describe regional patterns of aggregation for four species of insect larvae in the fruits of Apeiba membranacea, a Neotropical rainforest tree. This aggregation results from variation in densities at a small scale (among the fruits under a single tree), compounded by significant variation among trees in both mean densities and degrees of aggregation. Both the degrees of aggregation and mean densities are statistically independent within and across species at both spatial scales. I evaluate the regional consequences of these spatial patterns by using maximum likelihood methods to parameterize a model that includes both explicit measures of the strength of competition and spatial variation at both within- and among-tree spatial scales. Despite strong competitive interactions among these species, during 2 years the observed spatial variation at both scales combined was sufficient to explain the coexistence of these species, although other coexistence mechanisms may also operate simultaneously. The observed spatial variation at small spatial scales may not be sufficient for coexistence, indicating the importance of considering multiple sources of spatial heterogeneity when scaling up from experiments that investigate local interactions to regional patterns of coexistence.  相似文献   

12.
The distribution pattern and competition of insects exploiting Camellia japonica flowers were studied in Tokyo, central Japan, to understand how their distributions are determined. Dasiops sp. of Lonchaeidae (Diptera) exploited flower buds and showed random distribution, whereas Drosophila unipectinata, D. oshimai and D. lutescens of Drosophilidae (Diptera) and Epuraea commutata of Nitidulidae (Coleoptera) exploited fully opened, late and fallen flowers and showed aggregated distribution. From the distribution pattern, it is assumed that Dasiops sp. has clutches of single egg whereas drosophilid and nitidulid species have clutches of more than one egg. In resource supplementary experiments, body size of drosophilid flies increased if resources were supplemented, although their survival is assumed to be unaffected. However, their body size did not decrease with increase of larval density in resource patches. It is therefore unclear whether resource competition occurs among drosophilid flies in Camellia flowers in nature. From the present and previous studies, it is assumed that aggregation (or production of clutches of more than one egg) is related to the use of fermenting or decayed resources; aggregation might increase larval survival and/or performance under the presence of molds or microorganisms.  相似文献   

13.
Spatial patterns are important characteristics of the forest and theycan reveal such things as successional status and ecological characteristics ofthe species. We tested the hypothesis that spatial distribution will bedifferent, depending on whether the species is intolerant or tolerant to shade.We assessed the spatial distribution of trees (> 4 cm dbh) andjuveniles in eight laurel forest plots. A univariate spatial analysis(performed with Ripley's K1) showed that all tree species havesignificantaggregation at short distances (2 m). Nevertheless, two groups ofspecies could be differentiated: Erica scoparia,Myrica faya and Ilex canariensisshowed a tendency for aggregation at large distances (larger than 6m)while L. azorica and Prunuslusitanicashowed aggregation only at shorter distances. Ripley's BivariateK1,2 analyses showed no significant differences in the spatialdistribution ofanalyzed species pairs from a null model. Only Laurusazoricahad a sufficient sample size for analysis of juvenile distribution. Aunivariateanalysis revealed thatL. azorica seedlings (stems < 50 cm high)were clumped in some plots up to 5 m, but this was not consistent.Saplings (stems > 50 cm high and < 4 cm dbh)didnot show strong clumping even at short distances. L.azoricasaplings had no significant aggregation with, nor repulsionfrom, adults of the same or different species. Spatial patterns of the speciesshould be considered in the development of restoration plans of the laurelforest 90%of which has disappeared or been intensively disturbed on Tenerife Island.  相似文献   

14.
《植物生态学报》2016,40(9):861
Aims Spatial distribution patterns and formation mechanisms of species diversity are fundamental issues in community ecology. The objectives of this study are to assess the species diversity patterns at the different spatial scales in Jianfengling, Hainan Island, China.
Methods Based on the dataset from the 60 hm2 plot in the tropical montane rain forest in Jianfengling, Hainan Island, the spatial distribution patterns of species richness, species abundance, Shannon-Wiener, Simpson and Pielou’s evenness indices were analyzed at six spatial scales, including 5 m × 5 m, 10 m × 10 m, 20 m × 20 m, 40 m × 40 m, 100 m × 100 m, and 200 m × 200 m, respectively.Important findings
Results showed that spatial distribution patterns of species richness, species abundance and Shannon-Wiener index were much more obviously changed with the spatial scales than Simpson and Pielou’s evenness indices. Change of variance of the species richness with the increase of spatial scales was unimodal, which had the maximum value at the 20 m × 20 m scale. Variance of the species abundance showed a linear relationship with the increase of spatial scales. The positive relationship between species richness and abundance gradually decreased and even disappeared with the increase of sampling scales, which may be correlated with the increase of habitat heterogeneity. The effects of spatial scales on Shannon-Wiener, Simpson, and Pielou’s evenness indices may be also correlated with the composition of rare species in the plot.  相似文献   

15.
Spatial distribution pattern of biological related species present unique opportunities and challenges to explain species coexistence. In this study, we explored the spatial distributions and associations among congeneric species at both the species and genus levels to explain their coexistence through examining the similarities and differences at these two levels. We first used DNA and cluster analysis to confirmed the relative relationship of eight species within a 20 ha subtropical forest in southern China. We compared Diameter at breast height (DBH) classes, aggregation intensities and spatial patterns, associations, and distributions of four closely related species pairs to reveal similarities and differences at the species and genus levels. These comparisons provided insight into the mechanisms of coexistence of these congeners. O-ring statistics were used to measure spatial patterns of species. Ω 0–10, the mean conspecific density within 10 m of a tree, was used as a measure of the intensity of aggregation of a species, and g-function was used to analyze spatial associations. Our results suggested that spatial aggregations were common, but the differences between spatial patterns were reduced at the genus level. Aggregation intensity clearly reduced at the genus level. Negative association frequencies decreased at the genus level, such that independent association was commonplace among all four genera. Relationships between more closely related species appeared to be more competitive at both the species and genus levels. The importance of competition on interactions is most likely influenced by similarity in lifestyle, and the habitat diversity within the species’ distribution areas. Relatives with different lifestyles likely produce different distribution patterns through different interaction process. In order to fully understand the mechanisms generating spatial distributions of coexisting siblings, further research is required to determine the spatial patterns and associations at other classification levels.  相似文献   

16.
物种多样性的空间分布格局和维持机制是群落生态学的基本问题。为了探讨海南尖峰岭地区物种多样性空间分布格局的尺度效应, 以海南尖峰岭热带山地雨林60 hm2样地为研究对象, 分析了物种丰富度、物种多度、Shannon-Wiener指数、Simpson指数以及Pielou均匀度指数随6个空间取样尺度(5 m × 5 m、10 m × 10 m、20 m × 20 m、40 m × 40 m、100 m ×100 m、200 m × 200 m)的变化。结果表明: 相比Simpson指数和Pielou均匀度指数, 物种丰富度、多度以及Shannon-Wiener指数具有更为明显的空间尺度效应; 物种丰富度的方差随取样尺度增加呈现单峰分布特征, 并且在20 m × 20 m尺度上达到最大值, 而物种多度的方差随取样尺度的增加而增大; 物种丰富度和多度的正相关性随着取样尺度的增加逐渐减小甚至消失, 这可能与随取样尺度增加生境异质性增加有关; 取样尺度对3个物种多样性指数空间分布的影响可能与研究区域内稀有种的组成有关。  相似文献   

17.
To investigate the relation between the distribution pattern of eggs and the parental density in the common cabbage butterfly, Pieris rapae crucivora, the countings of egg number per plant were made on both cabbage plants cultivated in the farm and planted in the net house in which the female butterflies were released at various densities. The frequency distribution of eggs fits well to the negative binomial excepting the cases where they agree withPoisson series, and the degree of aggregation expressed as the reciprocal of the parameter, 1/k, tends to decrease as the egg or parental density increases. At the same parental density, however, the distribution of eggs can be described by the negative binomial with a common parameter, kc, regardless of the difference in the density of laid eggs. In the case where a single female butterfly lays eggs, the spatial pattern of egg distribution is always lean, while its frequencies conform toPoisson or the negative binomial series. This lean changes toward patchy with increasing the parental density. From these results, it is concluded that the degree of aggregation in the distribution of eggs decreases with the increase of the parental density.  相似文献   

18.
The spatial pattern of a tree species is an important characteristic of plant communities, providing critical information to explain species coexistence. The spatial distribution and association of four different successional species were analyzed among different life-history stages in an old-temperate forest. Significant aggregation patterns were found, and the degree of aggregation decreased with the scales and life-history stages. Significant interspecific spatial associations were detected. In comparing the relationships among the different life-history stages, positive associations were found at small scales in all of the juvenile species pairs. In the adult stage, negative associations were detected in coniferous vs. deciduous species pairs, while the deciduous species pairs, which have identical resource requirements, showed a positive association in this study. The coniferous species pairs showed a positive association at small scales. We infer that seed dispersal, competitive ability, or the requirement for specific topographic and light environments may contribute to the coexistence of these species.  相似文献   

19.
水鸟空间分布与环境因子的关系是生态研究的重要内容,环境因子的变化可以通过改变栖息地的生境特征、食物资源从而直接或间接影响水鸟的种类、数量和分布.利用网格单元对2019—2020年菜子湖冬季水鸟及其环境因子进行调查,共记录到水鸟6目12科41种,其优势种为豆雁(Anser fabalis)和黑腹滨鹬(Calidris a...  相似文献   

20.
北京山区栓皮栎林优势种群点格局分析   总被引:15,自引:8,他引:7  
樊登星  余新晓 《生态学报》2016,36(2):318-325
采用点格局分析方法对北京山区栓皮栎林主要种群和不同发育阶段种群的空间分布格局及相互关系进行分析。结果表明:(1)群落物种组成简单,栓皮栎和油松是群落的优势种群,优势种群以中径木为主,缺乏可供更新的幼苗,种群呈现出衰退趋势;(2)在研究尺度内,栓皮栎、油松单种的空间分布格局以聚集型分布为主,随着尺度的增大呈现出随机分布和均匀分布的趋势;栓皮栎和油松呈现显著负相关;(3)优势种群不同发育阶段的空间分布格局与研究尺度紧密相关,栓皮栎小树和中树以聚集型分布为主、大树呈随机分布,而油松不同发育阶段均以随机分布为主;(4)栓皮栎、油松种群不同发育阶段之间的空间关联主要发生在小尺度范围内,小树和中树以正关联为主,而中树和大树、小树和大树以负关联为主;随着研究尺度的增大趋于无关联。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号