首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Defining phyla: evolutionary pathways to metazoan body plans   总被引:3,自引:0,他引:3  
SUMMARY Phyla are defined by two sets of criteria, one morphological and the other historical. Molecular evidence permits the grouping of animals into clades and suggests that some groups widely recognized as phyla are paraphyletic, while some may be polyphyletic; the phyletic status of crown phyla is tabulated. Four recent evolutionary scenarios for the origins of metazoan phyla and of supraphyletic clades are assessed in the light of a molecular phylogeny: the trochaea hypothesis of Nielsen; the clonal hypothesis of Dewel; the set-aside cell hypothesis of Davidson et al.; and a benthic hypothesis suggested by the fossil record. It is concluded that a benthic radiation of animals could have supplied the ancestral lineages of all but a few phyla, is consistent with molecular evidence, accords well with fossil evidence, and accounts for some of the difficulties in phylogenetic analyses of phyla based on morphological criteria.  相似文献   

2.
None of the supraspecific taxonomic categories can be defined objectively. Each taxon should of course be monophyletic, but there is no morphological or molecular character that identifies, for example, the phylum level. This has led some authors to abandon the Linnaean categories, but they appear to be practical "handles" in daily communication. It has been proposed that each phylum exhibits a characteristic Bauplan, but the identification of such "types" have in practice proved difficult or impossible for several phyla. Monophyly of some of the approximately 30 morphology-based phyla has been put in question by molecular studies, but recent reports clearly show that the 18S rRNA molecule, which has been used extensively in phylogenetic analyses, cannot be used alone in identifying phyla (or other higher taxonomic groups). Some higher taxa, for example Chordata, Vertebrata, and Echinodermata, consistently show up as monophyletic in the analyses, whereas molluscan and annelidan subgroups just as consistently are mixed with each other and with a number of other protostomian phyla in varying patterns.  相似文献   

3.
Elekonich MM  Horodyski FM 《Peptides》2003,24(10):1623-1632
Originally named for its ability to stimulate juvenile hormone production by lepidopteran corpora allata, allatotropin has emerged as a neuropeptide with multiple neural, endocrine and myoactive roles. This paper describes the experimental evidence for allatotropin action, its localization in several species of insects, and its multiple effects on a variety of different tissues that lead to increased hemolymph circulation and gut motility. The overall physiological effects may also include species-specific effects such as the regulation of nutrient absorption, modulation of the circadian cycle and migratory preparedness. In addition, we present evidence suggesting that allatotropins are members of a family of myoactive peptides found in several invertebrate phyla. Finally, we speculate that the myoactive properties of allatotropins are basal and it is likely that the stimulatory action of allatotropins on juvenile hormone synthesis evolved secondarily.  相似文献   

4.
Continuity of the transition from Precambrian to the Phanerozoic metazoan fauna at the phylum level is analyzed. The discrete traces of feeding on bacterial mats by Dickinsonia and similar organisms are explained by extracorporeal digestion, characteristic of a placozoan level of organization, as in the extant Trichoplax. The absence of a morphologically developed anterior end of the body, of food-gathering appendages of any kind, and of appendages responsible for movement suggest that these animals were at this level of organization. Probably, an expanded placozoan level of organization can be assumed for most Vendian animals. Against this background, new characters emerged in the Cambrian to be included in the body plan of extant animal phyla. The relationships between the morphological archetype (body plan) and morphogenetic archetype are considered. It is shown that major features of a morphogenetic archetype could be retained from the time the taxon was formed.  相似文献   

5.
New insights into the evolution of metazoan tyrosinase gene family   总被引:1,自引:0,他引:1  
Tyrosinases, widely distributed among animals, plants and fungi, are involved in the biosynthesis of melanin, a pigment that has been exploited, in the course of evolution, to serve different functions. We conducted a deep evolutionary analysis of tyrosinase family amongst metazoa, thanks to the availability of new sequenced genomes, assessing that tyrosinases (tyr) represent a distinctive feature of all the organisms included in our study and, interestingly, they show an independent expansion in most of the analyzed phyla. Tyrosinase-related proteins (tyrp), which derive from tyr but show distinct key residues in the catalytic domain, constitute an invention of chordate lineage. In addition we here reported a detailed study of the expression territories of the ascidian Ciona intestinalis tyr and tyrps. Furthermore, we put efforts in the identification of the regulatory sequences responsible for their expression in pigment cell lineage. Collectively, the results reported here enlarge our knowledge about the tyrosinase gene family as valuable resource for understanding the genetic components involved in pigment cells evolution and development.  相似文献   

6.
《Genomics》2022,114(4):110431
Despite recent studies discussing the evolutionary impacts of gene duplications and losses among metazoans, the genomic basis for the evolution of phyla remains enigmatic. Here, we employ phylogenomic approaches to search for orthologous genes without known functions among echinoderms, and subsequently use them to guide the identification of their homologs across other metazoans. Our final set of 14 genes was obtained via a suite of homology prediction tools, gene expression data, gene ontology, and generating the Strongylocentrotus purpuratus phylome. The gene set was subjected to selection pressure analyses, which indicated that they are highly conserved and under negative selection. Their presence across broad taxonomic depths suggests that genes required to form a phylum are ancestral to that phylum. Therefore, rather than de novo gene genesis, we posit that evolutionary forces such as selection on existing genomic elements over large timescales may drive divergence and contribute to the emergence of phyla.  相似文献   

7.
8.
This paper is a response to Pecinka A, Fang W, Rehmsmeier M, Levy AA, Mittelsten Scheid, O: Polyploidization increases meiotic recombination frequency in Arabidopsis. BMC Biology 2011, 9:24. See research article at http://www.biomedcentral.com/1741-7007/9/24  相似文献   

9.
The genomic organization of the gene encoding rat aspartyl-tRNA synthetase (AspRS), a class II aminoacyl-tRNA synthetase (aaRS), was determined. A single active gene and several pseudogenes were isolated from a rat genomic DNA library and characterized. The active DRS1 gene encoding the rat AspRS spans approximately 60 kb and is divided into 16 exons. Exons 8–16, encoding the nt-binding domain of the synthetase, are clustered in the 3′-region of the gene, whereas exons 3, 4, and 5, encoding the anticodon-binding domain are separated by large introns (up to 15 kb) containing LINE sequences. One of the pseudogenes, ΨDRSI, has a nt sequence 93% identical to that of the complete cDNA sequence of rat AspRS but several stop codons interrupt the coding sequence, thus identifying ΨDRS1 to an inactive processed pseudogene. Two repetitive elements from the LINE family are inserted into ΨDRS1. Calculation of nt substitution rates suggests that ΨDRS1 sequences arose approximately 27 Myr ago. The other pseudogene, ΨDRS2, should be more ancient. Taken together, these results clearly demonstrate that the AspRS gene family is composed of only one active gene. The availability of the gene structure of AspRS could help to clarify molecular evolution of class II aaRS.  相似文献   

10.
The mitochondrion of most eukaryotes has multiple electron transport components that increase the points of entry and/or exit of electrons, thus giving a branched nature to the respiratory chain. In plants and many other organisms, a prominent example is alternative oxidase, a non-energy conserving branch in the respiratory chain and an additional terminal oxidase for the exit of electrons. Our genome database searches have now revealed the presence of alternative oxidase in four animal species from three different phyla (Mollusca, Nematoda and Chordata), consistent with frequent reports of cyanide-resistant respiration in the Animalia. In Ciona intestinalis and Crassostrea gigas, alternative oxidase is expressed in several different tissues. Phylogenetic analysis is consistent with the animal proteins having originated by vertical inheritance. We hypothesize that alternative oxidase is likely widespread in the Animalia and discuss some of the potential role(s) for such a branched respiratory chain.  相似文献   

11.

Background  

Fibroblast Growth Factors (FGF) and their receptors are well known for having major implications in cell signalling controlling embryonic development. Recently, a gene coding for a protein closely related to FGFRs (Fibroblast Growth Factor Receptors) called FGFR5 or FGFR-like 1 (FGFRL1), has been described in vertebrates. An orthologous gene was also found in the cephalochordate amphioxus, but no orthologous genes were found by the authors in other non-vertebrate species, even if a FGFRL1 gene was identified in the sea urchin genome, as well as a closely related gene, named nou-darake, in the planarian Dugesia japonica. These intriguing data of a deuterostome-specific gene that might be implicated in FGF signalling prompted us to search for putative FGFRL1 orthologues in the completely sequenced genomes of metazoans.  相似文献   

12.

Background  

Development, differentiation and physiology of metazoans all depend on cell to cell communication and subsequent intracellular signal transduction. Often, these processes are orchestrated via sites of specialized cell-cell contact and involve receptors, adhesion molecules and scaffolding proteins. Several of these scaffolding proteins important for synaptic and cellular junctions belong to the large family of membrane-associated guanylate kinases (MAGUK). In order to elucidate the origin and the evolutionary history of the MAGUKs we investigated full-length cDNA, EST and genomic sequences of species in major phyla.  相似文献   

13.
Cao L  Ding X  Yu W  Yang X  Shen S  Yu L 《FEBS letters》2007,581(28):5526-5532
Septins, a conserved family of cytoskeletal GTP-binding proteins, were presented in diverse eukaryotes. Here, a comprehensive phylogenetic and evolutionary analysis for septin proteins in metazoan was carried out. First, we demonstrated that all septin proteins in metazoan could be clustered into four subgroups, and the representative homologue of every subgroup was presented in the non-vertebrate chordate Ciona intestinalis, indicating that the emergence of the four septin subgroups should have occurred prior to divergence of vertebrates and invertebrates, and the expansion of the septin gene number in vertebrates was mainly by the duplication of pre-existing genes rather than by the appearance of new septin subgroup. Second, the direct orthologues of most human septins existed in zebrafish, which suggested that human septin gene repertoire was mainly formed by as far as before the split between fishes and land vertebrates. Third, we found that the evolutionary rate within septin family in mammalian lineage varies significantly, human SEPT1, SEPT 10, SEPT 12, and SEPT 14 displayed a relative elevated evolutionary rate compared with other septin members. Our data will provide new insights for the further function study of this protein family.  相似文献   

14.
The major urinary proteins (MUPs) of the mouse are encoded by a multigene family located at the Mup a locus on chromosome 4. Previous investigations have shown that the MUPs are synthesized in the liver, secreted and then excreted in the urine. We have found significant levels of MUP mRNA in several secretory tissues: the liver and the submaxillary, lachrymal and mammary glands. There are striking differences in hormonal and developmental regulation of MUP gene expression in these tissues. Furthermore, each tissue appears to express a characteristic pattern of MUP mRNAs. In particular, the lachrymal glands appear to express an entirely different set of MUP mRNAs. These results are discussed in relation to the organization of the MUP gene cluster and a possible function of the MUPs.  相似文献   

15.
Spatial mechanisms of gene regulation in metazoan embryos.   总被引:18,自引:0,他引:18  
The basic characteristics of embryonic process throughout Metazoa are considered with focus on those aspects that provide insight into how cell specification occurs in the initial stages of development. There appear to be three major types of embryogenesis: Type 1, a general form characteristic of most invertebrate taxa of today, in which lineage plays an important role in the spatial organization of the early embryo, and cell specification occurs in situ, by both autonomous and conditional mechanisms; Type 2, the vertebrate form of embryogenesis, which proceeds by mechanisms that are essentially independent of cell lineage, in which diffusible morphogens and extensive early cell migration are particularly important; Type 3, the form exemplified by long germ band insects in which several different regulatory mechanisms are used to generate precise patterns of nuclear gene expression prior to cellularization. Evolutionary implications of the phylogenetic distribution of these types of embryogenesis are considered. Regionally expressed homeodomain regulators are utilized in all three types of embryo, in similar ways in later and postembryonic development, but in different ways in early embryonic development. A specific downstream molecular function for this class of regulator is proposed, based on evidence obtained in vertebrate systems. This provides a route by which to approach the comparative regulatory strategies underlying the three major types of embryogenesis.  相似文献   

16.
17.
The R and B genes of maize regulate the anthocyanin biosynthetic pathway and constitute a small gene family whose evolution has been shaped by polyploidization and transposable element activity. To compare the evolution of regulatory genes in the distinct but related genomes of rice and maize, we previously isolated two R homologues from rice (Oryza sativa). The Ra1 gene on chromosome 4 can activate the anthocyanin pathway, whereas the Rb gene, of undetermined function, maps to chromosome 1. In this study, rice R genes have been further characterized. First, we found that an Rb cDNA can induce pigmentation in maize suspension cells. Second, another rice R homologue (Ra2) was identified that is more closely related to Ra1 than to Rb. Domesticated rice and its wild relatives harbor multiple Ra-like and Rb-like genes despite the fact that rice is a true diploid with the smallest genome of all the grass species analyzed to date. Finally, several miniature inverted-repeat transposable elements (MITEs) were found in R family members. Their possible role in hastening the divergence of R genes is discussed.  相似文献   

18.
Plasmid-encoded urease gene clusters found in uropathogenic isolates of Escherichia coli, Providencia stuartii, and Salmonella cubana demonstrated DNA homology, similar positions of restriction endonuclease cleavage sites, and manners of urease expression and therefore represent the same locus. DNA sequence analysis indicated that the plasmid-encoded urease genes are closely related to the Proteus mirabilis urease genes.  相似文献   

19.
The functional gene and three intronless pseudogenes for human triosephosphate isomerase were isolated from a recombinant DNA library and characterized in detail. The functional gene spans 3.5 kilobase pairs and is split into seven exons. Its promoter contains putative TATA and CCAAT boxes and is extremely rich in G and C residues (76%). The pseudogenes share a high degree of homology with the functional gene but contain mutations that preclude the synthesis of an active triosephosphate isomerase enzyme. Sequence divergence calculations indicate that these pseudogenes arose approximately 18 million years ago. We present evidence that there is a single functional gene in the human triosephosphate isomerase gene family.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号