首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structure of HI0074 from Haemophilus influenzae, a protein of unknown function, has been determined at a resolution of 2.4 A. The molecules form an up-down, four-helix bundle, and associate into homodimers. The fold is most closely related to the substrate-binding domain of KNTase, yet the amino acid sequences of the two proteins exhibit no significant homology. Sequence analyses of completely and incompletely sequenced genomes reveal that the two adjacent genes, HI0074 and HI0073, and their close relatives comprise a new family of nucleotidyltransferases, with 15 members at the time of writing. The analyses also indicate that this is one of eight families of a large nucleotidyltransferase superfamily, whose members were identified based on the proximity of the nucleotide- and substrate-binding domains on the respective genomes. Both HI0073 and HI0074 were annotated "hypothetical" in the original genome sequencing publication. HI0073 was cloned, expressed, and purified, and was shown to form a complex with HI0074 by polyacrylamide gel electrophoresis under nondenaturing conditions, analytic size exclusion chromatography, and dynamic light scattering. Double- and single-stranded DNA binding assays showed no evidence of DNA binding to HI0074 or to HI0073/HI0074 complex despite the suggestive shape of the putative binding cleft formed by the HI0074 dimer.  相似文献   

2.
The cytoskeletal protein alpha-catenin, which shares structural similarity with vinculin, is required for cadherin-mediated cell adhesion, and functions to modulate cell adhesive strength and to link the cadherins to the actin-based cytoskeleton. Here we describe the crystal structure of a region of alpha-catenin (residues 377-633) termed the M-fragment. The M-fragment is composed of a tandem repeat of two antiparallel four-helix bundles of virtually identical architectures that are related in structure to the dimerization domain of alpha-catenin and the tail region of vinculin. These results suggest that alpha-catenin is composed of repeating antiparallel helical domains. The region of alpha-catenin previously defined as an adhesion modulation domain corresponds to the C-terminal four-helix bundle of the M-fragment, and in the crystal lattice these domains exist as dimers. Evidence for dimerization of the M-fragment of alpha-catenin in solution was detected by chemical cross-linking experiments. The tendency of the adhesion modulation domain to form dimers may explain its biological activity of promoting cell-cell adhesiveness by inducing lateral dimerization of the associated cadherin molecule.  相似文献   

3.
The association between novel Src homology 2-containing protein (NSP) and Crk-associated substrate (Cas) family members contributes to integrin and receptor tyrosine kinase signalling and is involved in conferring anti-oestrogen resistance to human breast carcinomas. The precise role of this association in tumorigenesis remains controversial, and the molecular basis for the complex NSP and Cas protein form is unknown. Here we present a pluridisciplinary approach, including small-angle X-ray scattering, that provides first insights into the structure of the complex formed between breast cancer anti-oestrogen resistance 3 (BCAR3, an NSP family member) and human enhancer of filamentation 1 (HEF1, also named NEDD9 or Cas-L, a Cas family protein). Our analysis corroborates a four-helix bundle structure for the NSP-binding domain of HEF1 and a Cdc25-like guanine nucleotide exchange factor (GEF) fold for the Cas-binding domain of BCAR3. Using residues located on helix 2 of the four-helix bundle, HEF1 binds very tightly to a site on BCAR3 that is remote from the putative guanosine triphosphatase binding site of the GEF domain, but similar to a site implicated in allosteric regulation of the homologous SOS (Son of Sevenless) GEF domain. Thus, the association between NSP and Cas proteins might not only create a very stable link between these molecules, co-localising their cellular functions, but also modulate the function of the NSP GEF domains. Such modulation may explain, at least in part, the controversial results published for NSP GEF function.  相似文献   

4.
Recently, the solution structure of the hypothetical protein HI1450 from Haemophilus influenzae was solved as part of a structure-based effort to understand function. The distribution of its many negatively charged residues and weak structure and sequence homology to uracil DNA glycosylase inhibitor (Ugi) suggested that HI1450 may act as a double-stranded DNA (dsDNA) mimic. We present supporting evidence here and show that HI1450 interacts with the dsDNA-binding protein HU-alpha. The interaction between HI1450 and HU-alpha from H. influenzae is characterized using calorimetry and NMR spectroscopy. HU-alpha binds to HI1450 with a K(d) of 3.0 +/- 0.2 microM, which is similar in affinity to its interaction with dsDNA. Chemical shift perturbation data indicate that the beta1-strand of HI1450 and neighboring regions are most directly involved in interactions with HU-alpha. These results show that HI1450 and its structural homolog, Ugi, use similar parts of their structures to recognize DNA-binding proteins.  相似文献   

5.
HI1506 is a 128-residue hypothetical protein of unknown function from Haemophilus influenzae. It was originally annotated as a shorter 85-residue protein, but a more detailed sequence analysis conducted in our laboratory revealed that the full-length protein has an additional 43 residues on the C terminus, corresponding with a region initially ascribed to HI1507. As part of a larger effort to understand the functions of hypothetical proteins from Gram-negative bacteria, and H. influenzae in particular, we report here the three-dimensional solution NMR structure for the corrected full-length HI1506 protein. The structure consists of two well-defined domains, an alpha/beta 50-residue N-domain and a 3-alpha 32-residue C-domain, separated by an unstructured 30-residue linker. Both domains have positively charged surface patches and weak structural homology with folds that are associated with RNA binding, suggesting a possible functional role in binding distal nucleic acid sites.  相似文献   

6.
The crystal structure of the human hepatitis B virus capsid.   总被引:6,自引:0,他引:6  
Hepatitis B is a small enveloped DNA virus that poses a major hazard to human health. The crystal structure of the T = 4 capsid has been solved at 3.3 A resolution, revealing a largely helical protein fold that is unusual for icosahedral viruses. The monomer fold is stabilized by a hydrophobic core that is highly conserved among human viral variants. Association of two amphipathic alpha-helical hairpins results in formation of a dimer with a four-helix bundle as the major central feature. The capsid is assembled from dimers via interactions involving a highly conserved region near the C terminus of the truncated protein used for crystallization. The major immunodominant region lies at the tips of the alpha-helical hairpins that form spikes on the capsid surface.  相似文献   

7.
The crystal structure of HI0827 from Haemophilus influenzae Rd KW20, initially annotated "hypothetical protein" in sequence databases, exhibits an acyl-coenzyme A (acyl-CoA) thioesterase "hot dog" fold with a trimer of dimers oligomeric association, a novel assembly for this enzyme family. In studies described in the preceding paper [Zhuang, Z., Song, F., Zhao, H., Li, L., Cao, J., Eisenstein, E., Herzberg, O., and Dunaway-Mariano, D. (2008) Biochemistry 47, 2789-2796], HI0827 is shown to be an acyl-CoA thioesterase that acts on a wide range of acyl-CoA compounds. Two substrate binding sites are located across the dimer interface. The binding sites are occupied by two CoA molecules, one with full occupancy and the second only partially occupied. The CoA molecules, acquired from HI0827-expressing Escherichia coli cells, remained tightly bound to the enzyme through the protein purification steps. The difference in CoA occupancies indicates a different substrate affinity for each of the binding sites, which in turn implies that the enzyme might be subject to allosteric regulation. Mutagenesis studies have shown that the replacement of the putative catalytic carboxylate Asp44 with an alanine residue abolishes activity. The impact of this mutation is seen in the crystal structure of D44A HI0827. Whereas the overall fold and assembly of the mutant protein are the same as those of the wild-type enzyme, the CoA ligands are absent. The dimer interface is perturbed, and the channel that accommodates the thioester acyl chain is more open and wider than that observed in the wild-type enzyme. A model of intact substrate bound to wild-type HI0827 provides a structural rationale for the broad substrate range.  相似文献   

8.
Isofunctional tetracycline repressor (TetR) proteins isolated from different bacteria show a sequence identity between 38 and 88% of the residues. Their active state is a homodimer formed by a four-alpha-helix bundle as the main interaction motif. We utilize this sequence variation of isofunctional proteins to determine residues contributing to the stability of the four-helix bundle. The thermodynamic stabilities of two TetR proteins with 63% sequence identity were determined by urea-induced reversible denaturation followed by fluorescence and circular dichroism. Both methods yield identical results. The deltaG(o)U (H2O) values are 60 and 75 kJ x mol(-1). We have constructed TetR hybrid proteins derived from these wild types to identify the determinant leading to the 15 kJ x mol(-1) stability difference. Successive size reduction of the exchanged portion yielded two single residues affecting the overall protein stability. The P184Q exchange leads to a more stable protein, whereas the G181D exchange located at the solvent's exposed edge of the four-helix bundle is solely responsible for the reduced stability. Additional mutants based on crystal structures of TetR do not reveal any hint for steric interference of the Asp181 side chain with neighboring residues. Thus, this is an example for the role played by surface-exposed turn residues for the stability of four-helix bundles. We assume that the larger conformational flexibility of Gly and the reduction of the negative surface charge could favor formation of the turn on the edge of the four-helix bundle.  相似文献   

9.
Burkoldheria pseudomallei is a Gram-negative bacterium that possesses a protein secretion system similar to those found in Salmonella and Shigella. Recent work has indicated that the protein encoded by the BipD gene of B. pseudomallei is an important secreted virulence factor. BipD is similar in sequence to IpaD from Shigella and SipD from Salmonella and is therefore likely to be a translocator protein in the type-III secretion system of B. pseudomallei. The crystal structure of BipD has been solved at a resolution of 2.1 A revealing the detailed tertiary fold of the molecule. The overall structure is appreciably extended and consists of a bundle of antiparallel alpha-helical segments with two small beta-sheet regions. The longest helices of the molecule form a four-helix bundle and most of the remaining secondary structure elements (three helices and two three-stranded beta-sheets) are formed by the region linking the last two helices of the four-helix bundle. The structure suggests that the biologically active form of the molecule may be a dimer formed by contacts involving the C-terminal alpha-helix, which is the most strongly conserved part of the protein. Comparison of the structure of BipD with immunological and other data for IpaD indicates that the C-terminal alpha-helix is also involved in contacts with other proteins that form the translocon.  相似文献   

10.
11.
The GrpE heat shock protein from Escherichia coli has a homodimeric structure. The dimer interface encompasses two long alpha-helices at the NH(2)-terminal end from each monomer (forming a "tail"), which lead into a small four-helix bundle from which each monomer contributes two short sequential alpha-helices in an antiparallel topological arrangement. We have created a number of different deletion mutants of GrpE that have portions of the dimer interface to investigate requirements for dimerization and to study four-helix bundle formation. Using chemical crosslinking and analytical ultracentrifugation techniques to probe for multimeric states, we find that a mutant containing only the long alpha-helical tail portion (GrpE1-88) is unable to form a dimer, most likely due to a decrease in alpha-helical content as determined by circular dichroism spectroscopy, thus one reason for a dimeric structure for the GrpE protein is to support the tail region. Mutants containing both of the short alpha-helices (GrpE1-138 and GrpE88-197) are able to form a dimer and presumably the four-helix bundle at the dimer interface. These two mutants have equilibrium constants for the monomer-dimer equilibrium that are very similar to the full-length protein suggesting that the tail region does not contribute significantly to the stability of the dimer. Interestingly, one mutant that contains just one of the short alpha-helices (GrpE1-112) exists as a tetrameric species, which presumably is forming a four-helix bundle structure. A proposed model is discussed for this mutant and its relevance for factors influencing four-helix bundle formation.  相似文献   

12.
The marine bacterium Vibrio harveyi controls its bioluminescence by a process known as quorum sensing. In this process, autoinducer molecules are detected by membrane-bound sensor kinase/response regulator proteins (LuxN and LuxQ) that relay a signal via a series of protein phosphorylation reactions to another response regulator protein, LuxO. Phosphorylated LuxO indirectly represses the expression of the proteins responsible for bioluminescence. Integral to this quorum sensing process is the function of the phosphotransferase protein, LuxU. LuxU acts to shuttle the phosphate from the membrane-bound proteins, LuxN and LuxQ, to LuxO. LuxU is a 114 amino acid residue monomeric protein. Solution NMR was used to determine the three-dimensional structure of LuxU. LuxU contains a four-helix bundle topology with the active-site histidine residue (His58) located on alpha-helix C and exposed to solution. The active site represents a cluster of positively charged residues located on an otherwise hydrophobic protein face. NMR spin-relaxation experiments identify a collection of flexible residues localized on the same region of LuxU as His58. The studies described here represent the first structural characterization of an isolated, monomeric bacterial phosphotransferase protein.  相似文献   

13.
Biswas T  Tsodikov OV 《The FEBS journal》2008,275(12):3064-3071
Hexameric DnaB helicase unwinds the DNA double helix during replication of genetic material in bacteria. DnaB is an essential bacterial protein; therefore, it is an important potential target for antibacterial drug discovery. We report a crystal structure of the N-terminal region of DnaB from the pathogen Mycobacterium tuberculosis (MtDnaBn), determined at 2.0 A resolution. This structure provides atomic resolution details of formation of the hexameric ring of DnaB by two distinct interfaces. An extensive hydrophobic interface stabilizes a dimer of MtDnaBn by forming a four-helix bundle. The other, less extensive, interface is formed between the dimers, connecting three of them into a hexameric ring. On the basis of crystal packing interactions between MtDnaBn rings, we suggest a model of a helicase-primase complex that explains previously observed effects of DnaB mutations on DNA priming.  相似文献   

14.
15.
BACKGROUND: Cyanase is an enzyme found in bacteria and plants that catalyzes the reaction of cyanate with bicarbonate to produce ammonia and carbon dioxide. In Escherichia coli, cyanase is induced from the cyn operon in response to extracellular cyanate. The enzyme is functionally active as a homodecamer of 17 kDa subunits, and displays half-site binding of substrates or substrate analogs. The enzyme shows no significant amino acid sequence homology with other proteins. RESULTS: We have determined the crystal structure of cyanase at 1.65 A resolution using the multiwavelength anomalous diffraction (MAD) method. Cyanase crystals are triclinic and contain one homodecamer in the asymmetric unit. Selenomethionine-labeled protein offers 40 selenium atoms for use in phasing. Structures of cyanase with bound chloride or oxalate anions, inhibitors of the enzyme, allowed identification of the active site. CONCLUSIONS: The cyanase monomer is composed of two domains. The N-terminal domain shows structural similarity to the DNA-binding alpha-helix bundle motif. The C-terminal domain has an 'open fold' with no structural homology to other proteins. The subunits of cyanase are arranged in a novel manner both at the dimer and decamer level. The dimer structure reveals the C-terminal domains to be intertwined, and the decamer is formed by a pentamer of these dimers. The active site of the enzyme is located between dimers and is comprised of residues from four adjacent subunits of the homodecamer. The structural data allow a conceivable reaction mechanism to be proposed.  相似文献   

16.
The crystal structure of the YrbI protein from Haemophilus influenzae (HI1679) was determined at a 1.67-A resolution. The function of the protein had not been assigned previously, and it is annotated as hypothetical in sequence databases. The protein exhibits the alpha/beta-hydrolase fold (also termed the Rossmann fold) and resembles most closely the fold of the L-2-haloacid dehalogenase (HAD) superfamily. Following this observation, a detailed sequence analysis revealed remote homology to two members of the HAD superfamily, the P-domain of Ca(2+) ATPase and phosphoserine phosphatase. The 19-kDa chains of HI1679 form a tetramer both in solution and in the crystalline form. The four monomers are arranged in a ring such that four beta-hairpin loops, each inserted after the first beta-strand of the core alpha/beta-fold, form an eight-stranded barrel at the center of the assembly. Four active sites are located at the subunit interfaces. Each active site is occupied by a cobalt ion, a metal used for crystallization. The cobalt is octahedrally coordinated to two aspartate side-chains, a backbone oxygen, and three solvent molecules, indicating that the physiological metal may be magnesium. HI1679 hydrolyzes a number of phosphates, including 6-phosphogluconate and phosphotyrosine, suggesting that it functions as a phosphatase in vivo. The physiological substrate is yet to be identified; however the location of the gene on the yrb operon suggests involvement in sugar metabolism.  相似文献   

17.
Comparison of subunit AddA of the Bacillus subtilis AddAB enzyme, subunit RecB of the Escherichia coli RecBCD enzyme, and subunit RecB of the Haemophilus influenzae RecBCD enzyme revealed several regions of homology. Whereas the first seven regions are common among helicases, the two C-terminally located regions are unique for RecB of E. coli and H. influenzae and AddA. Deletion of the C-terminal region resulted in the production of an enzyme which showed moderately impaired levels of ATP-dependent helicase activity, whereas the ATP-dependent exonuclease activity was completely destroyed. The mutant enzyme was almost completely capable of complementing E. coli recBCD and B. subtilis addAB strains with respect to DNA repair and homologous recombination. These results strongly suggest that at least part of the C-terminal region of the AddA protein is indispensable for exonuclease activity and that, in contrast to the exonuclease activity, the helicase activity of the addAB gene product is important for DNA repair and homologous recombination.  相似文献   

18.
UvrA protein is a major component of ABC endonuclease complex involved in nucleotide excision repair (NER) mechanism. Although NER system is best characterized in Escherichia coli, not much information is available in Haemophilus influenzae. However, based on amino acid homology, uvrA ORF has been identified on H. influenzae genome [gene identification No. HI0249, Science 269 (1995) 496]. H. influenzae Rd uvrA ORF was cloned and overexpressed in E. coli. The expressed UvrA protein was purified using a two-step column chromatography protocol to a single band of expected molecular weight (104 kDa) and characterized for its ATPase and DNA binding activity. In addition, when H. influenzae uvrA was introduced in E. coli uvrA mutant strain AB1886, its UV resistance was restored to near wild type level.  相似文献   

19.
Rational design of protein surface is important for creating higher order protein structures, but it is still challenging. In this study, we designed in silico the several binding interfaces on protein surfaces that allow a de novo protein–protein interaction to be formed. We used a computer simulation technique to find appropriate amino acid arrangements for the binding interface. The protein–protein interaction can be made by forming an intermolecular four-helix bundle structure, which is often found in naturally occurring protein subunit interfaces. As a model protein, we used a helical protein, YciF. Molecular dynamics simulation showed that a new protein–protein interaction is formed depending on the number of hydrophobic and charged amino acid residues present in the binding surfaces. However, too many hydrophobic amino acid residues present in the interface negatively affected on the binding. Finally, we found an appropriate arrangement of hydrophobic and charged amino acid residues that induces a protein–protein interaction through an intermolecular four-helix bundle formation.  相似文献   

20.
Lactic acid bacteria produce and secrete bacteriocins. These bacteriocins are potent antimicrobial peptides that are active against other closely related bacteria. As a means of self-protection, producer organisms also express immunity proteins. Immunity proteins are generally located on the same genetic locus and are cotranscribed with the bacteriocin. Although some cross immunity between bacteriocins has been observed, immunity proteins are typically highly specific. Immunity proteins for the type IIa bacteriocins range from 81 to 115 amino acids in length and display substantial variation in their sequences. Nonetheless, such immunity proteins have been classified into three groupings (groups A, B, and C) according to sequence homology. The structures of a group C (ImB2) and two group A (EntA-im and PedB) immunity proteins have previously been reported. We herein report the nuclear magnetic resonance solution structure of the remaining class of the type IIa immunity proteins. PisI, a 98-amino acid protein, is a group B immunity protein conferring immunity against piscicolin 126 (PisA). Like ImB2, EntA-im, and PedB, PisI folds into a globular protein in aqueous solution and contains an antiparallel four-helix bundle. Compared to ImB2 and EntA-im, PisI has a substantially longer and more flexible N-terminus, but a shorter C-terminus. No direct interaction between the bacteriocin and immunity protein is observed by NMR in either aqueous or membrane mimicking environments. This further suggests that the mechanism that mediates immunity is not due to a direct bacteriocin-immunity protein interaction but rather is receptor-mediated. It has now been confirmed that the four-helix bundle is indeed a structural motif among the type IIa immunity proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号