首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because degranulation of brain mast cells activates adrenocortical secretion (41, 42), we examined whether activation of such cells increases renin and vasopressin (antidiuretic hormone: ADH) secretion. For this, we administered compound 48/80 (C48/80), which liberates histamine from mast cells, to pentobarbital-anesthetized dogs. An infusion of 37.5 microg/kg C48/80 into the cerebral third ventricle evoked increases in plasma renin activity (PRA), and in plasma epinephrine (Epi) and ADH concentrations. Ketotifen (mast cell-stabilizing drug; given orally for 1 wk before the experiment) significantly reduced the C48/80-induced increases in PRA, Epi, and ADH. Resection of the bilateral splanchnic nerves (SPX) below the diaphragm completely prevented the C48/80-induced increases in PRA and Epi, but potentiated the C48/80-induced increase in ADH and elevated the plasma Epi level before and after C48/80 challenge. No significant changes in mean arterial blood pressure, heart rate, concentrations of plasma electrolytes (Na+, K+, and Cl-), or plasma osmolality were observed after C48/80 challenge in dogs with or without SPX. Pyrilamine maleate (H1 histaminergic-receptor antagonist) significantly reduced the C48/80-induced increase in PRA when given intracerebroventricularly, but not when given intravenously. In contrast, metiamide (H2 histaminergic-receptor antagonist) given intracerebroventricularly significantly potentiated the C48/80-induced PRA increase. A small dose of histamine (5 microg/kg) administered intracerebroventricularly increased PRA twofold and ADH fourfold (vs. their basal level). These results suggest that in dogs, endogenous histamine liberated from brain mast cells may increase renin and Epi secretion (via the sympathetic outflow) and ADH secretion (via the central nervous system).  相似文献   

2.
Adrenal steroidogenesis is closely correlated with increases in adrenal blood flow. Many reports have studied the regulation of adrenal blood flow in vivo and in perfused glands, but until recently few studies have been conducted on isolated adrenal arteries. The present study examined vasomotor responses of isolated bovine small adrenal cortical arteries to histamine, an endogenous vasoactive compound, and its mechanism of action. In U-46619-precontracted arteries, histamine (10(-9)-5 x 10(-6) M) elicited concentration-dependent relaxations. The relaxations were blocked by the H(1) receptor antagonists diphenhydramine (10 microM) or mepyramine (1 microM) (maximal relaxations of 18 +/- 6 and 22 +/- 6%, respectively, vs. 55 +/- 5% of control) but only partially inhibited by the H(2) receptor antagonist cimetidine (10 microM) and the H(3) receptor antagonist thioperamide (1 microM). Histamine-induced relaxations were also blocked by the nitric oxide synthase inhibitor N-nitro-L-arginine (L-NA, 30 microM; maximal relaxation of 13 +/- 7%) and eliminated by endothelial removal or L-NA combined with the cyclooxgenase inhibitor indomethacin (10 microM). In the presence of adrenal zona glomerulosa (ZG) cells, histamine did not induce further relaxations compared with histamine alone. Histamine (10(-7)-10(-5) M) concentration-dependently increased aldosterone production by adrenal ZG cells. Compound 48/80 (10 microg/ml), a mast cell degranulator, induced significant relaxations (93 +/- 0.6%), which were blocked by L-NA plus indomethacin or endothelium removal, partially inhibited by the combination of the H(1), H(2), and H(3) receptor antagonists, but not affected by the mast cell stabilizer sodium cromoglycate (1 mM). These results demonstrate that histamine causes direct relaxation of small adrenal cortical arteries, which is largely mediated by endothelial NO and prostaglandins via H(1) receptors. The potential role of histamine in linking adrenal vascular events and steroid secretion requires further investigation.  相似文献   

3.
Nerve growth factor (NGF) has been shown to stimulate the hypothalamic-pituitary-adrenocortical (HPA) axis. Since NGF induces the release of histamine from mast cells and in consideration of the fact that histamine is an HPA axis activator, we investigated whether NGF adrenocortical stimulation is mediated by histamine. To accomplish with it, the H1 histamine antagonist promethazine and the H2 antagonists metiamide and zolantidine were used in freely-moving cannulated rats. The increase in plasma corticosterone concentration induced by histamine administration was prevented completely by promethazine pretreatment but was unaffected by the H2 antagonists. Neither H1 nor H2 antagonists affected the adrenocortical stimulation induced by NGF administration. Moreover, since mast cells are reportedly present in the rat adrenal gland and the locally released histamine mediates the release of adrenaline which, in turn, stimulates glucocorticoid synthesis and secretion, we studied the effect of NGF on basal and ACTH-stimulated corticosterone release from in vitro isolated quartered adrenal glands and collagenase-dispersed adrenal cells. The results from these in vitro experiments have indicated that NGF modified neither spontaneous nor stimulated corticosterone release. Altogether these observations suggest that endogenous histamine is unlikely to be involved in HPA axis stimulation by NGF and reinforce the previously proposed concept of an active participation of NGF in the control of adrenocortical activity.  相似文献   

4.
The involvement of extracellular free Ca2+ in histamine release was investigated in rat peritoneal mast cells. Incubation of non-antigenized cells in a media with high extracellular potassium did not increase histamine release. Secretion induced by A23187 and compound 48/80 in the presence of Ca2+ requires metabolic energy. In the absence of external free Ca2+ (2.5 microM) histamine release induced by A23187 is reduced but not abolished. Secretion induced by compound 48/80 is independent of extracellular Ca2+. These results lead us to suggest that mast cell plasma membranes probably lack voltage-gated Ca2+ channels and that external Ca2+ may not be an absolute requisite for histamine secretion.  相似文献   

5.
Three types of agonists; receptor-mediated concanavalin A), direct (phorbol ester), and membrane-perturbing (compound 48/80), elicit histamine secretion from rat peritoneal mast cells. We tested whether activation of the mast cells by these agents is accompanied by subcellular redistribution of protein kinase C. Phorbol ester treatment predictably caused a profound decrease of phospholipid/Ca2+-dependent histone kinase activity in the cytosol and a concomitant increase of [3H]PMA-binding capacity in the membrane fraction, in a time- and concentration-dependent manner. Similar, but less marked effects were observed with stimulations by concanavalin A and compound 48/80. When mast cells labeled with [32P] and then stimulated with the agents, phosphorylation of a 50,000-Dalton protein was enhanced in the membrane fraction. These results suggest that protein kinase C may play a role in mast cell activation through phosphorylation of the membrane protein.  相似文献   

6.
Activation of mast cells, the key cells of allergic inflammation, causes typical morphological changes associated with an increase in volume, that is a function of area and perimeter. The purpose of this study was to evaluate the effect of mast cell activation to degranulate, carried out by the secretagogue Compound 48/80, and of inhibition of this activation carried out by Nedocromil sodium, a mast cell stabilizing drug, on mast cell area, perimeter and shape factor by a computerized image analyzer. Mast cells were isolated and purified by peritoneal lavage of rats (purity >98%) and co-cultured with mouse 3T3 fibroblasts to which they adhere. Cultures were incubated for 10 min at 37 degrees C with culture medium alone (Enriched Medium) or Enriched Medium containing either Nedocromil (10(-4) M) or Compound 48/80 (0.3 microg/ml) or Compound 48/80 and Nedocromil (0.3 microg/ml and 10(-4) M respectively). Supernatants were then assessed for histamine release, as a marker of mast cell activation and the cell monolayers were fixed and stained with an alcoholic-acidic toluidine blue solution and examined with a computerized image analyzer connected with a light microscope. Mast cells incubated in Enriched Medium or Nedocromil possessed similar morphometric parameters. Mast cells activated with Compound 48/80 (70% histamine release) had a significant increase in area and perimeter and a decrease in shape factor in comparison to mast cells in Enriched Medium alone. Simultaneous incubation of mast cells with Compound 48/80 and Nedocromil significantly inhibited their histamine release (36% histamine release) and the increase in area and perimeter, but did not affect significantly their shape factor, in comparison with mast cells incubated with Compound 48/80 alone. These data clearly show that there is a relationship between mast cell activation, consequent histamine release and changes in cell area, perimeter and shape factor and that Nedocromil not only inhibits mast cell histamine release but also the activation induced morphometric changes in mast cells.  相似文献   

7.
The colocalization of histamine (HA) and norepinephrine (NE) immunoreactivities was identified within the superior cervical ganglia neurons of the guinea pig. HA and NE immunoreactivity levels were significantly attenuated after chemical sympathectomy with 6-hydroxydopamine (6-OHDA). Coexistence of NE and HA was also visualized in the cardiac sympathetic axon and varicosities labeled with anterograde tracer biotinylated dextran amine. Depolarization of cardiac sympathetic nerve endings (synaptosomes) with 50 mM potassium stimulated endogenous HA release, which was significantly attenuated by 6-OHDA or a vesicular monoamine transporter 2 (VMAT2) inhibitor reserpine pretreatments. Compound 48/80, a mast cell releaser, did not affect cardiac synaptosome HA exocytosis. Furthermore, K+ -evoked HA release was abolished by the N-type Ca2+ -channel blocker omega-conotoxin but was not affected by the L-type Ca2+ -channel blocker lacidipine. Cardiac synaptosome HA exocytosis was augmented by the enhanced synthesis of HA or the inhibition of HA metabolism. HA H3-receptor activation by (R)-alpha-methylhistamine inhibited high K+ -evoked histamine release. The HA H3 receptor antagonist thioperamide enhanced K+ -evoked HA release and blocked the (R)-alpha-methylhistamine effect. The K+ -evoked endogenous NE release was attenuated by preloading the cardiac synaptosomes with L-histidine or quinacrine. These inhibitory effects were reversed by thioperamide or antagonized by alpha-fluoromethylhistidine. Our findings indicate that high K+ -evoked corelease of NE and HA may be inhibited by endogenous HA via activation of presynaptic HA H3-receptors. The H3-receptor may function as an autoreceptor, rather than a heteroreceptor, in the regulation of sympathetic neurotransmission and HA may be a novel sympathetic neurotransmitter.  相似文献   

8.
The subplasmalemmal cytoskeleton in mast cells has been studied by scanning electron microscopy of the internal side of the plasma membrane. Rearrangement of the dense subplasmalemmal network of actin filaments took place following cell activation by compound 48/80 and secretion of histamine. The rearrangement was a withdrawal of the subplasmalemmal cytoskeleton from the exocytotic sites and the development of bare, filament-free areas around the sites. In calcium-depleted mast cells we demonstrated a dense network that was difficult to break. Activation of the calcium-depleted cells by compound 48/80 did not induce rearrangement of the network, and in parallel there was no secretion of histamine.  相似文献   

9.
The effect of diethylstilbestrol, a synthetic estrogen, on mast cell secretion was investigated. The results showed that 50 microM diethylstilbestrol inhibited histamine release from rat peritoneal mast cells in the presence and absence of glucose, but did not affect 45Ca uptake stimulated by concanavalin A. Diethylstilbestrol also inhibited histamine release induced by compound 48/80, exogenous ATP, or ionophore A23187. Since estradiol benzoate, hexestrol and daidzein were not inhibitory, the inhibitory action of diethylstilbestrol must be independent of its estrogenic activity. The ATP content of mast cells decreased to less than 0.1 nmol/10(6) cells on treatment with 50 microM diethylstilbestrol at 37 degrees C for 15 min. This effect of diethylstilbestrol in decreasing the ATP content of mast cells correlated well with its inhibitory effect on histamine release. Diethylstilbestrol at 50 microM depleted the cells of ATP at 37 degrees C, but not at 0 degrees C, whereas [3H]diethylstilbestrol ( [monoethyl-3H]diethylstilbestrol) binding to rat mast cells was the same at 0 and 37 degrees C. It is concluded that diethylstilbestrol reduced the ATP content of rat mast cells by inhibiting metabolism of the cells, and consequently inhibited degranulation.  相似文献   

10.
Isolated rat peritoneal mast cells actively secrete histamine in response to reaginic or chemical stimulation. Mast cells were irradiated in a waveguide microwave exposure chamber at 2450 MHz with power absorptions of 8.2 and 41.0 mW/g for periods up to 3 h. These levels of microwave absorption caused no change in the morphological characteristics or viability of the cells. Irradiated mast cells were stimulated with compound 48/80, a potent, noncytotoxic histamine releasing agent. The dose response curves showed that neither prior nor simultaneous irradiation of mast cells at 37°C affected 48/80-induced secretion. However, microwave power absorptions of 41.0 mW/g inhibited secretion at 44.0°C. Precise measurements of the effect of heat on secretion indicated that this level of inhibition could have been produced by a radiation induced increase in cell temperature between 0.4 and 0.9°C above ambient levels. Alternatively, the heat stress produced at 44°C may have sensitized the cells to the electromagnetic effects of the microwave radiation. Rat peritoneal mast cells can therefore be useful as a model for the study of functioning secretory cells during microwave irradiation and can also be used to monitor the synergistic effects of cell heating during in vitro exposure.  相似文献   

11.
S Toda  M Kimura  K Tohya 《Jikken dobutsu》1989,38(2):135-137
Strain differences among BALB/c, BDF1, CDF1, C3 H/He, C57 BL/6, DBA/2, ddy and ICR mice were investigated with respect to the ratios of histamine release from mouse peritoneal mast cells induced by compound 48/80, a Ca2+ dependent histamine releaser, and the Ca2+ ionophore A23187. The ratios of histamine release from mouse peritoneal mast cells induced by compound 48/80 were found to be high in BALB/c, ddY and ICR mice, but low in BDF1, CDF1, C3 H/He, C57 BL/6 and DBA/2 mice. Those induced by Ca2+ ionophore A23187 were high in BALB/c, BDF1, CDF1, C3 H/He, DBA2, ddy and ICR mice but low in C57 BL/6 mice. These results indicate that differences in histamine release from mouse peritoneal mast cells are strain dependent.  相似文献   

12.
Rat peritoneal mast cells which had been preincubated with phorbol myristate acetate (PMA, 100 ng/ml) for 30 sec elicited an enhanced histamine secretion induced by a potent secretagogue, compound 48/80. But a longer (5 min) preincubation with PMA followed by the agonist-stimulation induced a suppressed histamine secretion. A 5 min-PMA-pretreatment inhibited the compound 48/80-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) in [32P]-labeled cells. PMA-treatment alone for 5 min induced an activation of Ca2+-efflux monitored by 45Ca2+. The inhibition of histamine secretion induced by a 5 min-PMA-pretreatment followed by the agonist-stimulation may partly be attributed to the decreased intracellular Ca2+ concentration, [Ca2+]i, probably due to the depressed PIP2 breakdown and enhanced Ca2+-efflux. On the other hand, a 30 sec-preincubation with PMA followed by compound 48/80-stimulation induced a slight but significant increase in histamine secretion. In this case, neither breakdown of PIP2 nor Ca2+-influx was enhanced to raise the [Ca2+]i. Although we are unable to explain the mechanism for the enhancement of histamine secretion by a short (30 sec) PMA-preincubation, these results suggest that the biphasic effects of PMA on histamine secretion are mediated by intracellular Ca2+ mobilization probably via protein kinase C activation.  相似文献   

13.
The actions of ACTH on the adrenal cortex are known to be 2-fold. In addition to increased steroidogenesis, ACTH also causes marked vasodilation, reflected by an increased rate of blood flow through the gland. Our studies, using the in situ isolated perfused rat adrenal preparation, have shown that zona fasciculata function and corticosterone secretion are closely related to vascular events, with an increase in perfusion medium flow rate causing an increase in corticosterone secretion, in the absence of any known stimulant. These observations give rise to two important questions: how does ACTH stimulate blood flow; and how does increased blood (or perfusion medium) flow stimulate steroidogenesis? Addressing the first question, we have recently identified mast cells in the adrenal capsule, and shown that Compound 48/80, a mast cell degranulator, mimics the actions of ACTH on adrenal blood flow and corticosterone secretion. We have also demonstrated an inhibition of the adrenal vascular response to ACTH in the presence of disodium cromoglycate, which prevents mast cell degranulation. We conclude, therefore, that ACTH stimulates adrenal blood flow by its actions on mast cells in the adrenal capsule. Addressing the second question, we looked at the role of endothelin in the rat adrenal cortex. Endothelin 1, 2 and 3 caused significant stimulation of steroid secretion by collagenase dispersed cells from both the zona glomerulosa and the zona fasciculata. A sensitive response was seen, with significant stimulation at an endothelin concentration of 10(-13) mol/l or lower. Endothelin secretion by the in situ isolated perfused rat adrenal gland was measured using the Amersham assay kit. Administration of ACTH (300 fmol) caused an increase in the rate of immunoreactive endothelin secretion, from an average of 28.7 +/- 2.6 to 52.6 +/- 6 fmol/10 min (P less than 0.01, n = 5). An increase in immunoreactive endothelin secretion was also seen in response to histamine, an adrenal vasodilator, which stimulates corticosterone secretion in the intact gland, but has no effect on collagenase-dispersed cells. From these data we conclude that endothelin may mediate the effects of vasodilation on corticosterone secretion, and this mechanism may explain some of the differences in response characteristics between the intact gland and dispersed cells.  相似文献   

14.
The influence of PGP on compound 48/80-induced anaphylactoid reaction development in mice and on histamine secretion from rat peritoneal mast cells (RPMS) under their activation by compound 48/80 were investigated. Anaphylactoid reaction was caused by intraperitoneal injection of compound 48/80 into mice. The number of animals with manifestations of anaphylactoid reaction symptoms, the severity of these symptoms, the amount of died animals and the time of death were registering during an hour. Mast cells for in vitro investigations were obtained from rats’ peritoneal cavity. Secreted histamine was evaluated from formation of fluorescent product of it’s condensation with ortho-phthalaldehyde. The preventive injection of PGP in mice (15 min before compound 48/80) decreased the mortality rate of animals and intensity of anaphylactoid reaction symptoms. But PGP had no effect on histamine secretion from mast cells under their activation by compound 48/80 in vitro. Results show that there is a component in the mechanism of PGP protective effect under anaphylactoid reaction which is not connected with mast cells stabilization.  相似文献   

15.
Recently, it has been appreciated that cultured mast cells are significant sources of cytokines. However, the role of interkeukin-1 (IL-1) on mast cells and/or basophil degranulation is still unclear. In this report we provide evidence that rat basophilic leukemia cells (RBLC) cultured with a natural inhibitor of IL-1, interleukin-1 receptor antagonist (IL-1RA) (500 ng/ml) for 48 h, strongly inhibited the spontaneous release of serotonin (5HT) and histamine (from 22.50 to 43.49%), compared to untreated cells (control). When IL-1RA-treated and untreated RBLC were stimulated with a secretagogue (anti-IgE), no difference was found in the percent of 5HT and histamine release. Moreover, in another set of experiments using rat peritoneal mast cells (RPMC) treated and untreated with IL-1RA, we found that IL-1RA did not affect the release of 5HT or histamine, even when the secretagogue anti-IgE or compound 48/80 (C48/80) were used. The present studies describe an additional biological activity of IL-1RA, inhibiting histamine and 5HT release from RBLC cultures.Abbreviations IL-1 interleukin-1 - RA receptor antagonist - 5HT serotonin - RBLC rat basophilic leukemia cells - RPMC rat peritoneal mast cells - IgE immunoglobulin E - Fc immunoglobulin E receptor - CPM counts per minute - BSA bovine serum albumin - C48/80 compound 48/80 - TNF tumor necrosis factor  相似文献   

16.
Membrane phospholipid turnover was investigated during histamine release from rat mast cells. Addition of calcium ionophore A23187 (0.5 microgram/ml) to mast cells prelabeled with [3H]glycerol induced the rapid and progressive increase in phosphatidic acid (PA) and 1,2-diacylglycerol (DG), which was concomitant with the small rise in phosphatidylinositol (PI). Loss of the level in triacylglycerol (TG) was very marked. Polyamine compound 48/80 (5 micrograms/ml) was shown to cause rises in PA, 1,2-DG, and PI without any significant changes in TG. Both stimuli increased incorporation of exogenous [3H]glycerol into phospholipids, indicating the involvement of de novo synthesis in phospholipid metabolism. Studies with [3H]arachidonic acid-labeled mast cells showed an enhanced liberation of radioactive arachidonate and metabolites upon histamine release. There were associated decreases of radioactivity in phosphatidylcholine (PC) and TG when exposed to A23187, while phosphatidylethanolamine (PE) was degraded as a result of 48/80 activation. The transient increases of [3H]arachidonoyl-1,2-DG and PA were caused by 48/80, while A23187 showed a gradual rise in the radioactivity in these two lipid fractions. These findings reflect activation of phospholipase C. When mast cells were activated by low concentrations of A23187 (0.1 microgram/ml) and 48/80 (0.5 microgram/ml), different behaviors of PI metabolism were observed. An early degradation of PI and a subsequent formation of 1,2-DG and PA suggest that the lower concentrations of these agents stimulate the PI cycle initiated by PI breakdown rather than de novo synthesis. These results demonstrate that marked and selective changes in membrane phospholipid metabolism occur during histamine release from mast cells, and that these reactions seem to be controlled by the coordination of degradation and biosynthesis, depending on the type and the concentration of stimulants. A23187 stimulates arachidonate release perhaps via the cleavages of PC and TG, whereas 48/80 liberates arachidonate from PE.  相似文献   

17.
McLeod RL  Mingo GG  Kreutner W  Hey JA 《Life sciences》2005,76(16):1787-1794
The pharmacological consequences of combining a histamine H1 receptor antagonist with a H3 antagonist on cutaneous microvascular permeability due to intradermal (i.d.) injections of compound 48/80, a mast cell liberator of histamine, was studied in the anesthetized guinea pig. Compound 48/80 (0.0003, 0.001, 0.003 and 0.01%) induced permeability responses were attenuated, as determined by Evans blue extravasation, in animals pretreated with the H1 antagonist, chlorpheniramine (CTM; 1.0 mg/kg, i.v.) by 17 +/- 4, 31 +/- 4, 32 +/- 4 and 37 +/- 4%, respectively. Combination treatment with an H1 and H3 antagonist displayed greater inhibitory efficacy against the effects elicited by compound 48/80. Specifically, combined treatment with CTM (1.0 mg/kg, i.v.) and the H3 antagonist, thioperamide (THIO 1.0 mg/kg,i.v.) inhibited the skin responses of i.d. compound 48/80 (0.0003, 0.001, 0.003 and 0.01%) by 36 +/- 4, 45 +/- 4, 49 +/- 4 and 54 +/- 4%. A second H3 antagonist, clobenpropit (CLOB; 0.3 mg/kg, i.v.) plus CTM (1.0 mg/kg, i.v.) also inhibited Evans blue extravasation. Treatment with THIO (1.0 mg/kg, i.v.) and CLOB (0.3 mg/kg, i.v.) administered alone had no effect on compound 48/80-induced skin responses. We conclude that combination administration of a H1 and a H3 histamine receptor antagonist produces greater inhibitory effect on cutaneous microvascular permeability produced by released mast cell-derived histamine than either a H1 or H3 antagonist administered separately. In addition, the antiallergy activity of combining a H3 antihistamine with a H3 antagonist activity might provide a novel approach for the treatment of allergic skin diseases such as urticaria.  相似文献   

18.
Histamine release induced by the introduction of a nonhydrolyzable analogue of GTP, GTP-gamma-S, into ATP-permeabilized mast cells, is associated with phosphoinositide breakdown, as evidenced by the production of phosphatidic acid (PA) in a neomycin-sensitive process. The dependency of both PA formation and histamine secretion on GTP-gamma-S concentrations is bell shaped. Whereas concentrations of up to 0.1 mM GTP-gamma-S stimulate both processes, at higher concentrations the cells' responsiveness is inhibited. At a concentration of 1 mM, GTP-gamma-S self-inhibits both PA formation and histamine secretion. Inhibition of secretion can, however, be overcome by the basic secretagogues compound 48/80 and mastoparan that in suboptimal doses synergize with 1 mM GTP-gamma-S to potentiate secretion. Secretion under these conditions is not accompanied by PA formation and is resistant both to depletion of Ca2+ from internal stores and to pertussis toxin (PtX) treatment. In addition, 48/80, like mastoparan, is capable of directly stimulating the GTPase activity of G-proteins in a cell-free system. Together, our results are consistent with a model in which the continuous activation of a phosphoinositide-hydrolyzing phospholipase C (PLC) by a stimulatory G-protein suffices to trigger histamine secretion. Basic secretagogues of mast cells, such as compound 48/80 and mastoparan, are capable of inducing secretion in a mechanism that bypasses PLC by directly activating a G-protein that is presumably located downstream from PLC (GE). Thereby, these secretagogues induce histamine secretion in a receptor-independent manner.  相似文献   

19.
The function of contractile system of microtubules on the mechanism of mast cell exocytosis by using colchicine, a depolymerizing alkaloid of the microtubular system, has been studied. The response of histamine release and 45Ca-uptake in isolated rat mast cells treated with colchicine has been determined. The incubation of mast cells in the presence of 10(-8)-10(-3) M colchicine slightly inhibits histamine secretion induced by the stimulant concentration 50 micrograms/ml of compound 48/80 (35 +/- 5%). Similarly colchicine does not significantly affect histamine values spontaneously elicited in unstimulated mast cells; the percentages of secretion are never greater than 10%. However, high doses of this alkaloid are found to markedly inhibit entry of calcium ions into the cell. These results suggest that microtubules do not participate in the secretory process of mast cells, although they significantly decrease calcium uptake. The microtubules might be connected to the membrane, so that the depolymerization of this contractile system could damage the membrane structures through which Ca2+ is transported.  相似文献   

20.
In this study, we investigated the effect of Amomum xanthiodes (Zingiberaceae) extract (AXE) on the mast cell-mediated allergy model and studied the possible mechanism of action. We found that AXE inhibited compound 48/80-induced systemic reactions and plasma histamine release in mice. Additionally, AXE decreased immunoglobulin E (IgE)-mediated local allergic reactions and passive cutaneous anaphylaxis (PCA), and AXE dose-dependently attenuated the release of histamine from rat peritoneal mast cells (RPMC) activated by compound 48/80 or IgE. The amounts of AXE needed for inhibition of compound 48/80-induced plasma histamine release and PCA were similar to disodium cromoglycate, the known anti-allergic drug. We found that AXE increased the cAMP levels and decreased the compound 48/80-induced intracellular Ca2+. Furthermore, AXE attenuated the phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore (A23187)-stimulated tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-6 secretion in human mast cells. The inhibitory effect of AXE on the proinflammatory cytokines was nuclear factor-kappaB (NF-kappaB)-dependent. In addition, AXE decreased PMA plus A23187-induced degradation of IkappaBalphaand the nuclear translocation of NF-kappaB. Our findings provide evidence that AXE inhibits mast cell-derived immediate-type allergic reactions, and that cAMP, intracellular Ca2+, proinflammatory cytokines, and NF-kappaB are involved in these effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号