首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested the hypotheses that estrogen replacement in ovariectomized (OVX) rats attenuates cardiovascular responses to psychological stress and that nitric oxide (NO) in the brain mediates these effects. Female rats were OVX; one group received 17beta-estradiol (OVX-E) for 11-12 days and the other received vehicle (OVX-V). Seven days after OVX, OVX-E and OVX-V rats were chronically instrumented for arterial pressure measurements and intracerebroventricular injections. Later (4-5 days), OVX-E and OVX-V rats received intracerebroventricular injections of NG-nitro-l-arginine (88 microg/kg), an inhibitor of constitutive NO production, or vehicle. Mean arterial pressure (MAP) and heart rate responses were then measured in conscious rats exposed to two cycles of 1-h restraint/1-h rest. We show that MAP responses in restrained OVX-E rats were attenuated both during restraint and during rest. Although inhibition of NO production in the brain had no effect on MAP responses to restraint in OVX-V rats, it augmented responses in restrained OVX-E rats, especially during periods of rest, so that MAPs in restrained OVX-E and OVX-V rats were indistinguishable. Finally, NO levels in hypothalami and brain stems were elevated in restrained OVX-E, but not OVX-V, rats compared with their respective unrestrained controls. These results show that estrogen replacement in OVX rats reduces arterial pressure responses to psychological stress and that these effects are mediated, at least in part, by NO.  相似文献   

2.
The effect of 17beta-estradiol on venous function was investigated in ovariectomized rats with heart failure. Rats (50-60 days old) were ovariectomized and implanted with 60-day-release pellets that contain 17beta-estradiol (1.5 mg) or vehicle. The left coronary artery was ligated 7 days later. Another group of ovariectomized rats was given vehicle pellets and then a sham operation was performed. The rats were studied while under pentobarbital anesthesia at 7 wk after ligation. Ligated rats, relative to sham groups, had lower mean arterial pressure (MAP, -34 mmHg) and cardiac output (CO, -38%); higher arterial resistance (R(A), +12%) and venous resistance (R(V), +116%); mean circulatory filling pressure (MCFP, +40%) and left ventricular end-diastolic pressure (LVEDP, +11 mmHg); and similar cardiovascular responses to norepinephrine (NE). Treatment of ligated rats with 17beta-estradiol increased CO (+16%); reduced R(A) (-16%), R(V) (-35%), MCFP (-23%), and LVEDP (-3 mmHg); and augmented MAP, R(V,) and MCFP responses to NE. Therefore, 17beta-estradiol reduced MCFP, and this reduced preload (LVEDP). 17beta-Estradiol decreased R(V), which, along with decreased R(A) (afterload), led to an increase in CO. 17beta-Estradiol likely augmented vasoconstriction to NE through an improvement on the cardiovascular status.  相似文献   

3.
Female rats develop less severe pulmonary hypertension (PH) in response to chronic hypoxia compared with males, thus implicating a potential role for ovarian hormones in mediating this gender difference. Considering that estrogen upregulates endothelial nitric oxide (NO) synthase (eNOS) in systemic vascular tissue, we hypothesized that estrogen inhibits hypoxic PH by increasing eNOS expression and activity. To test this hypothesis, we examined responses to the endothelium-derived NO-dependent dilator ionomycin and the NO donors S-nitroso-N-acetylpenicillamine and spermine NONOate in U-46619-constricted, isolated, saline-perfused lungs from the following groups: 1) normoxic rats with intact ovaries, 2) chronic hypoxic (CH) rats with intact ovaries, 3) CH ovariectomized rats given 17 beta-estradiol (E(2)beta), and 4) CH ovariectomized rats given vehicle. Additional experiments assessed pulmonary eNOS levels in each group by Western blotting. Our findings indicate that E(2)beta attenuated chronic hypoxia-induced right ventricular hypertrophy, pulmonary arterial remodeling, and polycythemia. Furthermore, although CH augmented vasodilatory responsiveness to ionomycin and increased pulmonary eNOS expression, these responses were not potentiated by E(2)beta. Finally, responses to S-nitroso-N-acetylpenicillamine and spermine NONOate were similarly attenuated in all CH groups compared with normoxic control groups. We conclude that the inhibitory influence of E(2)beta on chronic hypoxia-induced PH is not associated with increased eNOS expression or activity.  相似文献   

4.
Endothelial production of nitric oxide (NO) and prostaglandins (PG) may be greater in females than in males, increasing vasodilatory responses in females. Does sex influence the cardiovascular responses to dynamic exercise through estrogen-dependent modulation of NO and PG vasodilatory pathways? After the administration of hexamethonium, we assessed terminal aortic blood flow (TAQ), mean arterial pressure (MAP), and hindlimb vascular conductance (VC) in four groups of rats (6 males, 5 females, 5 ovariectomized females, and 6 ovariectomized females with chronic estrogen supplementation) during graded mild-intensity treadmill locomotion (5-15 m/min, 0 degrees grade, 2 min). All rats repeated exercise after cyclooxygenase inhibition (indomethacin) and then again after NO synthase inhibition (nitro-l-arginine methyl ester) to examine the roles of NO and PG. Regression analysis was used to determine the influence of sex and plasma 17beta-estradiol on TAQ, MAP, and VC. The analysis revealed that female sex did not influence TAQ but reduced MAP and increased VC at rest and during exercise conditions. Plasma 17beta-estradiol (measured by immunoassay) significantly decreased MAP and increased TAQ and VC, irrespective of sex. Cyclooxygenase inhibition eliminated the significant association between MAP and estrogen, suggesting that estrogenic modulation occurred through PG-dependent processes. In contrast, the significant influence of estrogen on TAQ and VC was eliminated after NO synthase inhibition. On the basis of the overall findings of this study, estrogen influenced the vascular responses to dynamic exercise through PG- and NO-dependent pathways, but this occurred independent of sex.  相似文献   

5.
In this study we evaluated by telemetry the effects of ANG II and ANG-(1-7) infusion on the circadian rhythms of blood pressure (BP) and heart rate (HR) and on the cardiovascular adjustment resulting from restraint stress in rats. ANG II or ANG-(1-7) or vehicle were infused subcutaneously for 7 days. Restraint stress was carried out before, during, and after infusion at 7-day intervals. Parallel with an increase in MAP, ANG II infusion produced an inversion of MAP circadian rhythm with a significant MAP acrophase inversion. It also produced bradycardia during the first 3 days of infusion. Thereafter, HR progressively increased, reaching values similar to or above those of the control period at the end of the infusion period. HR circadian variation was not changed by ANG II infusion. Strikingly, ANG II significantly attenuated the increase in MAP induced by restraint stress without altering the HR response. ANG-(1-7) infusion produced a slight but significant decrease in MAP restricted to the daytime period. No significant changes in the MAP acrophase were observed. In addition, ANG-(1-7) infusion produced a small but significant sustained bradycardia. ANG-(1-7) did not change cardiovascular responses to restraint stress. These data indicate that ANG II can influence the activity of brain areas involved in the determination of stress-induced or circadian-dependent variations of blood pressure without changing HR fluctuations. A significant modulatory influence of ANG-(1-7) on basal MAP and HR is also suggested.  相似文献   

6.
目的:观察中期(4周)尾部悬吊大鼠在立位应激下的心血管反应。方法:采用本实验室改进的尾部悬吊方法,利用头高位倾斜和下体负压模拟立位应激,通过股动脉插管和心电图记录检测大鼠血压和心率改变。结果:与对照组相比,4周尾部悬吊(SUS)大鼠体重下降及后肢承重骨骼肌萎缩;其静息血压和心率与对照组(CON)相比无明显差别(P0.05);在两组大鼠中,头高位倾斜和下体负压均可导致血压降低和心率加快,但SUS大鼠平均动脉压下降幅度与CON大鼠相比显著增大(P0.05),而两组的心率增快幅度并无明显差别(P0.05)。结论:4周尾部悬吊大鼠在立位应激下维持血压稳定的能力减弱,可用于中期失重/模拟失重后立位耐力不良机理的研究。  相似文献   

7.
Clinical trials revealed that estrogen may result in cardiovascular risk in patients with coronary heart disease, despite earlier studies demonstrating that estrogen provided cardiovascular protection. It is possible that the preexisting condition of hypertension and the ability of estrogen to activate the renin-angiotensin system could confound its beneficial effects. Our hypothesis is that the attenuation of estrogen to agonist-induced vasoconstrictor responses through the activation of nitric oxide (NO) synthase (NOS) is impaired by hypertension. We investigated the effects of 17beta-estradiol (E(2)) replacement in normotensive Sprague-Dawley (SD) and (mRen2)27 hypertensive transgenic (TG) rats on contractile responses to three vasoconstrictors, angiotensin II (ANG II), serotonin (5-HT), and phenylephrine (PE), and on the modulatory role of vascular NO to these responses. The aorta was isolated from ovariectomized SD and TG rats treated chronically with 5 mg E(2) or placebo (P). The isometric tension of the aortic rings was measured in organ chambers, and endothelial NOS (eNOS) in the rat aorta was detected using Western blot analysis. E(2) treatment increased eNOS expression in the SD and TG aorta and reduced ANG II- and 5-HT- but not PE-induced contractions in SD and TG rats. The inhibition of NOS with N(omega)-nitro-L-arginine methyl ester enhanced ANG II-, 5-HT-, and PE-induced contractions in P-treated and ANG II and PE responses in E(2)-treated SD and TG rats. Only the responses to 5-HT were augmented in hypertensive rats. In conclusion, this study shows that the preexisting condition of hypertension augmented the vascular responsiveness of 5-HT, whereas the attenuation of estrogen by ANG II and 5-HT vascular responses was not impaired by hypertension. The adrenergic agonist was unresponsive to estrogen treatment. The contribution of NO as a factor contributing to the relative refractoriness of the vascular responses is dependent on the nature of the vasoconstrictor and/or the presence of estrogen.  相似文献   

8.
The present study was carried out to investigate the effect of running training on adrenocorticotrophic hormone (ACTH) response in rats to swimming or cage-switch stress to determine whether, after physical training, a cross-adaptation develops in the ACTH responses induced by different types of stresses. Rats were trained by two different kinds of exercises and for two different periods of training: 1) swimming for 4 wk (4W-swimming), 2) running for 4 wk (4W-running), and 3) running for 10 wk (10W-running). Remaining rats were used for control for 4 wk (4W-control) and 10 wk (10W-control). The ACTH response induced by swimming stress was reduced after training by swimming (62.4%) or by running (13.8-16.4%). These training periods also attenuated the ACTH response induced by cage-switch stress (62.4% in the swimming group, 23.8-34.6% in the running groups). After swimming stress, the 4W-swimming and 10W-running groups showed smaller increases in blood glucose than the control groups. In addition, the increased levels of blood lactate in all the trained rats were significantly smaller than those in the control groups, suggesting that an adaptation was achieved after physical training. These results suggest that after running training, cross-adaptation is developed in the ACTH response induced by different types of physical (swimming) or psychological (cage-switch) stresses.  相似文献   

9.
10.

Background

The Lateral Septal Area (LSA) is involved with autonomic and behavior responses associated to stress. In rats, acute restraint (RS) is an unavoidable stress situation that causes autonomic (body temperature, mean arterial pressure (MAP) and heart rate (HR) increases) and behavioral (increased anxiety-like behavior) changes in rats. The LSA is one of several brain regions that have been involved in stress responses. The aim of the present study was to investigate if the neurotransmission blockade in the LSA would interfere in the autonomic and behavioral changes induced by RS.

Methodology/Principal Findings

Male Wistar rats with bilateral cannulae aimed at the LSA, an intra-abdominal datalogger (for recording internal body temperature), and an implanted catheter into the femoral artery (for recording and cardiovascular parameters) were used. They received bilateral microinjections of the non-selective synapse blocker cobalt chloride (CoCl2, 1 mM/ 100 nL) or vehicle 10 min before RS session. The tail temperature was measured by an infrared thermal imager during the session. Twenty-four h after the RS session the rats were tested in the elevated plus maze (EPM).

Conclusions/Significance

Inhibition of LSA neurotransmission reduced the MAP and HR increases observed during RS. However, no changes were observed in the decrease in skin temperature and increase in internal body temperature observed during this period. Also, LSA inhibition did not change the anxiogenic effect induced by RS observed 24 h later in the EPM. The present results suggest that LSA neurotransmission is involved in the cardiovascular but not the temperature and behavioral changes induced by restraint stress.  相似文献   

11.
A chromosome 1 blood pressure quantitative trait locus (QTL) was introgressed from the stroke-prone spontaneously hypertensive rats (SHRSP) to Wistar-Kyoto (WKY) rats. This congenic strain (WKYpch1.0) showed an exaggerated pressor response to both restraint and cold stress. In this study, we evaluated cardiovascular and sympathetic response to an air-jet stress and also examined the role of the brain renin-angiotensin system (RAS) in the stress response of WKYpch1.0. We measured mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) responses to air-jet stress in WKYpch1.0, WKY, and SHRSP. We also examined effects of intracerebroventricular administration of candesartan, an ANG II type 1 receptor blocker, on MAP and HR responses to air-jet stress. Baseline MAP in the WKYpch1.0 and WKY rats were comparable, while it was lower than that in SHRSP rats. Baseline HR did not differ among the strains. In WKYpch1.0, air-jet stress caused greater increase in MAP and RSNA than in WKY. The increase in RSNA was as large as that in SHRSP, whereas the increase in MAP was smaller than in SHRSP. Intracerebroventricular injection of a nondepressor dose of candesartan inhibited the stress-induced pressor response to a greater extent in WKYpch1.0 than in WKY. Intravenous injection of phenylephrine caused a presser effect comparable between WKYpch1.0 and WKY. These results suggest that the chromosome 1 blood pressure QTL congenic rat has a sympathetic hyperreactivity to an air-jet stress, which causes exaggerated pressor responses. The exaggerated response is at least partly mediated by the brain RAS.  相似文献   

12.
Pennacchio  G. E.  Santonja  F. E.  Neira  F. J.  Bregonzio  C.  Soaje  M. 《Neurochemical research》2022,47(5):1317-1328

Prenatal exposure to amphetamine induces changes in dopamine receptors in mesolimbic areas and alters locomotor response to amphetamine during adulthood. Sex differences have been reported in amphetamine-induced brain activity and stress sensitivity. We evaluated the effects of prenatal amphetamine exposure on locomotor activity, dopamine receptors and tyrosine hydroxylase mRNA expression in nucleus accumbens and caudate-putamen in response to amphetamine challenge in adult female and male rats. The role of estrogen in the response to restraint stress was analyzed in ovariectomized, prenatally amphetamine-exposed rats. Pregnant rats were treated with d-amphetamine during days 15–21 of gestation. Nucleus accumbens and caudate-putamen were processed for mRNA determination by real-time PCR. In nucleus accumbens, higher mRNA dopamine (D3) receptor expression was found in basal and d-amphetamine-challenge conditions in female than male, and prenatal amphetamine increased the difference. No sex differences were observed in caudate-putamen. Basal saline-treated females showed higher locomotor activity than males. Amphetamine challenge in prenatally amphetamine-exposed rats increased locomotor activity in males and reduced it in females. In nucleus accumbens, estrogen diminished mRNA D1, D2 and D3 receptor expression in basal, and D1 and D3 in ovariectomized stressed rats. Estrogen prevented the increase in tyrosine hydroxylase expression induced by stress in ovariectomized prenatally exposed rats. In conclusion, estrogen modulates mRNA levels of D1, D2 and D3 receptors and tyrosine hydroxylase expression in nucleus accumbens; prenatal amphetamine-exposure effects on D3 receptors and behavioral responses were gender dependent.

  相似文献   

13.
Estrogen depletion markedly exacerbates hypertension in female congenic mRen2. Lewis rats, a model of tissue renin overexpression. Because estrogen influences nitric oxide synthase (NOS) and NO may exert differential effects on blood pressure, the present study investigated the functional expression of NOS isoforms in the kidney of ovariectomized (OVX) mRen2. Lewis rats. OVX-mRen2. Lewis exhibited an increase in systolic blood pressure (SBP) of 171 +/- 5 vs. 141 +/- 7 mmHg (P < 0.01) for intact littermates. Renal cortical mRNA and protein levels for endothelial NOS (eNOS) were reduced 50-60% (P < 0.05) and negatively correlated with blood pressure. In contrast, cortical neuronal NOS (nNOS) mRNA and protein levels increased 100 to 300% (P < 0.05). In the OVX kidney, nNOS immunostaining was more evident in the macula densa, cortical tubules, and the medullary collecting ducts compared with the intact group. To determine whether the increase in renal nNOS expression constitutes a compensatory response to the reduction in renal eNOS, we treated both intact and OVX mRen2. Lewis rats with the selective nNOS inhibitor L-VNIO from 11 to 15 wk of age. The nNOS inhibitor reduced blood pressure in the OVX group (185 +/- 3 vs. 151 +/- 8 mmHg, P < 0.05), but pressure was not altered in the intact group (146 +/- 4 vs. 151 +/- 4 mmHg). In summary, exacerbation of blood pressure in the OVX mRen2. Lewis rats was associated with the discoordinate regulation of renal NOS isoforms. Estrogen sensitivity in this congenic strain may involve the influence of NO through the regulation of both eNOS and nNOS.  相似文献   

14.
Objective: Blood pressure (BP) and heart rate (HR) responses to stress are significant predictors of cardiovascular morbidity and mortality. Because obesity is a major risk factor for cardiovascular disease, we examined whether diet‐induced obesity alters the BP and HR responses to stress and whether these alterations are associated with augmented cardiovascular morbidity in the rat. Research Methods and Procedures: Adult male spontaneously hypertensive rats were fed either a normal diet or high‐fat diet (HFD) for 12 weeks. At weeks 0 and 12, body weight was measured, and BP and HR were recorded by radiotelemetry throughout three consecutive day and night periods and in response to 30‐minute immobilization stress. At the end of the 12‐week intervention, the rats were sacrificed, and their organs and sera were collected. Results: With the intervention, HFD rats showed a significantly greater increase in body weight (as expected) and circulating leptin and free fatty acid levels compared with normal diet rats. In addition, they showed similar increases in BP and HR elevations during stress but significantly slower BP and HR decreases after stress. These HFD‐induced delays in stress recovery were associated with BP and HR elevations during the night (behaviorally active) period and with augmentations in cardiac mass. Discussion: The results of this study indicate that, in spontaneously hypertensive rats, dietary obesity delays cardiovascular recovery from stress, and, in parallel, it promotes the development of nocturnal hypertension as well as cardiac hypertrophy. This suggests that dietary obesity may significantly potentiate the impact of daily stressful experiences on the cardiovascular system.  相似文献   

15.
Yung LM  Wong WT  Tian XY  Leung FP  Yung LH  Chen ZY  Yao X  Lau CW  Huang Y 《PloS one》2011,6(3):e17437

Background

Estrogen deficiency increases the cardiovascular risks in postmenopausal women. Inhibition of the renin-angiotensin system (RAS) and associated oxidative stress confers a cardiovascular protection, but the role of RAS in estrogen deficiency-related vascular dysfunction is unclear. The present study investigates whether the up-regulation of RAS and associated oxidative stress contributes to the development of endothelial dysfunction during estrogen deficiency in ovariectomized (OVX) rats.

Methodology/Principal Findings

Adult female rats were ovariectomized with and without chronic treatment with valsartan and enalapril. Isometric force measurement was performed in isolated aortae. The expression of RAS components was determined by immunohistochemistry and Western blotting method while ROS accumulation in the vascular wall was evaluated by dihydroethidium fluorescence. Ovariectomy increased the expression of angiotensin-converting enzyme (ACE), angiotensin II type 1 receptor (AT1R), NAD(P)H oxidase, and nitrotyrosine in the rat aorta. An over-production of angiotensin II and ROS was accompanied by decreased phosphorylation of eNOS at Ser1177 in OVX rat aortae. These pathophysiological changes were closely coupled with increased oxidative stress and decreased nitric oxide bioavailability, culminating in markedly impaired endothelium-dependent relaxations. Furthermore, endothelial dysfunction and increased oxidative stress in aortae of OVX rats were inhibited or reversed by chronic RAS inhibition with enalapril or valsartan.

Conclusions/Significance

The novel findings highlight a significant therapeutic benefit of RAS blockade in the treatment of endothelial dysfunction-related vascular complications in postmenopausal states.  相似文献   

16.
In this study, we compared endothelial nitric oxide synthase (eNOS)-mediated cerebral vasodilating responses in intact female rats, chronically ovariectomized (OVX) rats, and OVX rats treated for 2 weeks with 17beta-estradiol (E(2)). Under anesthesia, using intravital microscopy and a closed cranial window system, pial arteriolar diameter changes were monitored during sequential cortical suffusions of an eNOS-dependent dilator [acetylcholine (ACh)] and a direct NO donor [S-nitrosoacetylpenicillamine (SNAP)]. In separate rats from the same groups, we compared eNOS and caveolin-1 (CAV-1) protein abundance in pial arterioles (via immunofluorescence analyses). In untreated and low-dose E(2)-treated (1.0 microg x kg(-1) x day(-1)) OVX rats, ACh-induced vasodilations were virtually absent. High-dose E(2) treatment (100 microg x kg(-1) x day(-1)) restored ACh-induced pial arteriolar dilations to levels seen in intact females. The vasodilations elicited by SNAP and ADO were unaffected by chronic estrogen changes, indicating no direct estrogen influence on vascular smooth muscle (VSM) reactivity. Pial arteriolar eNOS protein abundance was diminished by ovariectomy and restored by high-dose E(2) treatment. Pial arteriolar CAV-1 expression was higher in OVX versus intact and E(2)-treated OVX females. These results suggest that long-term changes in estrogen directly influence brain eNOS functional activity. The estrogen-related changes in eNOS-dependent vasodilating function appear to be related, in part, to a capacity for E(2) to increase eNOS protein expression and, in part, to an E(2)-associated diminution in endothelial CAV-1 expression.  相似文献   

17.
Psychological stress elevates blood pressure through sympathetic nerve activation. This pressor response is supposedly associated with cardiovascular events. We investigated a sex difference in the pressor response and norepinephrine surge to cage-switch stress in rats. Wistar male and female rats were catheterized for blood pressure monitoring and blood sampling. Six days post-surgery, the rats were exposed to the cage-switch stress and blood samples were collected at rest and 30 min after the start of the stress. The stress-induced pressor response was greater in the male than in the female rats. The stress significantly increased the norepinephrine level in the male, but not in the female rats. Pre-treatment with N(G)-nitro-l-arginine methyl ester (L-NAME), a nitric oxide (NO) synthase inhibitor, attenuated the norepinephrine response significantly in the male rats. There was no sex difference in the endothelial NO synthase expression in the gastrocnemius muscle. However the phosphorylation at serine 1177, a marker for eNOS activation, was higher in the male than in the female rats. These results suggest that NO is involved in the norepinephrine surge to psychological stress in the male rats, but not in the female rats. This is the first report on a sex difference in the norepinephrine surge in response to psychological stress through NO, in association with pressor response.  相似文献   

18.
19.
Estrogen facilitates baroreflex heart rate responses evoked by intravenous infusion of ANG II and phenylephrine (PE) in ovariectomized female mice. The present study aims to identify the estrogen receptor subtype involved in mediating these effects of estrogen. Baroreflex responses to PE, ANG II, and sodium nitroprusside (SNP) were tested in intact and ovariectomized estrogen receptor-alpha knockout (ERalphaKO) with (OvxE+) or without (OvxE-) estrogen replacement. Wild-type (WT) females homozygous for the ERalpha(+/+) were used as controls. Basal mean arterial pressures (MAP) and heart rates were comparable in all the groups except the ERalphaKO-OvxE+ mice. This group had significantly smaller resting MAP, suggesting an effect of estrogen on resting vascular tone possibly mediated by the ERbeta subtype. Unlike the WT females, estrogen did not facilitate baroreflex heart rate responses to either PE or ANG II in the ERalphaKO-OvxE+ mice. The slope of the line relating baroreflex heart rate decreases with increases in MAP evoked by PE was comparable in ERalphaKO-OvxE- (-6.97 +/- 1.4 beats.min(-1).mmHg(-1)) and ERalphaKO-OvxE+ (-6.18 +/- 1.3) mice. Likewise, the slope of the baroreflex bradycardic responses to ANG II was similar in ERalphaKO-OvxE- (-3.87 +/- 0.5) and ERalphaKO-OvxE+(-2.60 +/- 0.5) females. Data suggest that estrogen facilitation of baroreflex responses to PE and ANG II is predominantly mediated by ERalpha subtype. A second important observation in the present study is that the slope of ANG II-induced baroreflex bradycardia is significantly blunted compared with PE in the intact as well as the ERalphaKO-OvxE+ females. We have previously reported that this ANG II-mediated blunting of cardiac baroreflexes is observed only in WT males and not in ovariectomized WT females independent of their estrogen replacement status. The present data suggest that in females lacking ERalpha, ANG II causes blunting of cardiac baroreflexes similar to males and may be indicative of a direct modulatory effect of the ERalpha on those central mechanisms involved in ANG II-induced resetting of cardiac baroreflexes. These observations suggest an important role for ERalpha subtype in the central modulation of baroreflex responses. Lastly, estrogen did not significantly affect reflex tachycardic responses to SNP in both WT and ERalphaKO mice.  相似文献   

20.
Estrogen has been shown to increase endothelium-dependent vasodilation and expression of endothelial nitric oxide (NO) synthase (eNOS); however, the role of estrogen receptors in mediating estrogen effects on endothelial function remains to be elucidated. The purpose of this study was to test the hypothesis that estrogen modulates NO-dependent vasodilation of coronary arteries through its action on estrogen receptor-alpha (ER-alpha) to increase protein levels of eNOS and Cu/Zn superoxide dismutase (SOD-1). Vasodilation to acetylcholine (ACh) and sodium nitroprusside was assessed in isolated coronary arteries from intact and ovariectomized female wild-type (WT) and ER-alpha knockout (ERalphaKO) mice. Protein levels for eNOS and SOD-1 were also evaluated. Vasodilation to ACh was not significantly altered in ERalphaKO mice compared with WT mice. Ovariectomy reduced responsiveness to ACh in ERalphaKO mice but not WT mice. Responses to sodium nitroprusside were not altered by disruption of ER-alpha or by ovariectomy. Supplementation with estrogen restored ACh-induced vasodilation in ovariectomized ERalphaKO mice. eNOS protein was reduced in ERalphaKO mice compared with WT mice. Ovariectomy caused a further reduction in eNOS protein in ERalphaKO mice, but this reduction was reversed by estrogen treatment. SOD-1 protein levels were increased by disruption of ER-alpha. Ovariectomy reduced SOD-1 protein in ERalphaKO mice, but this reduction was partially reversed by estrogen replacement. These results suggest that estrogen modulation of eNOS protein content is mediated in part through ER-alpha. NO-dependent responses are preserved in ERalphaKO mice, possibly through increased SOD-1 expression and enhanced bioavailability of NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号