首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new topological method to measure protein structure similarity   总被引:5,自引:0,他引:5  
A method for the quantitative evaluation of structural similarity between protein pairs is developed that makes use of a Delaunay-based topological mapping. The result of the mapping is a three-dimensional array which is representative of the global structural topology and whose elements can be used to construe an integral scoring scheme. This scoring scheme was tested for its dependence on the protein length difference in a pairwise comparison, its ability to provide a reasonable means for structural similarity comparison within a family of structural neighbors of similar length, and its sensitivity to the differences in protein conformation. It is shown that such a topological evaluation of similarity is capable of providing insight into these points of interest. Protein structure comparison using the method is computationally efficient and the topological scores, although providing different information about protein similarity, correlate well with the distance root-mean-square deviation values calculated by rigid-body structural alignment.  相似文献   

2.
Yona G  Linial N  Linial M 《Proteins》1999,37(3):360-378
We investigate the space of all protein sequences in search of clusters of related proteins. Our aim is to automatically detect these sets, and thus obtain a classification of all protein sequences. Our analysis, which uses standard measures of sequence similarity as applied to an all-vs.-all comparison of SWISSPROT, gives a very conservative initial classification based on the highest scoring pairs. The many classes in this classification correspond to protein subfamilies. Subsequently we merge the subclasses using the weaker pairs in a two-phase clustering algorithm. The algorithm makes use of transitivity to identify homologous proteins; however, transitivity is applied restrictively in an attempt to prevent unrelated proteins from clustering together. This process is repeated at varying levels of statistical significance. Consequently, a hierarchical organization of all proteins is obtained. The resulting classification splits the protein space into well-defined groups of proteins, which are closely correlated with natural biological families and superfamilies. Different indices of validity were applied to assess the quality of our classification and compare it with the protein families in the PROSITE and Pfam databases. Our classification agrees with these domain-based classifications for between 64.8% and 88.5% of the proteins. It also finds many new clusters of protein sequences which were not classified by these databases. The hierarchical organization suggested by our analysis reveals finer subfamilies in families of known proteins as well as many novel relations between protein families.  相似文献   

3.
We have developed a new method and program, SARF2, for fast comparison of protein structures, which can detect topological as well as nontopological similarities. The method searches for large ensembles of secondary structure elements, which are mutually compatible in two proteins. These ensembles consist of small fragments of Cα-trace, similarly arranged in three-dimensional space in two proteins, but not necessarily equally-ordered along the polypeptide chains. The program SARF2 is available for everyone through the World-Wide Web (WWW). We have performed an exhaustive pairwise comparison of all the entries from a recent issue of the Protein Data Bank (PDB) and report here on the results of an automated hierarchical cluster analysis. In addition, we report on several new cases of significant structural resemblance between proteins. To this end, a new definition of the significance of structural similarity is introduced, which effectively distinguishes the biologically meaningful equivalences from those occurring by chance. Analyzing the distribution of sequence similarity in significant structural matches, we show that sequence similarity as low as 20% in structurally-prealigned proteins can be a strong indication for the biological relevance of structural similarity. © 1996 Wiley-Liss, Inc.  相似文献   

4.
Coevolution between protein residues is normally interpreted as direct contact. However, the evolutionary record of a protein sequence contains rich information that may include long-range functional couplings, couplings that report on homo-oligomeric states or even conformational changes. Due to the complexity of the sequence space and the lack of structural information on various members of a protein family, it has been difficult to effectively mine the additional information encoded in a multiple sequence alignment (MSA). Here, taking advantage of the recent release of the AlphaFold (AF) database we attempt to identify coevolutionary couplings that cannot be explained simply by spatial proximity. We propose a simple computational method that performs direct coupling analysis on a MSA and searches for couplings that are not satisfied in any of the AF models of members of the identified protein family. Application of this method on 2012 protein families suggests that ~12% of the total identified coevolving residue pairs are spatially distant and more likely to be disordered than their contacting counterparts. We expect that this analysis will help improve the quality of coevolutionary distance restraints used for structure determination and will be useful in identifying potentially functional/allosteric cross-talk between distant residues.  相似文献   

5.
For many years it has been accepted that the sequence of a protein can specify its three-dimensional structure. However, there has been limited progress in explaining how the sequence dictates its fold and no attempt to do this computationally without the use of specific structural data has ever succeeded for any protein larger than 100 residues. We describe a method that can predict complex folds up to almost 200 residues using only basic principles that do not include any elements of sequence homology. The method does not simulate the folding chain but generates many thousands of models based on an idealized representation of structure. Each rough model is scored and the best are refined. On a set of five proteins, the correct fold score well and when tested on a set of larger proteins, the correct fold was ranked highest for some proteins more than 150 residues, with others being close topological variants. All other methods that approach this level of success rely on the use of templates or fragments of known structures. Our method is unique in using a database of ideal models based on general packing rules that, in spirit, is closer to an ab initio approach.  相似文献   

6.
Cai XH  Jaroszewski L  Wooley J  Godzik A 《Proteins》2011,79(8):2389-2402
The protein universe can be organized in families that group proteins sharing common ancestry. Such families display variable levels of structural and functional divergence, from homogenous families, where all members have the same function and very similar structure, to very divergent families, where large variations in function and structure are observed. For practical purposes of structure and function prediction, it would be beneficial to identify sub-groups of proteins with highly similar structures (iso-structural) and/or functions (iso-functional) within divergent protein families. We compared three algorithms in their ability to cluster large protein families and discuss whether any of these methods could reliably identify such iso-structural or iso-functional groups. We show that clustering using profile-sequence and profile-profile comparison methods closely reproduces clusters based on similarities between 3D structures or clusters of proteins with similar biological functions. In contrast, the still commonly used sequence-based methods with fixed thresholds result in vast overestimates of structural and functional diversity in protein families. As a result, these methods also overestimate the number of protein structures that have to be determined to fully characterize structural space of such families. The fact that one can build reliable models based on apparently distantly related templates is crucial for extracting maximal amount of information from new sequencing projects.  相似文献   

7.
We report a method for detection of recurring side-chain patterns (DRESPAT) using an unbiased and automated graph theoretic approach. We first list all structural patterns as sub-graphs where the protein is represented as a graph. The patterns from proteins are compared pair-wise to detect patterns common to a protein pair based on content and geometry criteria. The recurring pattern is then detected using an automated search algorithm from the all-against-all pair-wise comparison data of proteins. Intra-protein pattern comparison data are used to enable detection of patterns recurring within a protein. A method has been proposed for empirical calculation of statistical significance of recurring pattern. The method was tested on 17 protein sets of varying size, composed of non-redundant representatives from SCOP superfamilies. Recurring patterns in serine proteases, cysteine proteases, lipases, cupredoxin, ferredoxin, ferritin, cytochrome c, aspartoyl proteases, peroxidases, phospholipase A2, endonuclease, SH3 domain, EF-hand and lectins show additional residues conserved in the vicinity of the known functional sites. On the basis of the recurring patterns in ferritin, EF-hand and lectins, we could separate proteins or domains that are structurally similar yet different in metal ion-binding characteristics. In addition, novel recurring patterns were observed in glutathione-S-transferase, phospholipase A2 and ferredoxin with potential structural/functional roles. The results are discussed in relation to the known functional sites in each family. Between 2000 and 50,000 patterns were enumerated from each protein with between ten and 500 patterns detected as common to an evolutionarily related protein pair. Our results show that unbiased extraction of functional site pattern is not feasible from an evolutionarily related protein pair but is feasible from protein sets comprising five or more proteins. The DRESPAT method does not require a user-defined pattern, size or location of the pattern and therefore, has the potential to uncover new functional sites in protein families.  相似文献   

8.
Automatic methods for predicting functionally important residues   总被引:9,自引:0,他引:9  
Sequence analysis is often the first guide for the prediction of residues in a protein family that may have functional significance. A few methods have been proposed which use the division of protein families into subfamilies in the search for those positions that could have some functional significance for the whole family, but at the same time which exhibit the specificity of each subfamily ("Tree-determinant residues"). However, there are still many unsolved questions like the best division of a protein family into subfamilies, or the accurate detection of sequence variation patterns characteristic of different subfamilies. Here we present a systematic study in a significant number of protein families, testing the statistical meaning of the Tree-determinant residues predicted by three different methods that represent the range of available approaches. The first method takes as a starting point a phylogenetic representation of a protein family and, following the principle of Relative Entropy from Information Theory, automatically searches for the optimal division of the family into subfamilies. The second method looks for positions whose mutational behavior is reminiscent of the mutational behavior of the full-length proteins, by directly comparing the corresponding distance matrices. The third method is an automation of the analysis of distribution of sequences and amino acid positions in the corresponding multidimensional spaces using a vector-based principal component analysis. These three methods have been tested on two non-redundant lists of protein families: one composed by proteins that bind a variety of ligand groups, and the other composed by proteins with annotated functionally relevant sites. In most cases, the residues predicted by the three methods show a clear tendency to be close to bound ligands of biological relevance and to those amino acids described as participants in key aspects of protein function. These three automatic methods provide a wide range of possibilities for biologists to analyze their families of interest, in a similar way to the one presented here for the family of proteins related with ras-p21.  相似文献   

9.
For successful ab initio protein structure prediction, a method is needed to identify native-like structures from a set containing both native and non-native protein-like conformations. In this regard, the use of distance geometry has shown promise when accurate inter-residue distances are available. We describe a method by which distance geometry restraints are culled from sets of 500 protein-like conformations for four small helical proteins generated by the method of Simons et al. (1997). A consensus-based approach was applied in which every inter-Calpha distance was measured, and the most frequently occurring distances were used as input restraints for distance geometry. For each protein, a structure with lower coordinate root-mean-square (RMS) error than the mean of the original set was constructed; in three cases the topology of the fold resembled that of the native protein. When the fold sets were filtered for the best scoring conformations with respect to an all-atom knowledge-based scoring function, the remaining subset of 50 structures yielded restraints of higher accuracy. A second round of distance geometry using these restraints resulted in an average coordinate RMS error of 4.38 A.  相似文献   

10.
Similarity of protein structures has been analyzed using three-dimensional Delaunay triangulation patterns derived from the backbone representation. It has been found that structurally related proteins have a common spatial invariant part, a set of tetrahedrons, mathematically described as a common spatial subgraph volume of the three-dimensional contact graph derived from Delaunay tessellation (DT). Based on this property of protein structures, we present a novel common volume superimposition (TOPOFIT) method to produce structural alignments. Structural alignments usually evaluated by a number of equivalent (aligned) positions (N(e)) with corresponding root mean square deviation (RMSD). The superimposition of the DT patterns allows one to uniquely identify a maximal common number of equivalent residues in the structural alignment. In other words, TOPOFIT identifies a feature point on the RMSD N(e) curve, a topomax point, until which the topologies of two structures correspond to each other, including backbone and interresidue contacts, whereas the growing number of mismatches between the DT patterns occurs at larger RMSD (N(e)) after the topomax point. It has been found that the topomax point is present in all alignments from different protein structural classes; therefore, the TOPOFIT method identifies common, invariant structural parts between proteins. The alignments produced by the TOPOFIT method have a good correlation with alignments produced by other current methods. This novel method opens new opportunities for the comparative analysis of protein structures and for more detailed studies on understanding the molecular principles of tertiary structure organization and functionality. The TOPOFIT method also helps to detect conformational changes, topological differences in variable parts, which are particularly important for studies of variations in active/ binding sites and protein classification.  相似文献   

11.
It is commonly believed that similarities between the sequences of two proteins infer similarities between their structures. Sequence alignments reliably recognize pairs of protein of similar structures provided that the percentage sequence identity between their two sequences is sufficiently high. This distinction, however, is statistically less reliable when the percentage sequence identity is lower than 30% and little is known then about the detailed relationship between the two measures of similarity. Here, we investigate the inverse correlation between structural similarity and sequence similarity on 12 protein structure families. We define the structure similarity between two proteins as the cRMS distance between their structures. The sequence similarity for a pair of proteins is measured as the mean distance between the sequences in the subsets of sequence space compatible with their structures. We obtain an approximation of the sequence space compatible with a protein by designing a collection of protein sequences both stable and specific to the structure of that protein. Using these measures of sequence and structure similarities, we find that structural changes within a protein family are linearly related to changes in sequence similarity.  相似文献   

12.
Structural biology and structural genomics are expected to produce many three-dimensional protein structures in the near future. Each new structure raises questions about its function and evolution. Correct functional and evolutionary classification of a new structure is difficult for distantly related proteins and error-prone using simple statistical scores based on sequence or structure similarity. Here we present an accurate numerical method for the identification of evolutionary relationships (homology). The method is based on the principle that natural selection maintains structural and functional continuity within a diverging protein family. The problem of different rates of structural divergence between different families is solved by first using structural similarities to produce a global map of folds in protein space and then further subdividing fold neighborhoods into superfamilies based on functional similarities. In a validation test against a classification by human experts (SCOP), 77% of homologous pairs were identified with 92% reliability. The method is fully automated, allowing fast, self-consistent and complete classification of large numbers of protein structures. In particular, the discrimination between analogy and homology of close structural neighbors will lead to functional predictions while avoiding overprediction.  相似文献   

13.
Cai CZ  Han LY  Ji ZL  Chen YZ 《Proteins》2004,55(1):66-76
One approach for facilitating protein function prediction is to classify proteins into functional families. Recent studies on the classification of G-protein coupled receptors and other proteins suggest that a statistical learning method, Support vector machines (SVM), may be potentially useful for protein classification into functional families. In this work, SVM is applied and tested on the classification of enzymes into functional families defined by the Enzyme Nomenclature Committee of IUBMB. SVM classification system for each family is trained from representative enzymes of that family and seed proteins of Pfam curated protein families. The classification accuracy for enzymes from 46 families and for non-enzymes is in the range of 50.0% to 95.7% and 79.0% to 100% respectively. The corresponding Matthews correlation coefficient is in the range of 54.1% to 96.1%. Moreover, 80.3% of the 8,291 correctly classified enzymes are uniquely classified into a specific enzyme family by using a scoring function, indicating that SVM may have certain level of unique prediction capability. Testing results also suggest that SVM in some cases is capable of classification of distantly related enzymes and homologous enzymes of different functions. Effort is being made to use a more comprehensive set of enzymes as training sets and to incorporate multi-class SVM classification systems to further enhance the unique prediction accuracy. Our results suggest the potential of SVM for enzyme family classification and for facilitating protein function prediction. Our software is accessible at http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi.  相似文献   

14.
Adamczak R  Porollo A  Meller J 《Proteins》2004,56(4):753-767
Accurate prediction of relative solvent accessibilities (RSAs) of amino acid residues in proteins may be used to facilitate protein structure prediction and functional annotation. Toward that goal we developed a novel method for improved prediction of RSAs. Contrary to other machine learning-based methods from the literature, we do not impose a classification problem with arbitrary boundaries between the classes. Instead, we seek a continuous approximation of the real-value RSA using nonlinear regression, with several feed forward and recurrent neural networks, which are then combined into a consensus predictor. A set of 860 protein structures derived from the PFAM database was used for training, whereas validation of the results was carefully performed on several nonredundant control sets comprising a total of 603 structures derived from new Protein Data Bank structures and had no homology to proteins included in the training. Two classes of alternative predictors were developed for comparison with the regression-based approach: one based on the standard classification approach and the other based on a semicontinuous approximation with the so-called thermometer encoding. Furthermore, a weighted approximation, with errors being scaled by the observed levels of variability in RSA for equivalent residues in families of homologous structures, was applied in order to improve the results. The effects of including evolutionary profiles and the growth of sequence databases were assessed. In accord with the observed levels of variability in RSA for different ranges of RSA values, the regression accuracy is higher for buried than for exposed residues, with overall 15.3-15.8% mean absolute errors and correlation coefficients between the predicted and experimental values of 0.64-0.67 on different control sets. The new method outperforms classification-based algorithms when the real value predictions are projected onto two-class classification problems with several commonly used thresholds to separate exposed and buried residues. For example, classification accuracy of about 77% is consistently achieved on all control sets with a threshold of 25% RSA. A web server that enables RSA prediction using the new method and provides customizable graphical representation of the results is available at http://sable.cchmc.org.  相似文献   

15.
Alignment free methods based on Chaos Game Representation (CGR), also known as sequence signature approaches, have proven of great interest for DNA sequence analysis. Indeed, they have been successfully applied for sequence comparison, phylogeny, detection of horizontal transfers or extraction of representative motifs in regulation sequences. Transposing such methods to proteins poses several fundamental questions related to representation space dimensionality. Several studies have tackled these points, but none has, so far, brought the application of CGRs to proteins to their fully expected potential. Yet, several studies have shown that techniques based on n-peptide frequencies can be relevant for proteins. Here, we investigate the effectiveness of a strategy based on the CGR approach using a fixed reverse encoding of amino acids into nucleic sequences. We first explore its relevance to protein classification into functional families. We then attempt to apply it to the prediction of protein structural classes. Our results suggest that the reverse encoding approach could be relevant in both cases. We show that it is able to classify functional families of proteins by extracting signatures close to the ProSite patterns. Applied to structural classification, the approach reaches scores of correct classification close to 84%, i.e. close to the scores of related methods in the field. Various optimizations of the approach are still possible, which open the door for future applications.  相似文献   

16.
Paul Mach  Patrice Koehl 《Proteins》2013,81(9):1556-1570
It is well known that protein fold recognition can be greatly improved if models for the underlying evolution history of the folds are taken into account. The improvement, however, exists only if such evolutionary information is available. To circumvent this limitation for protein families that only have a small number of representatives in current sequence databases, we follow an alternate approach in which the benefits of including evolutionary information can be recreated by using sequences generated by computational protein design algorithms. We explore this strategy on a large database of protein templates with 1747 members from different protein families. An automated method is used to design sequences for these templates. We use the backbones from the experimental structures as fixed templates, thread sequences on these backbones using a self‐consistent mean field approach, and score the fitness of the corresponding models using a semi‐empirical physical potential. Sequences designed for one template are translated into a hidden Markov model‐based profile. We describe the implementation of this method, the optimization of its parameters, and its performance. When the native sequences of the protein templates were tested against the library of these profiles, the class, fold, and family memberships of a large majority (>90%) of these sequences were correctly recognized for an E‐value threshold of 1. In contrast, when homologous sequences were tested against the same library, a much smaller fraction (35%) of sequences were recognized; The structural classification of protein families corresponding to these sequences, however, are correctly recognized (with an accuracy of >88%). Proteins 2013; © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Shachar O  Linial M 《Proteins》2004,57(3):531-538
With currently available sequence data, it is feasible to conduct extensive comparisons among large sets of protein sequences. It is still a much more challenging task to partition the protein space into structurally and functionally related families solely based on sequence comparisons. The ProtoNet system automatically generates a treelike classification of the whole protein space. It stands to reason that this classification reflects evolutionary relationships, both close and remote. In this article, we examine this hypothesis. We present a semiautomatic procedure that singles out certain inner nodes in the ProtoNet tree that should ideally correspond to structurally and functionally defined protein families. We compare the performance of this method against several expert systems. Some of the competing methods incorporate additional extraneous information on protein structure or on enzymatic activities. The ProtoNet-based method performs at least as well as any of the methods with which it was compared. This article illustrates the ProtoNet-based method on several evolutionarily diverse families. Using this new method, an evolutionary divergence scheme can be proposed for a large number of structural and functional related superfamilies.  相似文献   

18.
Functional classification of proteins from sequences alone has become a critical bottleneck in understanding the myriad of protein sequences that accumulate in our databases. The great diversity of homologous sequences hides, in many cases, a variety of functional activities that cannot be anticipated. Their identification appears critical for a fundamental understanding of the evolution of living organisms and for biotechnological applications. ProfileView is a sequence-based computational method, designed to functionally classify sets of homologous sequences. It relies on two main ideas: the use of multiple profile models whose construction explores evolutionary information in available databases, and a novel definition of a representation space in which to analyze sequences with multiple profile models combined together. ProfileView classifies protein families by enriching known functional groups with new sequences and discovering new groups and subgroups. We validate ProfileView on seven classes of widespread proteins involved in the interaction with nucleic acids, amino acids and small molecules, and in a large variety of functions and enzymatic reactions. ProfileView agrees with the large set of functional data collected for these proteins from the literature regarding the organization into functional subgroups and residues that characterize the functions. In addition, ProfileView resolves undefined functional classifications and extracts the molecular determinants underlying protein functional diversity, showing its potential to select sequences towards accurate experimental design and discovery of novel biological functions. On protein families with complex domain architecture, ProfileView functional classification reconciles domain combinations, unlike phylogenetic reconstruction. ProfileView proves to outperform the functional classification approach PANTHER, the two k-mer-based methods CUPP and eCAMI and a neural network approach based on Restricted Boltzmann Machines. It overcomes time complexity limitations of the latter.  相似文献   

19.
We apply a simple method for aligning protein sequences on the basis of a 3D structure, on a large scale, to the proteins in the scop classification of fold families. This allows us to assess, understand, and improve our automatic method against an objective, manually derived standard, a type of comprehensive evaluation that has not yet been possible for other structural alignment algorithms. Our basic approach directly matches the backbones of two structures, using repeated cycles of dynamic programming and least-squares fitting to determine an alignment minimizing coordinate difference. Because of simplicity, our method can be readily modified to take into account additional features of protein structure such as the orientation of side chains or the location-dependent cost of opening a gap. Our basic method, augmented by such modifications, can find reasonable alignments for all but 1.5% of the known structural similarities in scop, i.e., all but 32 of the 2,107 superfamily pairs. We discuss the specific protein structural features that make these 32 pairs so difficult to align and show how our procedure effectively partitions the relationships in scop into different categories, depending on what aspects of protein structure are involved (e.g., depending on whether or not consideration of side-chain orientation is necessary for proper alignment). We also show how our pairwise alignment procedure can be extended to generate a multiple alignment for a group of related structures. We have compared these alignments in detail with corresponding manual ones culled from the literature. We find good agreement (to within 95% for the core regions), and detailed comparison highlights how particular protein structural features (such as certain strands) are problematical to align, giving somewhat ambiguous results. With these improvements and systematic tests, our procedure should be useful for the development of scop and the future classification of protein folds.  相似文献   

20.
A novel alignment-free method for computing functional similarity of membrane proteins based on features of hydropathy distribution is presented. The features of hydropathy distribution are used to represent protein families as hydropathy profiles. The profiles statistically summarize the hydropathy distribution of member proteins. The summation is made by using hydropathy features that numerically represent structurally/functionally significant portions of protein sequences. The hydropathy profiles are numerical vectors that are points in a high dimensional ‘hydropathy’ space. Their similarities are identified by projection of the space onto principal axes. Here, the approach is applied to the secondary transporters. The analysis using the presented approach is validated by the standard classification of the secondary transporters. The presented analysis allows for prediction of function attributes for proteins of uncharacterized families of secondary transporters. The results obtained using the presented analysis may help to characterize unknown function attributes of secondary transporters. They also show that analysis of hydropathy distribution can be used for function prediction of membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号