首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Proteolysis of the capillary basement membrane is a hallmark of inflammation-mediated angiogenesis, but it is undetermined whether proteolysis plays a critical role in the process of activity-induced angiogenesis. Matrix metalloproteinases (MMPs) constitute the major class of proteases responsible for degradation of basement membrane proteins. We observed significant elevations of mRNA and protein levels of both MMP-2 and membrane type 1 (MT1)-MMP (2.9 +/- 0.7- and 1.5 +/- 0.1-fold above control, respectively) after 3 days of chronic electrical stimulation of rat skeletal muscle. Inhibition of MMP activity via the inhibitor GM-6001 prevented the growth of new capillaries as assessed by the capillary-to-fiber ratio (1.34 +/- 0.08 in GM-6001-treated muscles compared with 1.69 +/- 0.03 in control 7-day-stimulated muscles). This inhibition correlated with a significant reduction in the number of capillaries with observable breaks in the basement membrane, as assessed by electron microscopy (0.27 +/- 0.27% in GM-6001-treated muscles compared with 3.72 +/- 0.65% in control stimulated muscles). Proliferation of capillary-associated cells was significantly elevated by 2 days and remained elevated throughout 14 days of stimulation. Capillary-associated cell proliferation during muscle stimulation was not affected by MMP inhibition (80.3 +/- 9.3 nuclei in control and 63.5 +/- 8.5 nuclei in GM-6001-treated animals). We conclude that MMP proteolysis of capillary basement membrane proteins is a critical component of physiological angiogenesis, and we postulate that capillary-associated proliferation precedes and occurs independently of endothelial cell sprout formation.  相似文献   

2.
Acute skeletal muscle damage results in fiber disruption, oxidative stress and inflammation. We investigated cell-specific contributions to the regeneration process after contusion-induced damage (rat gastrocnemius muscle) with or without chronic grape seed-derived proanthocyanidolic oligomer (PCO) administration. In this placebo-controlled study, male Wistar rats were subjected to PCO administration for 2 weeks, after which they were subjected to a standardised contusion injury. Supplementation was continued after injury. Immune and satellite cell responses were assessed, as well as oxygen radical absorption capacity and muscle regeneration. PCO administration resulted in a rapid satellite cell response with an earlier peak in activation (Pax7(+), CD56(+), at 4 h post-contusion) vs. placebo groups (PLA) (P<.001: CD56(+) on Day 5 and Pax7(+) on Day 7). Specific immune-cell responses in PLA followed expected time courses (neutrophil elevation on Day 1; sustained macrophage elevation from Days 3 to 5). PCO dramatically decreased neutrophil elevation to nonsignificant, while macrophage responses were normal in extent, but significantly earlier (peak between Days 1 and 3) and completely resolved by Day 5. Anti-inflammatory cytokine, IL-10, increased significantly only in PCO (Day 3). Muscle fiber regeneration (MHC(f) content and central nuclei) started earlier and was complete by Day 14 in PCO, but not in PLA. Thus, responses by three crucial cell types involved in muscle recovery were affected by in vivo administration of a specific purified polyphenol in magnitude (neutrophil), time course (macrophages), or time course and activation state (satellite cell), explaining faster effective regeneration in the presence of proanthocyanidolic oligomers.  相似文献   

3.
Stimulating the beta-adrenoceptor (beta-AR) signaling pathway can enhance the functional repair of skeletal muscle after injury, but long-term use of beta-AR agonists causes beta-AR downregulation, which may limit their therapeutic effectiveness. The aim was to examine beta-AR signaling during early regeneration in rat fast-twitch [extensor digitorum longus (EDL)] and slow-twitch (soleus) muscles after bupivacaine injury and test the hypothesis that, during regeneration, beta-agonist administration does not cause beta-AR desensitization. Rats received either the beta-AR agonist fenoterol (1.4 mgxkg(-1)xday(-1) ip) or saline for 7 days postinjury. Fenoterol reduced beta-AR density in regenerating soleus muscles by 42%. Regenerating EDL muscles showed a threefold increase in beta-AR density, and, again, these values were 43% lower with fenoterol treatment. An amplified adenylate cyclase (AC) response to isoproterenol was observed in cell membrane fragments from EDL and soleus muscles 7 days postinjury. Fenoterol attenuated this increase in regenerating EDL muscles but not soleus muscles. beta-AR signaling mechanisms were assessed using AC stimulants (NaF, forskolin, and Mn(2+)). Although beta-agonist treatment reduces beta-AR density in regenerating muscles, these muscles can produce large cAMP responses relative to healthy (uninjured) muscles. Desensitization of beta-AR signaling in regenerating muscles is prevented by altered rates of beta-AR synthesis and/or degradation, changes in G protein populations and coupling efficiency, and altered AC activity. These mechanisms have important therapeutic implications for modulating beta-AR signaling to enhance muscle repair after injury.  相似文献   

4.
Using Tln1fl/fl;CreER mice, we show that tamoxifen-induced inactivation of the talin1 gene throughout the embryo produces an angiogenesis phenotype that is restricted to newly forming blood vessels. The phenotype has a rapid onset in early embryos, resulting in vessel defects by 48 h and death of the embryo within 72 h. Very similar vascular defects were obtained using a Tie2-Cre endothelial cell-specific Tln1 knockout, a phenotype that was rescued by expression of a Tln1 mini-gene in endothelial cells. We show that endothelial cells, unlike most other cell types, do not express talin2, which can compensate for loss of talin1, and demonstrate for the first time that endothelial cells in vivo lacking talin1 are unable to undergo the cell spreading and flattening required to form vessels.  相似文献   

5.

Background  

Mathematical modeling of angiogenesis has been gaining momentum as a means to shed new light on the biological complexity underlying blood vessel growth. A variety of computational models have been developed, each focusing on different aspects of the angiogenesis process and occurring at different biological scales, ranging from the molecular to the tissue levels. Integration of models at different scales is a challenging and currently unsolved problem.  相似文献   

6.
7.
Skeletal muscle is a very dynamic tissue, thus accurate quantification of skeletal muscle stiffness throughout its functional range is crucial to improve the physical functioning and independence following pathology. Shear wave elastography (SWE) is an ultrasound-based technique that characterizes tissue mechanical properties based on the propagation of remotely induced shear waves. The objective of this study is to validate SWE throughout the functional range of motion of skeletal muscle for three ultrasound transducer orientations. We hypothesized that combining traditional materials testing (MTS) techniques with SWE measurements will show increased stiffness measures with increasing tensile load, and will correlate well with each other for trials in which the transducer is parallel to underlying muscle fibers. To evaluate this hypothesis, we monitored the deformation throughout tensile loading of four porcine brachialis whole-muscle tissue specimens, while simultaneously making SWE measurements of the same specimen. We used regression to examine the correlation between Young′s modulus from MTS and shear modulus from SWE for each of the transducer orientations. We applied a generalized linear model to account for repeated testing. Model parameters were estimated via generalized estimating equations. The regression coefficient was 0.1944, with a 95% confidence interval of (0.1463–0.2425) for parallel transducer trials. Shear waves did not propagate well for both the 45° and perpendicular transducer orientations. Both parallel SWE and MTS showed increased stiffness with increasing tensile load. This study provides the necessary first step for additional studies that can evaluate the distribution of stiffness throughout muscle.  相似文献   

8.
Heparin has a potent angiogenic effect in experimental animals and patients with ischemic diseases; however, the precise mechanism behind this angiogenesis remains to be clarified. The aim of this study was to determine whether the administration of heparin affects the levels of heparin-binding angiogenic factors in human plasma, and to identify the molecule responsible for heparin-induced angiogenesis. Plasma levels of hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF), and vascular endothelial growth factor (VEGF) were measured before and after administration of 100 U, 3,000 U or 10,000 U of heparin in patients with coronary artery disease. Administration of 3,000 U or 10,000 U of heparin caused significant increases in plasma HGF (40- and 54-fold, respectively), in absence of obvious increases in bFGF and VEGF levels. Furthermore, compared with the serum collected before heparin administration, the serum collected after heparin administration had more prominent growth-promoting and vascular tube-inducing properties on endothelial cells, and these increased activities were completely inhibited by neutralization of HGF, whereas neutralization of bFGF and VEGF had no effect. These findings suggest that HGF plays a significant role in heparin-induced angiogenesis.  相似文献   

9.
10.
This study determined whether an acute alcohol dose could inhibit the refeeding response in starved muscle. Rats starved for 24 h were pretreated with alcohol or saline before refeeding by intragastric or intravenous infusion of enteral diet (ENT), total parenteral nutrition (TPN), or saline. Refeeding by TPN or ENT stimulated increases in the fractional rate of protein synthesis (k(s)) in skeletal muscle. Alcohol prevented the increase in k(s) when refeeding occurred intragastrically (TPN or ENT) (P < 0.001) but not intravenously (TPN). Upon intragastric refeeding, alcohol inhibited the increase in both eukaryotic initiation factor 4E-binding protein-1 (4E-BP1) and p70 S6 kinase (p70(S6K)) phosphorylation in plantaris but caused only partial inhibition in soleus muscle (ENT only). When rats were refed intravenously, alcohol had no effect on the increased 4E-BP1 or p70(S6K) phosphorylation in either muscle. Plasma insulin levels were augmented by alcohol. Alcohol-related changes in plasma amino acid concentrations were similar irrespective of the route of feeding, whereas IGF-I levels showed differential changes. This is the first study to demonstrate that acute alcohol ingestion impedes the starved-to-fed response in skeletal muscle.  相似文献   

11.
Adult skeletal muscle undergoes adaptation in response to endurance exercise, including fast-to-slow fiber type transformation and enhanced angiogenesis. The purpose of this study was to determine the temporal and spatial changes in fiber type composition and capillary density in a mouse model of endurance training. Long-term voluntary running (4 wk) in C57BL/6 mice resulted in an approximately twofold increase in capillary density and capillary-to-fiber ratio in plantaris muscle as measured by indirect immunofluorescence with an antibody against the endothelial cell marker CD31 (466 ± 16 capillaries/mm2 and 0.95 ± 0.04 capillaries/fiber in sedentary control mice vs. 909 ± 55 capillaries/mm2 and 1.70 ± 0.04 capillaries/fiber in trained mice, respectively; P < 0.001). A significant increase in capillary-to-fiber ratio was present at day 7 with increased concentration of vascular endothelial growth factor (VEGF) in the muscle, before a significant increase in percentage of type IIa myofibers, suggesting that exercise-induced angiogenesis occurs first, followed by fiber type transformation. Further analysis with simultaneous staining of endothelial cells and isoforms of myosin heavy chains (MHCs) showed that the increase in capillary contact manifested transiently in type IIb + IId/x fibers at the time (day 7) of significant increase in total capillary density. These findings suggest that endurance training induces angiogenesis in a subpopulation of type IIb + IId/x fibers before switching to type IIa fibers. adaptation; capillary density; endothelial cells; fiber type transformation; vascular endothelial growth factor  相似文献   

12.
It has been suggested that the mechanical forces acting on endothelial cells may be sensed in part by cell-matrix connections. We therefore studied the role of different matrix proteins, in particular laminin I, on a shear stress-dependent endothelial response, namely nitric-oxide synthase (eNOS) expression. Primary porcine aortic endothelial cells were seeded onto glass plates either noncoated (NC cells) or precoated with fibronectin (FN cells), laminin (LN cells), or collagen I (CN cells). Western blots were used to detect differences in the final matrix composition of these cells. A shear stress of 16 dyn/cm2 was applied for 6 h. Only LN cells showed detectable amounts of laminin I in their underlying matrix when they reached confluence. They reacted with a 2-fold increase of eNOS expression (n = 16, p < 0.001) to the exposure of shear stress, which went along with enhanced eNOS protein and NO release. In contrast, neither FN cells (n = 9) nor NC cells (n = 13) showed a significant increase of eNOS expression under shear stress. The increase in CN cells was borderline (1.4-fold; n = 9, p < 0.05) and was not associated with an increase of eNOS protein. The shear-induced increase in eNOS expression of LN cells was abolished by the peptide YIGSR, which blocks the cellular binding to laminin I via a 67-kDa laminin-binding protein, whereas a control peptide (YIGSK) had no effect. The induction of eNOS expression by shear stress is stimulated by an interaction of endothelial cells with laminin which is, at least in part, mediated by a 67-kDa laminin-binding protein.  相似文献   

13.
Thirty-six neonatal pigs were randomly assigned to the following treatment groups: sham implanted gonadally intact males (B), sham-implanted castrated males (C), or castrated males implanted with testosterone propionate (C + TP). Four pigs from each group were sacrificed at 7, 14, or 21 days of age after a 6-hr continuous infusion of [3H]thymidine. Myofibers isolated from the triceps brachii were prepared for satellite cell enumeration by light microscope autoradiography. A developmental decline in labeled myofiber nuclei occurred in all groups, however, the greatest decline occurred in C (P less than 0.01). A treatment-by-age interaction was observed for percentage of labeled nuclei. Castration reduced total and labeled nuclei per millimeter myofiber (P less than 0.05), and C + TP had a higher percentage of labeled nuclei than C (2.8 vs 2.2%; P less than 0.05). Since triceps brachii muscles from 21 day B and C + TP were 120% (P less than 0.05) of C, the results indicate that postnatal growth of skeletal muscle is dependent on satellite cell mitotic activity and that testosterone enhances this activity in neonatal pigs.  相似文献   

14.
15.
Shear detection and mechanotransduction by arterial endothelium requires junctional complexes containing PECAM‐1 and VE‐cadherin, as well as firm anchorage to the underlying basement membrane. While considerable information is available for junctional complexes in these processes, gained largely from in vitro studies, little is known about the contribution of the endothelial basement membrane. Using resistance artery explants, we show that the integral endothelial basement membrane component, laminin 511 (laminin α5), is central to shear detection and mechanotransduction and its elimination at this site results in ablation of dilation in response to increased shear stress. Loss of endothelial laminin 511 correlates with reduced cortical stiffness of arterial endothelium in vivo, smaller integrin β1‐positive/vinculin‐positive focal adhesions, and reduced junctional association of actin–myosin II. In vitro assays reveal that β1 integrin‐mediated interaction with laminin 511 results in high strengths of adhesion, which promotes p120 catenin association with VE‐cadherin, stabilizing it at cell junctions and increasing cell–cell adhesion strength. This highlights the importance of endothelial laminin 511 in shear response in the physiologically relevant context of resistance arteries.  相似文献   

16.
17.
RASSF4, a member of the classical RASSF family of scaffold proteins, is associated with alveolar rhabdomyosarcoma, an aggressive pediatric cancer of muscle histogenesis. However, the role of RASSF4 in normal myogenesis is unknown. We demonstrate here that RASSF4 is necessary for early in vitro myogenesis. Using primary human myoblasts, we show that RASSF4 expression is dramatically increased during in vitro myogenic differentiation, and conversely that RASSF4‐deficient myoblasts cannot differentiate, potentially because of a lack of upregulation of myogenin. In microscopy studies, we show that RASSF4 protein co‐localizes with proteins of the myogenic microtubule‐organizing center (MTOC) both before and after myogenic differentiation. RASSF4‐deficient cells subject to differentiation conditions demonstrate a lack of shape change, suggesting that RASSF4 plays a role in promoting microtubule reorganization and myoblast elongation. In biochemical studies of myotubes, RASSF4 associates with MST1, suggesting that RASSF4 signals to MST1 in the myogenic differentiation process. Expression of MST1 in myoblasts partially reversed the effect of RASSF4 knockdown on differentiation, suggesting that RASSF4 and MST1 coordinately support myogenic differentiation. These data show that RASSF4 is critical for the early steps of myogenic differentiation.  相似文献   

18.
Calcineurin is required for skeletal muscle hypertrophy.   总被引:23,自引:0,他引:23  
  相似文献   

19.
20.
The hypothesis that changes in muscle activation and loadingregulate the expression and activity of neuronal nitric oxide (NO)synthase (nNOS) was tested using in vitro and in vivo approaches. Removal of weight bearing from rat hindlimb muscles for 10 days resulted in a significant decrease in nNOS protein and mRNAconcentration in soleus muscles, which returned to controlconcentrations after return to weight bearing. Similarly, theconcentration of nNOS in cultured myotubes increased by application ofcyclic loading for 2 days. NO release from excised soleus muscles wasincreased significantly by a single passive stretch of 20% or bysubmaximal activation at 2 Hz, although the increases were not additivewhen both stimuli were applied simultaneously. Increased NO release resulting from passive stretch or activation was dependent on thepresence of extracellular calcium. Cyclic loading of cultured myotubesalso resulted in a significant increase in NO release. Together, thesefindings show that activity of muscle influences NO production in theshort term, by regulating NOS activity, and in the long term, byregulating nNOS expression.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号