共查询到20条相似文献,搜索用时 0 毫秒
1.
Retinal specializations in the eyes of deep-sea teleosts 总被引:2,自引:0,他引:2
2.
Vanina Rocco Juan Pablo Barriga Horacio Zagarese Mariana Lozada 《Environmental Biology of Fishes》2002,63(2):223-228
Most research on environmental effects of ultraviolet radiation (UVR) has focused on its potential negative consequences. However, natural UVR can also be beneficial to living organisms (e.g., vitamin D synthesis, UV vision, germicide activity). UV vision has been demonstrated in a variety of animals including several invertebrates and vertebrates. Juvenile rainbow trout, Oncorhynchus mykiss, has a retinal photoreceptor, which is sensitive to UVR between 360 and 370 nm. Among other functions, UV vision has been proposed to contribute to prey detection by enhancing the contrast between the prey and its background. We performed a series of feeding experiments with juvenile rainbow trout and several zooplankters as prey. The fish were allowed to feed either under full solar radiation, or under solar radiation from which the UV component had been removed using a long-pass cut off filter. We found that the removal of UV wavelengths had no effect on the number of prey eaten or on the preference for particular food items. This is contrary to published studies reporting prey detection enhancement mediated by UV vision in rainbow trout. This disparity in the results may be due to our use of natural radiation instead of artificial UV sources, in which the visible component is poorly represented. Although our results do not disproof the presence of UV vision in juvenile rainbow trout, they do cast doubts about its significance in enhancing feeding performance in a natural light environment. 相似文献
3.
JENS ANDERSSON PÄR BYSTRÖM LENNART PERSSON ANDRE M. DE ROOS 《Biological journal of the Linnean Society. Linnean Society of London》2005,85(3):341-351
Resource polymorphism has been suggested to be a platform for speciation. In some cases resource polymorphism depends on phenotypic plasticity but in other cases on genetic differences between morphotypes, which in turn has been suggested to be the ongoing development of a species pair. Here we study environmentally induced morphological differences in two age classes of Arctic char ( Salvelinus alpinus ) influencing char performance and diet in relation to resource availability. We found that structurally complex habitats with relatively lower zooplankton densities gave rise to individuals with a deeper body, and a downward positioned tip of the snout compared with individuals from structurally simple habitats with relatively higher zooplankton densities for both age classes. Environment also had an effect on foraging efficiency on zooplankton, with fish from structurally simple habitats had a higher foraging rate than fish from structurally complex habitats. Diet analyses showed that resource use in char mainly depends on the relative abundance of different resources. Therefore, to gain further understanding of resource polymorphism we suggest that future studies must include population dynamic feedbacks by the resources on the consumers. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 85 , 341–351. 相似文献
4.
Marco A. Passini Aaron L. Kurtzman Anthony K. Canger William S. Asch Gregory A. Wray Pamela A. Raymond Nisson Schechter 《Genesis (New York, N.Y. : 2000)》1998,23(2):128-141
vsx1 is a homeobox gene encoding a paired-type homeodomain and a CVC domain that was originally cloned from an adult goldfish retinal library. We previously reported the spatiotemporal expression pattern of vsx1in the adult and developing retina of zebrafish and goldfish, and we suggested that vsx1 plays a role in determining the cell fate and maintenance of retinal interneurons. Other related genes encoding a CVC domain, such as vsx2 (alx) and chx10, are expressed both within and outside the retina during development. In this study, we report the cloning of zebrafish vsx1 and its developmental expression in both retinal and nonretinal regions of the CNS in zebrafish embryos. vsx1expression was detected in a subset of hindbrain and spinal cord neurons before it was expressed in the retina. At about the same time that retinal expression began, the level of vsx1 was decreased in the spinal cord. The expression of vsx1 was progressively restricted, and eventually it was detected only in the inner nuclear layer (INL) of the developing retina. The combined expression patterns of teleost vsx1 and vsx2 (alx) during early zebrafish development encompasses the expression pattern observed for murine Chx10, and indicates a partitioning of function for CVC genes in lower vertebrates. Dev. Genet. 23:128–141, 1998. © 1998 Wiley-Liss, Inc. 相似文献
5.
Ultraviolet (UV) cones are photoreceptors that sense light in the range 300–450 nm and are found in the retinas of non-mammalian vertebrates and small mammals. Despite their widespread presence across taxa, the functions that these cones exert in the lives of animals remain largely unknown. In this study, I used the zebrafish lor (lots of rods) mutant, characterized by a diminished UV cone population compared to that of wild-type zebrafish, to test whether its foraging performance differed from that of the wild-type (control). The mean location distance and angle (variables that are reliable indicators of foraging performance) at which control fish detected zooplankton prey were, on average, 24 and 90% greater than corresponding measures for lor fish. Such inferior foraging performance of the mutant could be explained by reduced contrast perception of the prey, resulting from the diminished population of UV cones and associated sensitivity. Thus, UV cones enhance the foraging performance of zebrafish, a crucial ecological function that may explain why small zooplanktivorous fishes retain UV cones throughout their lives. 相似文献
6.
N. S. Hart J. C. Partridge I. C. Cuthill A. T. D. Bennett 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2000,186(4):375-387
The spectral absorption characteristics of the retinal photoreceptors of the blue tit (Parus caeruleus) and blackbird (Turdus merula) were investigated using microspectrophotometry. The retinae of both species contained rods, double cones and four spectrally distinct types of single cone. Whilst the visual pigments and cone oil droplets in the other receptor types are very similar in both species, the wavelength of maximum sensitivity (λmax) of long-wavelength-sensitive single and double cone visual pigment occurs at a shorter wavelength (557 nm) in the blackbird than in the blue tit (563 nm). Oil droplets located in the long-wavelength-sensitivesingle cones of both species cut off wavelengths below 570–573 nm, theoretically shifting cone peak spectral sensitivity some 40 nm towards the long-wavelength end of the spectrum. This raises the possibility that the precise λmax of the long-wavelength-sensitive visual pigment is optimised for the visual function of the double cones. The distribution of cone photoreceptors across the retina, determined using conventional light and fluorescence microscopy, also varies between the two species and may reflect differences in their visual ecology. Accepted: 8 January 2000 相似文献
7.
8.
HOW DO SPERM WHALES CATCH SQUIDS? 总被引:1,自引:0,他引:1
Vision may play a central role in sperm whale predation. Two complementary hypotheses regarding the detection and capture of prey items are presented, based on a review of mesopelagic ecology. The first hypothesis postulates that sperm whales locate their prey visually, either silhouetted against the midwater \"sky,\" or by searching for bioluminescence produced by the movements of their prey. The second hypothesis postulates that sperm whales create a zone of stimulated bioluminescence around the mouth, which attracts squids and other visual predators. Studies of midwater fishes and invertebrates document the importance of vision in mesopelagic communities. If sperm whales search for silhouetted prey, they should be oriented upside-down to improve visual coverage and to facilitate the transition from search to prey capture. Prey capture events should be marked by excursions toward the surface. If they lure their prey, they should swim at a steady pace, with little rapid acceleration, and spend most of their time foraging at depths with the greatest potential for stimulated bioluminescence. 相似文献
9.
Karen L. Carleton Brian E. Dalton Daniel Escobar‐Camacho Sri Pratima Nandamuri 《Genesis (New York, N.Y. : 2000)》2016,54(6):299-325
Animals vary in their sensitivities to different wavelengths of light. Sensitivity differences can have fitness implications in terms of animals' ability to forage, find mates, and avoid predators. As a result, visual systems are likely selected to operate in particular lighting environments and for specific visual tasks. This review focuses on cichlid vision, as cichlids have diverse visual sensitivities, and considerable progress has been made in determining the genetic basis for this variation. We describe both the proximate and ultimate mechanisms shaping cichlid visual diversity using the structure of Tinbergen's four questions. We describe (1) the molecular mechanisms that tune visual sensitivities including changes in opsin sequence and expression; (2) the evolutionary history of visual sensitivity across the African cichlid flocks; (3) the ontological changes in visual sensitivity and how modifying this developmental program alters sensitivities among species; and (4) the fitness benefits of spectral tuning mechanisms with respect to survival and mating success. We further discuss progress to unravel the gene regulatory networks controlling opsin expression and suggest that a simple genetic architecture contributes to the lability of opsin gene expression. Finally, we identify unanswered questions including whether visual sensitivities are experiencing selection, and whether similar spectral tuning mechanisms shape visual sensitivities of other fishes. genesis 54:299–325, 2016. © 2016 Wiley Periodicals, Inc. 相似文献
10.
Abstract. In many ways, the apposition eye of the erotylid fungus beetle Neotriplax lewisi resembles that of chrysomelids: its 400–500 mostly hexagonal ommatidia are of the acone type and possess \"open rhabdoms,\" a tapetum is not present, and axons penetrate the basement membrane in distinct bundles of eight. The eye also shows some unusual features that, at present, defy clear functional interpretation. Firstly, the cuticle of the interfacetal areas stains differently from that of the corneal lenses and, secondly, the two rhabdom systems in each ommatidium (central and peripheral) both possess microvilli that are oriented in such a way as to permit e-vector discrimination. On the basis of comparisons with other open rhabdom eyes, it is postulated that vision in N. lewisi involves neither high resolving power nor superior absolute sensitivity. However, this beetle can distinguish illuminated from shaded areas, and seems specialized to make use of sky polarization (probably in the UV and green regions of the spectrum) and/or the position of the sun as a course-stabilizing function during flights. 相似文献
11.
The visual fields of the Aegypiinae vultures have been shown to be adapted primarily to meet two key perceptual challenges of their obligate carrion‐feeding behaviour: scanning the ground and preventing the sun's image falling upon the retina. However, field observations have shown that foraging White‐headed Vultures Trigonoceps occipitalis are not exclusively carrion‐feeders; they are also facultative predators of live prey. Such feeding is likely to present perceptual challenges that are additional to those posed by carrion‐feeding. Binocularity is the key component of all visual fields and in birds it is thought to function primarily in the accurate placement and time of contact of the talons and bill, especially in the location and seizure of food items. We determined visual fields in White‐headed Vultures and compared them with those of two species of carrion‐eating Gyps vultures. The visual field of White‐headed Vultures has more similarities with those of predatory raptors (e.g. accipitrid hawks) than with the taxonomically more closely related Gyps vultures. Maximum binocular field width in White‐headed Vultures (30°) is significantly wider than that in Gyps vultures (20°). The broader binocular fields in White‐headed Vultures probably facilitate accurate placement and timing of the talons when capturing evasive live prey. 相似文献
12.
If the photoreceptors of a colour vision system are polarization sensitive, the system detects polarization-induced false colours. Based on the functional similarities between polarization vision and colour vision, earlier it was believed that a uniformly polarization-sensitive (insect) retina (UPSR)-in which receptors of all spectral types have the same polarization sensitivity ratio and microvilli direction-cannot detect polarization-induced false colours. Here we show that, contrary to this belief, a colour vision based on a UPSR is subject to polarization-related artefacts, because both the degree and the angle of polarization of light reflected from natural surfaces depend on wavelength. Our second goal is to correct certain errors in the theory of polarizational false colours. The quantitative estimation of the influence of polarization sensitivity on colour vision was recently motivated by the suggestion that certain Papilio butterflies detect such false colours. The theoretical basis of this subject is to calculate the colour loci in the colour space of a visual system from the quantum catches of polarization-sensitive receptors of different spectral types. Horváth et al. (J. Exp. Biol. 205 (2002) 3281) gave the first exact mathematical and receptor-physiological derivation of formulae for these calculations. Here we prove that the two formulae given earlier by others are inappropriate or erroneous. This, however, does not influence the validity of the experimental data and the principal conclusions drawn about the colour vision and polarization sensitivity in Papilio butterflies. 相似文献
13.
Lucas PW Dominy NJ Riba-Hernandez P Stoner KE Yamashita N Loría-Calderón E Petersen-Pereira W Rojas-Durán Y Salas-Pena R Solis-Madrigal S Osorio D Darvell BW 《Evolution; international journal of organic evolution》2003,57(11):2636-2643
Evolution of the red-green visual subsystem in trichromatic primates has been linked to foraging advantages, namely the detection of either ripe fruits or young leaves amid mature foliage. We tested competing hypotheses globally for eight primate taxa: five with routine trichromatic vision, three without. Routinely trichromatic species ingested leaves that were \"red shifted\" compared to background foliage more frequently than species lacking this trait. Observed choices were not the reddest possible, suggesting a preference for optimal nutritive gain. There were no similar differences for fruits although red-greenness may sometimes be important in close-range fruit selection. These results suggest that routine trichromacy evolved in a context in which leaf consumption was critical. 相似文献
14.
15.
Larvae of the weakly blue‐luminescent fungus gnat Keroplatus nipponicus possess on either side of their heads a small black stemmatal eye with a plano‐convex lens approximately 25 μm in diameter. In total, 12–14 retinula cells give rise to a centrally fused rhabdom of up to 8 μm in diameter. The rhabdom's constituent microvilli, approximately 70 nm in width, are roughly orthogonally oriented, a requirement for polarization sensitivity. Screening pigment granules are abundant in the retinula cells and measure at least 1 μm in diameter. In comparison with the stemmatal eye of the brightly luminescent Arachnocampa luminosa, that of K. nipponicus is considerably smaller with a poorer developed lens and a rhabdom that is less voluminous, but possesses wider microvilli. Although the larval eye of K. nipponicus can be expected to be functional, as the larvae react to light with a behavioural response, the eyes are probably mainly involved in the detection of ambient light levels and not, as in A. luminosa, also in responding to the luminescence of nearby conspecifics. 相似文献
16.
Marina V. Bobkova József Gál Valery V. Zhukov Irina P. Shepeleva V. Benno Meyer-Rochow 《Invertebrate Biology》2004,123(2):101-115
Abstract. The eyes of aquatic pulmonates differ from those of terrestrial pulmonates; the latter, in species such as Cepaea nemoralis and Trichia hispida , possess conventional, cup-shaped retinas, but the aquatic species Lymnaea stagnalis, Radix peregra, Physa fontinalis , and Planorbarius corneus have retinas that are partitioned into dorsal and ventral depressions ("pits"). The pits are separated by an internal ridge, called the "crest", and on account of their pigmentation can be seen in vivo . The dominant cellular components of the retinae of terrestrial as well as aquatic snails are pigmented cells and microvillar photoreceptors, the latter occurring in two morphologically distinct types (I and II). Aquatic snails with preferences for shallow water possess eyes with both type I and type II photoreceptive cells, but Pl. corneus , an inhabitant of deeper water, only has type-I receptors, supporting an earlier finding that type I cells represent dim- and type II cells bright-light receptors. On the basis of histological and optical comparisons, we conclude that the eyes of L. stagnalis and R. peregra , species that are known to escape and seek temporary refuge above the water surface, are well adapted to function in water as well as air, but that the eyes of P. fontinalis and Pl. corneus are less modified from those of their terrestrial ancestors. 相似文献
17.
18.
Katie Hall Tho Robert Kevin J. Gaston Natalie Hempel de Ibarra 《Ecology and evolution》2021,11(11):6536
Foraging on flowers in low light at dusk and dawn comes at an additional cost for insect pollinators with diurnal vision. Nevertheless, some species are known to be frequently active at these times. To explore how early and under which light levels colonies of bumblebees, Bombus terrestris, initiate their foraging activity, we tracked foragers of different body sizes using RFID over 5 consecutive days during warm periods of the flowering season. Bees that left the colony at lower light levels and earlier in the day were larger in size. This result extends the evidence for alloethism in bumblebees and shows that foragers differ in their task specialization depending on body size. By leaving the colony earlier to find and exploit flowers in low light, larger‐sized foragers are aided by their more sensitive eyes and can effectively increase their contributions to the colony''s food influx. The decision to leave the colony early seems to be further facilitated by knowledge about profitable food resources in specific locations. We observed that experience accrued over many foraging flights determined whether a bee started foraging under lower light levels and earlier in the morning. Larger‐sized bees were not more experienced than smaller‐sized bees, confirming earlier observations of wide size ranges among active foragers. Overall, we found that most foragers left at higher light levels when they could see well and fly faster. Nevertheless, a small proportion of foragers left the colony shortly after the onset of dawn when light levels were below 10 lux. Our observations suggest that bumblebee colonies have the potential to balance the benefits of deploying large‐sized or experienced foragers during dawn against the risks and costs of foraging under low light by regulating the onset of their activity at different stages of the colony''s life cycle and in changing environmental conditions. 相似文献
19.
Predatory diving birds, such as cormorants (Phalacrocoracidae), have been generally regarded as visually guided pursuit foragers. However, due to their poor visual resolution underwater, it has recently been hypothesized that Great Cormorants do not in fact employ a pursuit-dive foraging technique. They appear capable of detecting typical prey only at short distances, and primarily use a foraging technique in which prey may be detected only at close quarters or flushed from a substratum or hiding place. In birds, visual field parameters, such as the position and extent of the region of binocular vision, and how these are altered by eye movements, appear to be determined primarily by feeding ecology. Therefore, to understand further the feeding technique of Great Cormorants we have determined retinal visual fields and eye movement amplitudes using an ophthalmoscopic reflex technique. We show that visual fields and eye movements in cormorants exhibit close similarity with those of other birds, such as herons (Ardeidae) and hornbills (Bucerotidae), which forage terrestrially typically using a close-quarter prey detection or flushing technique and/or which need to examine items held in the bill before ingestion. We argue that this visual field topography and associated eye movements is a general characteristic of birds whose foraging requires the detection of nearby mobile prey items from within a wide arc around the head, accurate capture of that prey using the bill, and visual examination of the caught prey held in the bill. This supports the idea that cormorants, although visually guided predators, are not primarily pursuit predators, and that their visual fields exhibit convergence towards a set of characteristics that meet the perceptual challenges of close-quarter prey detection or flush foraging in both aquatic and terrestrial environments. 相似文献
20.
Qi Zhang Yumeng Wu Weiyuan Li Jia Wang Huiting Zhou Lei Zhang Qi Liu Liu Ying Hongwei Yan 《Journal of fish biology》2023,102(2):380-394
The light-sensitive capacity of fish larvae is determined by the structure of the retina and the opsins expressed in the retinal and nonretinal photoreceptors. In this study, the retinal structure and expression of opsin genes during the early developmental stage of Takifugu rubripes larvae were investigated. Histological examination showed that at 1 days after hatching (dah), seven layers were observed in the retina of T. rubripes larva, including the pigment epithelial layer [retinal pigment epithelium layer (RPE)], photoreceptor layer (PRos/is), outer nuclear layer (ONL), outer plexiform layer (OPL), inner nuclear layer (INL), inner plexiform layer (IPL) and ganglion cell layer (GCL). At 2 dah, optic fibre layer (OFL) can be observed, and all eight layers were visible in the retina. By measuring the thickness of each layer, opposing developmental trends were found in the thickness of ONL, OPL, INL, IPL, GCL and OFL. The nuclear density of ONL, INL and GCL and the ratios of ONL/INL, ONL/GCL and INL/GCL were also measured and the ratio of ONL/GCL ranged from 1.9 at 2 dah to 3.4 at 8 dah and no significant difference was observed between the different developmental stages (P > 0.05). No significant difference was observed for the INL/GCL ratio between the different developmental stages, which ranged from 1.2 at 2 dah to 2.0 at 18 dah (P > 0.05). The results of quantitative real-time polymerase chain reaction (PCR) showed that the expression of RH1, LWS, RH2-1, RH2-2, SWS2, rod opsin, opsin3 and opsin5 could be detected from 1 dah. These results suggest that the well-developed retina and early expression of the opsins of T. rubripes during the period of transition from endogenous to mixed feeding might be critical for vision-based survival skills during the early life stages after hatching. 相似文献