首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.

Background aims

Regenerative medicine strategies based on cell therapy are considered a promising approach to repair bone defects. The aims of this study were to evaluate the effect of subculturing on the osteogenic potential of osteoblasts derived from newborn rat calvaria and the effect of these osteoblasts on bone repair of rat calvaria defects.

Methods

Cells were obtained from 50 newborn rat calvaria, and primary osteoblasts (OB) were compared with first passage (OB-P1) in terms of osteogenic potential by assaying cell proliferation, alkaline phosphatase (ALP) activity, extracellular matrix mineralization and gene expression of the osteoblastic markers RUNX2, ALP, osteocalcin and bone sialoprotein. Then, 5-mm calvaria defects were created in 24 Wistar rats, and after 2 weeks, they were locally injected with 50 µL of phosphate-buffered saline containing either 5?×?106 osteoblasts (OB-P1, n?=?12) or no cells (control, n?=?12). Four weeks post-injection, the bone formation was evaluated by micro-computed tomography and histological analyses. Data were compared by analysis of variance, followed by the Student-Newman-Keuls's test or Student's t-test (P ≤ 0.05).

Results

OB-P1 showed high proliferation and ALP activity, and despite the reduced gene expression of osteoblastic markers and extracellular matrix mineralization compared with OB, they displayed osteogenic potential, being a good choice for injection into calvaria defects. The micro-tomographic and histological data showed that defects treated with OB-P1 presented higher bone formation compared with control defects.

Discussion

Our results indicate that cells derived from newborn rat calvaria retain osteoblastic characteristics after subculturing and that these osteoblasts stimulate bone repair in a rat calvaria defect model.  相似文献   

2.
We investigated the capacity of a clonal osteogenic cell line MC3T3-E1, established from newborn mouse calvaria and selected on the basis of high alkaline phosphatase (ALP) activity in the confluent state, to differentiate into osteoblasts and mineralize in vitro. The cells in the growing state showed a fibroblastic morphology and grew to form multiple layers. On day 21, clusters of cells exhibiting typical osteoblastic morphology were found in osmiophilic nodular regions. Such nodules increased in number and size with incubation time and became easily identifiable with the naked eye by day 40-50. In the central part of well-developed nodules, osteocytes were embedded in heavily mineralized bone matrix. Osteoblasts were arranged at the periphery of the bone spicules and were surrounded by lysosome-rich cells and a fibroblastic cell layer. Numerous matrix vesicles were scattered around the osteoblasts and young osteocytes. Matrix vesicles and plasma membranes of osteoblasts, young osteocytes, and lysosome-rich cells showed strong reaction to cytochemical stainings for ALP activity and calcium ions. Minerals were initially localized in the matrix vesicles and then deposited on well-banded collagen fibrils. Deposited minerals consisted exclusively of calcium and phosphorus, and some of the crystals had matured into hydroxyapatite crystals. These results indicate that MC3T3-E1 cells have the capacity to differentiate into osteoblasts and osteocytes and to form calcified bone tissue in vitro.  相似文献   

3.
Human prostatic carcinoma frequently metastasizes to bone tissue and activates bone metabolism, especially bone formation, at the site of metastasis. It has been reported that an extract of prostatic carcinoma and conditioned medium (CM) of a human prostatic carcinoma cell line, PC-3, established from a bone metastastic lesion, stimulate osteoblastic cell proliferation. However, there is little information about the effect of PC-3 CM on the differentiation of osteoblastic cells. In this study, we investigated the effect of PC-3 CM on the differentiation of two types of osteoblastic cells, primary fetal rat calvaria (RC) cells containing many undifferentiated osteoprogenitor cells, and ROS 17/2.8, a well-differentiated rat osteosarcoma cell line. PC-3 CM inhibited bone nodule formation and the activity of alkaline phosphatase (ALPase), an osteoblastic marker enzyme, on days 7, 14, and 21 (RC cells) or 3, 6, and 9 (ROS 17/2.8 cells) in a dose-dependent manner (5–30% CM). However, the CM did not affect cell proliferation or cell viability. PC-3 CM was found to markedly block the gene expression of ALPase and osteocalcin (OCN) mRNAs but had no effect on the mRNA expression of osteopontin (OPN), the latter two being noncollagenous proteins related to bone matrix mineralization. These findings suggest that PC-3 CM contains a factor that inhibits osteoblastic cell differentiation and that this factor may be involved in the process of bone metastasis from prostatic carcinoma. J. Cell. Biochem. 67:248–256, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
The role of 5'-methylthioadenosine (MTA), formed during the process of polyamine biosynthesis, on differentiation of osteoprogenitor cells was assessed by its effects on alkaline phosphatase (ALP) activity, bone nodule formation and osteopontin contents of cultured rat calvaria (RC) cells. These three markers were stimulated by exogenous MTA and were depressed by 5'-difluoromethylthioadenosine (DFMTA), a synthetic inhibitor of MTA phosphorylase, which cleaves MTA to adenine and 5-methylthioribose-1-phosphate. 5-Methylthioribose and 2-keto-4-methylthiobutyrate, metabolites of 5-methylthioribose-1-phosphate, had no effects on ALP activity and bone nodule formation in the presence or absence of DFMTA. On the other hand, adenine enhanced ALP activity, bone nodule formation and osteopontin contents in mineralized nodules and also partially reversed DFMTA-induced inhibition of these three markers. MTA, its metabolites and DFMTA did not affect the growth of RC cells under these culture conditions. These results suggest that adenine formed from MTA is important in the differentiation of RC cells.  相似文献   

5.
We have examined the ability of dexamethasone, retinoic acid, and vitamin D3 to induce osteogenic differentiation in rat marrow stromal cell cultures by measuring the expression of mRNAs associated with the differentiated osteoblast phenotype as well as analyzing collagen secretion and alkaline phosphatase activity. Marrow cells were cultured for 8 days in primary culture and 8 days in secondary culture, with and without 10 nM dexamethasone or 1 microM retinoic acid. Under all conditions, cultures produced high levels of osteonectin mRNA. Cells grown with dexamethasone in both primary and secondary culture contained elevated alkaline phosphatase mRNA and significant amounts of type I collagen and osteopontin mRNA. Addition of 1,25-dihydroxyvitamin D3 to these dexamethasone-treated cultures induced expression of osteocalcin mRNA and increased osteopontin mRNA. The levels of alkaline phosphatase, osteopontin, and osteocalcin mRNAs in Dex/Dex/VitD3 cultures were comparable to those of 1,25-dihydroxyvitamin D3-treated ROS 17/2.8 osteosarcoma cells. Omitting dexamethasone from either primary or secondary culture resulted in significantly less alkaline phosphatase mRNA, little osteopontin mRNA, and no osteocalcin mRNA. Retinoic acid increased alkaline phosphatase activity to a greater extent than did dexamethasone but did not have a parallel effect on the expression of alkaline phosphatase mRNA and induced neither osteopontin or osteocalcin mRNAs. In all conditions, marrow stromal cells synthesized and secreted a mixture of type I and III collagens. However, dexamethasone-treated cells also synthesized an additional collagen type, provisionally identified as type V. The synthesis and secretion of collagens type I and III was decreased by both dexamethasone and retinoic acid. Neither dexamethasone nor retinoic acid induced mRNAs associated with the chondrogenic phenotype. We conclude that dexamethasone, but not retinoic acid, promotes the expression of markers of the osteoblast phenotype in cultures of rat marrow stromal fibroblasts.  相似文献   

6.
We have reported previously that parathyroid hormone (PTH) acts on cultured bone cells to stimulate creatine kinase (CK) activity and [3H]thymidine incorporation into DNA via phosphoinositide turnover, in addition to its other actions via increased cyclic AMP production. We also found that mid-region fragments of PTH stimulate [3H]thymidine incorporation into avian chondrocytes. In the present study of mammalian systems, we demonstrate differential effects of defined synthetic PTH fragments on CK activity and DNA synthesis, as compared with cyclic AMP production, in osteoblast-enriched embryonic rat calvaria cell cultures, in an osteoblast-like clone of rat osteosarcoma cells (ROS 17/2.8) and in chondroblasts from rat epiphysial cartilage cell cultures. Unlike full-length bovine (b)PTH-(1-84) or the fully effective shorter fragment human (h)PTH-(1-34), fragments lacking the N-terminal region of the hormone did not increase cyclic AMP formation, whereas they did stimulate increases in both DNA synthesis and CK activity. Moreover, the PTH fragment hPTH-(28-48) at 10 microM inhibited the increase in cyclic AMP caused by 10 nM-bPTH-(1-84). The increase of CK activity in ROS 17/2.8 cells caused by bPTH-(1-84) or hPTH-(28-48) was completely inhibited by either cycloheximide or actinomycin D, as was shown previously for rat calvaria cell cultures. These results indicated the presence of a functional domain of PTH in the central part of the molecule which exerts its mitogenic-related effects on osteoblast- and chondroblast-like cells in a cyclic AMP-independent manner. Since cyclic AMP formation by PTH leads to bone resorption, specific mid-region fragments of PTH might prove suitable for use in vivo to induce bone formation without concomitant resorption.  相似文献   

7.
We have determined the age-related changes in the growth characteristics and expression of the osteoblast phenotype in human calvaria osteoblastic cells in relation with histologic indices of bone formation during postnatal calvaria osteogenesis. Histomorphometric analysis of normal calvaria samples obtained from 36 children, aged 3 to 18 months, showed an age-related decrease in the extent of bone surface covered with osteoblasts and newly synthesized collagen, demonstrating a progressive decline in bone formation during postnatal calvaria osteogenesis. Immunohistochemical analysis showed expression of type I collagen, bone sialoprotein, and osteonectin in the matrix and osteoblasts, with no apparent age-related change during postnatal calvaria osteogenesis. Cells isolated from human calvaria displayed characteristics of the osteoblast phenotype including alkaline phosphatase (ALP) activity, osteocalcin (OC) production, expression of bone matrix proteins, and responsiveness to calciotropic hormones. The growth of human calvaria osteoblastic cells was high at 3 months of age and decreased with age, as assessed by (3H)-thymidine incorporation into DNA. Thus, the age-related decrease in bone formation is associated with a decline in osteoblastic cell proliferation during human calvaria osteogenesis. In contrast, ALP activity and OC production increased with age in basal conditions and in response to 1,25(OH)2, vitamin D3, suggesting a reciprocal relationship between cell growth and expression of phenotypic markers during human postnatal osteogenesis. Finally, we found that human calvaria osteoblastic cells isolated from young individuals with high bone formation activity in vivo and high growth potential in vitro had the ability to form calcified nodular bone-like structures in vitro in the presence of ascorbic acid and β-glycerophosphate, providing a new model to study human osteogenesis in vitro. J. Cell. Biochem. 64:128–139. © 1997 Wiley-Liss, Inc.  相似文献   

8.
 Cultures of isolated osteocytes may offer an appropriate system to study osteocyte function, since isolated osteocytes in culture behave very much like osteocytes in vivo. In this paper we studied the capacity of osteocytes to change their surrounding extracellular matrix by production of matrix proteins. With an immunocytochemical method we determined the presence of collagen type I, fibronectin, osteocalcin, osteopontin and osteonectin in cultures of isolated chicken osteocytes, osteoblasts and periosteal fibroblasts. In osteoblast and periosteal fibroblast cultures, large extracellular networks of collagen type I and fibronectin were formed, but in osteocyte populations, extracellular threads of collagen or fibronectin were only rarely found. The percentage of cells positive for osteocalcin, osteonectin and osteopontin in the Golgi apparatus, on the other hand, was highest in the osteocyte population. These results show that osteocytes have the ability to alter the composition of their surrounding extracellular matrix by producing matrix proteins. We suggest this property is of importance for the regulation of the calcification of the bone matrix immediately surrounding the cells. More importantly, as osteocytes depend for their role as mechanosensor cells on their interaction with matrix proteins, the adaptation of the surrounding matrix offers a way to regulate their response to mechanical loading. Accepted: 9 July 1996  相似文献   

9.
We have developed a method for in situ hybridization of adult bone tissue utilizing undecalcified sections and have used it to histologically examine the mRNA expression of non-collagenous bone matrix proteins such as osteocalcin (bone Gla protein, BGP), matrix Gla protein (MGP), and osteopontin in adult rats. Expression was compared with that in bone tissues of newborn rats. In the adult bone tissue, osteocalcin mRNA was strongly expressed in periosteal and endosteal cuboidal osteoblasts but not in primary spongiosa near the growth plate. Osteopontin mRNA was strongly expressed in cells present on the bone resorption surface, osteocytes, and hypertrophic chondrocytes, but not in cuboidal osteoblasts on the formation surface. Osteopontin and osteocalcin mRNAs were expressed independently and the distribution of cells expressing osteopontin mRNA corresponded with acid phosphatase-positive mononuclear cells and osteoclasts. Expression of MGP mRNA was noted only in hypertrophic chondrocytes. In newborn rat bone tissues, expression of osteocalcin mRNA was much weaker than in adult rat bone tissues. These results clearly indicate the differential expression of mRNAs of non-collagenous bone matrix proteins in adult rat bone tissues.  相似文献   

10.
Regulation of bone sialoprotein mRNA by steroid hormones   总被引:3,自引:0,他引:3       下载免费PDF全文
《The Journal of cell biology》1989,109(6):3183-3186
  相似文献   

11.
目的:研究磷酸三钙(TCP)磨损颗粒是否能诱导小鼠颅骨假体周围骨细胞损伤,并探讨其作用机制。方法:36只雄性ICR小鼠随机分为3组(n=12):假手术组(Sham)、模型(TCP)组和3-甲基腺嘌呤(3-MA)组,采用TCP磨损颗粒30 mg置于小鼠颅骨中缝骨膜外缝合皮肤构建小鼠颅骨溶解模型。3-MA处理组小鼠于术后第2天颅顶皮下注射自噬的特异性抑制剂3-MA (1.0 mg/kg),2 d 1次,2周后处死动物取血清和颅骨。Micro-CT分析各组小鼠颅骨骨密度(BMD)、骨体积分数(BVF)和骨吸收孔(porosity)数;HE染色和流式细胞术检测各组假体周围骨细胞活性及凋亡情况;ELISA法检测各组血清中骨细胞特征蛋白牙本质基质蛋白(DMP-1)和骨硬化蛋白(SOST)水平;Western blot法检测各组假体周围骨细胞中DMP-1、SOST和自噬关键分子Beclin-1及微管相关蛋白1轻链3(LC-3)等蛋白的表达。结果:与Sham组比较,TCP组假体周围骨细胞活性明显降低,骨细胞死亡及凋亡显著增加(P<0.05),血清SOST水平及其蛋白表达明显增加,而血清DMP-1水平及其蛋白表达显著减少(P<0.05),Beclin-1表达增加,LC-3I向LC-3Ⅱ转换明显增加;与TCP组比较,3-MA组假体周围骨细胞损伤明显加重,骨细胞凋亡显著增加(P<0.05)。结论:TCP磨损颗粒可通过激活凋亡和自噬而诱导假体周围骨细胞损伤,促进假体周围骨溶解和关节无菌性松动。  相似文献   

12.
To determine whether a system of ectopic bone formation induced by osteosarcoma-derived bone-inducing substance (bone morphogenetic protein-4) can be used as a model of developing bone at the molecular level, we studied the expression of bone-related protein mRNAs in the process of ectopic bone formation using non-radioisotopic in situ hybridization. Osteonectin mRNA was detected in fibroblast-like cells, which are similar to periosteal cells from the early to middle stages of bone development. The proportion of osteonectin mRNA-expressing cells was greater than that of osteopontin mRNA-expressing cells in hypertrophic chondrocytes and osteoblast-like cells. In contrast, osteopontin mRNA was localized in a limited population of hypertrophic chondrocytes, a single layer of osteoblast-like cells adjacent to the bone trabeculae in the middle stage of bone formation, and in a limited subset of osteocytes in the late stage. A strong osteocalcin mRNA signal was detected in osteoblast-like cells from the middle to late stages and in a limited subset of osteocytes in the late stage of bone development. Since the sequential gene expression pattern of bone-related proteins in the present system is comparable to that in embryonic osteogenesis, this system may be useful as a model for studying gene expression in osteogenesis.  相似文献   

13.
The development of a monoclonal antibody, OB 7.3, directed against a cell surface antigenic site on osteocytes is described. Osteoblast-like cells were enzymatically isolated from calvaria of chicken embryos after removal of the periostea. The cells were cultured for 6 days, harvested and used to immunize mice. One of the monoclonal antibodies obtained, OB 7.3, reacted specifically with the cell surface of osteocytes. In frozen sections of bone only osteocytes were stained, all other cells present, including mature osteoblasts, were negative. Liver, kidney, spleen, intestine, bloodvessel and skin were also completely negative. Using the monoclonal OB 7.3, positive cells could be demonstrated in sparse osteoblast-like cell cultures. The OB 7.3 positive cells had a stellate morphology and were therefore identified as osteocytes. They behaved in culture as osteocytes in bone tissue in that they formed a network of cell processes connecting osteocytes with each other or with other neighbouring cells. Monoclonal OB 7.3 offers the possibility of isolating osteocytes thereby providing the means for a detailed study of their biochemical properties.  相似文献   

14.
The objective of this research was to study osteogenic properties of cultured rabbit bone marrow stromal cells, newborn rat cranium bone cells and rat osteocarcoma ROS 17-2/8 cells. For this purpose cytochemical reaction for alkaline phosphatase was performed by the Lowry method, mineral deposition was assessed by staining of the cultures after von Kossa. Cranium bone cells were shown to synthesize alkaline phosphatase (34 +/- 7 nmol/min/10(6) cells), the matrix mineralization being found. Bone marrow stromal cells displayed a lower activity alkaline phosphatase level than did cranium bone cells (4 +/- 0.6 nmol/min/10(6) cells). However, cell cultivation in the presence of dexamethasone in the medium (10(-8) M) induced a higher activity of alkaline phosphatase (9 +/- 1 nmol/min/10(6) cells), mineralization of the extracellular matrix being the case. The highest level of alkaline phosphatase activity was found for ROS 17-2/8 cells (60 +/- 12 nmol/min/10(6) cells) but no matrix mineralization was determined. According to these data, matrix calcification and formation of bone-like nodules are the most important properties of osteoblastic differentiation in vitro.  相似文献   

15.
Strategies to promote bone repair have included exposure of cells to growth factor (GF) preparations from blood that generally include proteins as part of a complex mixture. This study aimed to evaluate the effects of such a mixture on different parameters of the development of the osteogenic phenotype in vitro. Osteoblastic cells were obtained by enzymatic digestion of human alveolar bone and cultured under standard osteogenic conditions until subconfluence. They were subcultured on Thermanox coverslips up to 14 days. Treated cultures were exposed during the first 7 days to osteogenic medium supplemented with a GFs + proteins mixture containing the major components found in platelet extracts [platelet-derived growth factor-BB, transforming growth factor (TGF)-beta1, TGF-beta2, albumin, fibronectin, and thrombospondin] and to osteogenic medium alone thereafter. Control cultures were exposed only to the osteogenic medium. Treated cultures exhibited a significantly higher number of adherent cells from day 4 onward and of cycling cells at days 1 and 4, weak alkaline phosphatase (ALP) labeling, and significantly decreased levels of ALP activity and mRNA expression. At day 14, no Alizarin red-stained nodular areas were detected in cultures treated with GFs + proteins. Results were confirmed in the rat calvaria-derived osteogenic cell culture model. The addition of bone morphogenetic protein 7 or growth and differentiation factor 5 to treated cultures upregulated Runx2 and ALP mRNA expression, but surprisingly, ALP activity was not restored. These results showed that a mixture of GFs + proteins affects the development of the osteogenic phenotype both in human and rat cultures, leading to an increase in the number of cells, but expressed a less differentiated state.  相似文献   

16.
The in situ localization of osteoblast/osteocyte factor 45 (OF45) mRNA during bone formation has been examined in the rat mandible from embryonic day 14 (E14) up to postnatal 90-day-old Wistar rats. Gene expression was also examined during cell culture not only in primary rat osteoblast-like cells but also in two clonal rat osteoblastic cell lines with different stages of differentiation, ROB-C26 (C26) and ROB-C20 (C20) using Northern blot analysis. The C26 cell is a potential osteoblast precursor cell line, whereas the C20 cell is a more differentiated osteoblastic cell line. At E15 osteoblast precursor cells differentiated into a group of osteoblasts, some of which expressed the majority of non-collagenous proteins, whereas no expression of OF45 was observed in these cells. Intercellular matrices surrounded by osteoblasts were mineralized at E16. Subsequently, the number of osteoblasts differentiated from osteoblast precursor cells was increased in association with bone formation. At E17, the first expression of OF45 mRNA was observed only in a minority of mature osteoblasts attached to the bone matrix, but not in the rest of less mature osteoblasts. At E20, concomitant with the appearance of osteocytes, OF45 mRNA expression was observed not only in more differentiated osteoblasts that were encapsulated partly by bone matrix but also in osteocytes. Subsequently, osteocytes increased progressively in number and sustained OF45 mRNA expression in up to 90-day-old rats. Northern blot analysis of the cultured cells with or without dexamethasone treatment revealed that the gene expression of OF45 correlated well with the increased cell differentiation. These results indicate that OF45 mRNA is transiently expressed by mature osteoblasts and subsequently expressed by osteocytes throughout ossification in the skeleton and this protein represents an important marker of the osteocyte phenotype and most likely participates in regulating osteocyte function.  相似文献   

17.
The recent demonstration of estrogen receptors in bone derived cells has stimulated the study of direct effects of sex steroids on bone. We have shown direct stimulation of proliferation by 17 beta-estradiol (E2) of ROS 17/2.8 rat osteogenic osteosarcoma cells, and other bone-derived cells in culture, as well as sex-specific stimulation of diaphyseal bone in vivo by estrogen and testosterone, using [3H]thymidine incorporation into DNA and stimulation of the specific activity of creatine kinase as markers. ROS 17/2.8 cells were used as models of osteoblast-like cells to study the reciprocal modulation of stimulation of bone cell proliferation by sequential treatment by sex steroid and calciotrophic hormones. Pretreatment with 1,25(OH)2D3 and PTH augmented stimulation by E2, while pretreatment with PGE2 followed by E2 resulted in no additional stimulation. Reciprocally, pretreatment with E2 significantly reduced the response to PGE2 while showing an insignificant effect on the response to the other hormones. Gonadectomized Wistar-derived rats provided a useful model system for study of postmenopausal osteoporosis. In diaphyseal bone, [3H]thymidine incorporation and creatine kinase activity decreased 4 weeks after gonadectomy. At that time, a single i.p. injection of E2 in females, and testosterone in males, resulted in a highly significant increase in both these parameters within 24 h.  相似文献   

18.
Summary The development of a monoclonal antibody, OB 7.3, directed against a cell surface antigenic site on osteocytes is described.Osteoblast-like cells were enzymatically isolated from calvaria of chicken embryos after removal of the periostea. The cells were cultured for 6 days, harvested and used to immunize mice. One of the monoclonal antibodies obtained, OB 7.3, reacted specifically with the cell surface of osteocytes. In frozen sections of bone only osteocytes were stained, all other cells present, including mature osteoblasts, were negative. Liver, kidney, spleen, intestine, bloodvessel and skin were also completely negative. Using the monoclonal OB 7.3, positive cells could be demonstrated in sparse osteoblast-like cell cultures. The OB 7.3 positive cells had a stellate morphology and were therefore identified as osteocytes. They behaved in culture as osteocytes in bone tissue in that they formed a network of cell processes connecting osteocytes with each other or with other neighbouring cells. Monoclonal OB 7.3 offers the possibility of isolating osteocytes thereby providing the means for a detailed study of their biochemical properties.In honour of Prof. P. van Duijn  相似文献   

19.
We have demonstrated previously that 17 beta-estradiol (E2) stimulates cell proliferation in skeletal tissues, as measured by increased DNA synthesis and creatine kinase (CK) specific activity, and that calciotrophic hormones modulate E2 activity in rat osteoblastic sarcoma cells (ROS 17/2.8). Moreover, E2 failed to stimulate DNA synthesis in vitamin D-depleted female rat bone in the absence of prior i.p. injections of 1.25(OH)2D3. We have, therefore, studied the effects of pretreatment of cells by one hormone on their response to challenge by a second hormone. We now report reciprocal interactions of sex steroids and other hormones modulating bone formation on cell proliferation parameters in primary bone and cartilage cell cultures: these interactions can selectively augment or diminish cell responsiveness to a given hormone. Pretreatment of rat epiphyseal cartilage cell cultures with 1.25(OH)2D3, 24.25(OH)2D3 or parathyroid hormone (PTH) for 5 days, followed by E2 treatment for 24h, resulted in increased DNA synthesis compared to cultures pretreated with vehicle. Prostaglandin (PGE2) pretreatment blocked further response to E2. In the reciprocal case, rat epiphyseal cartilage cells, pretreated with E2, showed an increased response to PTH, a loss of the response to PGE2 or 24.25(OH)2D3 and an inhibition of CK activity and DNA synthesis by 1.25(OH)2D3, similar to the characteristic inhibitory action of 1.25(OH)2D3 in osteoblasts. By contrast, rat epiphyseal cartilage cells pretreated with testosterone showed no changes in response to PTH, 24.25(OH)2D3 or PGE2 and a decreased response to E2, but were stimulated by 1.25(OH)2D3. Rat embryo calvaria cell cultures behaved similarly to epiphyseal cartilage cultures except that 24.25(OH)2D3 pretreatment did not increase the response to E2. Reciprocally, pretreatment with E2 before exposure to calciotrophic hormones did not change the responses of rat embryo calvaria cell cultures to 1.25(OH)2D3 or 24.25(OH)2D3. These findings suggest that the mutual interactions between calciotrophic hormones and E2, demonstrated here in vitro, could selectively affect the responses of bone and cartilage cells to E2 by several mechanisms. These possibilities include increased E2 receptors and E2-stimulated differentiation of cartilage cells to more E2 responsive cells showing some characteristics of osteoblasts.  相似文献   

20.
Our previous work demonstrated that the inhibition of type I collagen synthesis by 1,25-dihydroxyvitamin D (1,25-(OH)2D3) in fetal rat calvaria and cultured rat osteosarcoma cells is accompanied by equivalent reduction in steady state levels of alpha 1(I) and alpha 2(I) collagen mRNA. To pursue the mechanism for this effect, we isolated and sequenced a 3.6-kilobase DNA fragment that contained the promoter for the rat alpha 1(I) collagen gene. This promoter fragment was fused to the chloramphenicol acetyltransferase gene and was introduced into ROS 17/2.8 cells by calcium phosphate co-precipitation. Expression of this construct was diminished by 1,25-(OH)2D3 to the same degree as the endogenous collagen gene in both transient expression assays and in permanently selected bone cells. However, a fibroblast cell line did not show a similar reduction in the activity of the transgene or the endogenous collagen gene. These experiments indicate that the alpha 1(I) promoter contains cis-active elements which are regulated by the 1,25-(OH)2D3 receptor in ROS 17/2.8 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号