首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fully validated gas chromatographic-tandem mass spectrometric (GC-tandem MS) method for the accurate and precise quantification of free 3-nitrotyrosine in human plasma at the basal state is described. In the plasma of 11 healthy humans a mean concentration of 2.8 nM (range 1.4-4.2 nM) for free 3-nitrotyrosine was determined by this method. This is the lowest concentration reported for free 3-nitrotyrosine in plasma of healthy humans. The presence of endogenous free 3-nitrotyrosine in human plasma was unequivocally shown by generating a daughter mass spectrum. Various precautions had to be taken to avoid artifactual formation of 3-nitrotyrosine from nitrate during sample treatment. Endogenous plasma 3-nitrotyrosine and 3-nitro-l-[(2)H(3)]tyrosine added for use as internal standard were isolated by high-performance liquid chromatographic (HPLC) analysis of 200-microl aliquots of plasma ultrafiltrate samples (20 kDa cut-off), extracted from a single HPLC fraction by solid-phase extraction, derivatized to their n-propyl ester-pentafluoropropionyl amide-trimethylsilyl ether derivatives, and quantified by GC-tandem MS. Overall recovery was determined as 50 +/- 5% using 3-nitro-l-[(14)C(9)]tyrosine. The limit of detection of the method was 4 amol of 3-nitrotyrosine, while the limit of quantitation was 125 pM using 3-nitro-l-[(14)C(9)]tyrosine. 3-Nitrotyrosine added to human plasma at 1 nM was quantitated with an accuracy of > or = 80% and a precision of > or = 94%. The method should be useful to investigate the utility of plasma free 3-nitrotyrosine as an indicator of nitric oxide ((.)NO)-associated oxidative stress in vivo in humans.  相似文献   

2.
3-Nitrotyrosine (NO(2)Tyr) is a potential biomarker of reactive-nitrogen species (RNS) including peroxynitrite. 3-Nitrotyrosine occurs in human plasma in its free and protein-associated forms and is excreted in the urine. Measurement of 3-nitrotyrosine in human plasma is invasive and associated with numerous methodological problems. Recently, we have described an accurate method based on gas chromatography (GC)-tandem mass spectrometry (MS) for circulating 3-nitrotyrosine. The present article describes the extension of this method to urinary 3-nitrotyrosine. The method involves separation of urinary 3-nitrotyrosine from nitrite, nitrate and l-tyrosine by HPLC, preparation of the n-propyl-pentafluoropropionyltrimethylsilyl ether derivatives of endogenous 3-nitrotyrosine and the internal standard 3-nitro-l-[(2)H(3)]tyrosine, and GC-tandem MS quantification in the selected-reaction monitoring mode under negative-ion chemical ionization conditions. In urine of ten apparently healthy volunteers (years of age, 36.5+/-7.2) 3-nitrotyrosine levels were determined to be 8.4+/-10.4 nM (range, 1.6-33.2 nM) or 0.46+/-0.49 nmol/mmol creatinine (range, 0.05-1.30 nmol/mmol creatinine). The present GC-tandem MS method provides accurate values of 3-nitrotyrosine in human urine at the basal state. After oral intake of 3-nitro-l-tyrosine by a healthy volunteer (27.6 microg/kg body weight) 3-nitro-l-tyrosine appeared rapidly in the urine and was excreted following a biphasic pharmacokinetic profile. Approximately one third of administered 3-nitro-l-tyrosine was excreted within the first 8 h. The suitability of the non-invasive measurement of urinary 3-nitrotyrosine as a method of assessment of oxidative stress in humans remains to be established.  相似文献   

3.
Measurement of 3-nitro-L-tyrosine (NO(2)Tyr) and protein-related 3-nitro-L-tyrosine in human plasma is associated with numerous methodological problems which result in highly divergent basal plasma levels often ranging within two orders of magnitude. Recently, we have described an interference-free GC-tandem MS-based method for NO(2)Tyr which yielded the lowest basal plasma NO(2)Tyr levels reported thus far. This method was extended to quantify protein-associated 3-nitrotyrosine and in particular 3-nitrotyrosinated albumin (NO(2)TyrALB) in human plasma. NO(2)TyrALB and albumin (ALB) were extracted from plasma by affinity column extraction and digested enzymatically at neutral pH. 3-Nitro- L-[2H(3)]tyrosine was used as internal standard. In plasma of 18 healthy young volunteers the molar ratio of NO(2)TyrALB to albumin-derived tyrosine (TyrALB), i.e. NO(2)TyrALB/TyrALB, was determined to be 1.55+/-0.54x1:10(6) (mean+/-SD). The plasma concentration of NO(2)TyrALB was estimated as 24+/-4 nM. The NO(2)Tyr plasma levels in these volunteers were determined to be 0.73+/-0.53 nM. In the same volunteers, NO(2)TyrALB/TyrALB, NO(2)TyrALB and NO(2)Tyr were measured 15 days later and the corresponding values were determined to be 1.25+/-0.58x1:10(6), 25+/-6 nM and 0.69+/-0.16 nM. For comparison, NO(2)Tyr and NO(2)TyrALB were measured in six plasma samples from healthy volunteers by GC-MS and GC-tandem MS. Different values were found for NO(2)Tyr, i.e. 5.4+/-2.8 versus 2.7+/-1.5 nM, and comparable values for NO(2)TyrALB/TyrALB, i.e. 0.5+/-0.2x1:10(6) versus 0.4+/-0.1x1:10(6), by these methods. The ratio of the values measured by GC-MS to those measured by GC-tandem MS were 2.9+/-3.1 for NO(2)Tyr and 1.2+/-0.2 for NO(2)TyrALB/TyrALB. The present GC-tandem MS method provides accurate values of NO(2)Tyr and NO(2)TyrALB in human plasma.  相似文献   

4.
Benzene, an environmental pollutant, is myelotoxic and leukemogenic in humans. The molecular mechanisms that can account for its biological effects have not been fully elucidated. We hypothesize that one of the underlying mechanism involves nitration of proteins by peroxynitrite and/or by bone marrow myeloperoxidase-dependent pathways in nitric oxide (NO) metabolism. Using 3-nitrotyrosine [Tyr(NO(2))] as a biomarker for NO-induced damage to proteins, we examined the effects of benzene on the levels of Tyr(NO(2)) in bone marrow in vivo. Groups of 8 weeks old B6C3F(1) male mice were given a single i.p. injection of benzene (50, 100, 200 or 400mg/kg bodyweight) in corn oil. The mice in control groups received either no treatment or a single injection of the vehicle. The mice were killed 1h after treatment and proteins were isolated from bone marrow, lung, liver and plasma. The proteins were enzymatically hydrolyzed; amino acids were separated and purified by high pressure liquid chromatography, derivatized, and quantified by electron capture-negative chemical ionization-gas chromatography/mass spectrometry (EC-NCI-GC/MS). In the GC/MS assay, 3-nitro-l-[(13)C(9)]tyrosine was used as an internal standard and l-[(2)H(4)]tyrosine served to monitor artifactual formation of 3-nitrotyrosine during sample preparation and analysis. We found that treatment of mice with benzene elevates nitration of tyrosine residues in bone marrow proteins. There was a dose (50-200mg benzene/kg b.w.)-dependent increase in protein-bound Tyr(NO(2)) formation (1.5- to 4.5-fold); however, the levels of Tyr(NO(2)) at 400mg benzene/kg b.w. were significantly higher than control but lower than that formed at 200mg benzene/kg b.w. The results of this study, for the first time, indicate that benzene increases protein-bound 3-Tyr(NO(2)) in bone marrow in vivo, and support our previous finding that benzene is metabolized to nitrated products in bone marrow of mice; collectively, these results may in part account for benzene-induced myelotoxicity.  相似文献   

5.
A novel, sensitive, and specific method is presented for the quantification of endogenous 3-nitrotyrosine in rat plasma based on isotope dilution liquid chromatography-electrospray ionization tandem mass spectrometry, using 3-nitro-2,5,6-d(3)-l-tyrosine as an internal standard. The extraction and cleanup method entails three major steps: protein precipitation, solid-phase extraction with an aminopropyl cartridge, followed by derivatization of 3-nitrotyrosine to the corresponding butyl ester. The analysis of the stable butyl ester derivative circumvented matrix interferences, which were encountered on the analysis of the nonderivatized analyte in plasma, and thus significantly improved sensitivity. The mass spectral acquisition of 3-nitrotyrosine butyl ester was done in the positive ion mode using selected reaction monitoring of two specific transitions. The response was linear over the concentration range 1.4-28.5 nM, and the recoveries of spiked 3-nitrotyrosine in rat plasma exceeded 75%. The detection and quantification limits of 3-nitrotyrosine in rat plasma (165 microL equivalent injected) approached 0.43 and 1.4 nM (0.07 and 0.23 pmol, on column), respectively. This study also addresses the potential artifactual formation of 3-nitrotyrosine, which may lead to an overestimation of the background levels of the biomarker. Solid-phase extraction of 3-nitrotyrosine was required prior to esterification to avoid artifactual nitration of tyrosine. In this context, analysis of eight rat plasma samples showed quantifiable levels in only four of the samples of the order of 1.4-1.5 nM.  相似文献   

6.
Nitric oxide (NO), the endogenous modulator of vascular tone and structure, originates from oxidation of L-arginine catalysed by NO synthase (NOS). The L-arginine derivative L-homoarginine serves as an alternative NOS substrate releasing NO, competing with L-arginine for NOS, arginase, and arginine transport. In the present article we report a liquid chromatography-tandem mass spectrometric (LC-tandem MS) method for the determination of L-homoarginine in human plasma by stable-isotope dilution. L-[(13)C(6)]-Homoarginine was used as internal standard. This method provides high sample throughput of 25-μl aliquots of plasma with an analysis time of 4 min using LC-tandem MS electrospray ionisation in the positive mode (ESI+). Specific transitions for L-homoarginine and L-[(13)C(6)]-homoarginine were m/z 245 → m/z 211 and m/z 251 → m/z 217, respectively. The mean intra- and interassay CVs were 7.4 ± 4.5% (±SD) for 0.1-50 μmol/L and 7.5 ± 2.0% for 2 and 5 μmol/L, respectively. Applying this method, a mean plasma concentration of L-homoarginine of 2.5 ± 1.0 μmol/L was determined in 136 healthy humans.  相似文献   

7.
The intermittent vascular occlusion occurring in sickle cell disease (SCD) leads to ischemia-reperfusion injury and activation of inflammatory processes including enhanced production of reactive oxygen species and increased expression of inducible nitric-oxide synthase (NOS2). Appreciating that impaired nitric oxide-dependent vascular function and the concomitant formation of oxidizing and nitrating species occur in concert with increased rates of tissue reactive oxygen species production, liver and kidney NOS2 expression, tissue 3-nitrotyrosine (NO(2)Tyr) formation and apoptosis were evaluated in human SCD tissues and a murine model of SCD. Liver and kidney NOS2 expression and NO(2)Tyr immunoreactivity were significantly increased in SCD mice and humans, but not in nondiseased tissues. TdT-mediated nick end-label (TUNEL) staining showed apoptotic cells in regions expressing elevated levels of NOS2 and NO(2)Tyr in all SCD tissues. Gas chromatography mass spectrometry analysis revealed increased plasma protein NO(2)Tyr content and increased levels of hepatic and renal protein NO(2)Tyr derivatives in SCD (21.4 +/- 2.6 and 37.5 +/- 7.8 ng/mg) versus wild type mice (8.2 +/- 2.2 and 10 +/- 1.2 ng/mg), respectively. Western blot analysis and immunoprecipitation of SCD mouse liver and kidney proteins revealed one principal NO(2)Tyr-containing protein of 42 kDa, compared with controls. Enzymatic in-gel digestion and MALDI-TOF mass spectrometry identified this nitrated protein as actin. Electrospray ionization and fragment analysis by tandem mass spectrometry revealed that 3 of 15 actin tyrosine residues are nitrated (Tyr(91), Tyr(198), and Tyr(240)) at positions that significantly modify actin assembly. Confocal microscopy of SCD human and mouse tissues revealed that nitration led to morphologically distinct disorganization of filamentous actin. In aggregate, we have observed that the hemoglobin point mutation of sickle cell disease that mediates hemoglobin polymerization defects is translated, via inflammatory oxidant reactions, into defective cytoskeletal polymerization.  相似文献   

8.
Measurement of nitrotyrosine levels in biological fluids can serve as a biomarker for oxidative/nitrative damage arising from formation of reactive nitrogen species, including peroxynitrite. Peroxynitrite is formed by the reaction of the superoxide radical (O2.-) with the nitric oxide radical (.NO) that is generated by nitric oxide synthase (NOS). This article describes an immunoaffinity liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to measure 3-nitrotyrosine at very low (picomolar) levels. Incorporation of a pronase digestion step prior to the immunoaffinity LC-MS/MS allowed for measuring not only free amino acid but also protein 3-nitrotyrosine in biological fluids. The use of an in-line antibody column allowed for increased specificity as compared with previously reported assays. The assay is linear over a range of 5 to 500 pg/ml (0.022-2.20 nM, r(2)=0.9987), with the lower detection limit being 5 pg/ml. In addition to its increased sensitivity and specificity, this assay showed great nitrotyrosine recovery from biological fluids when either nitrotyrosine or nitrotyrosine-containing peptides were added exogenously. The utility of this assay for nitrotyrosine as a clinically translatable biomarker was demonstrated by quantifying both free and total nitrotyrosine levels in various biological fluids, including urine, plasma, serum, cerebrospinal fluid (CSF), and synovial fluid (SF) from both preclinical species and human subjects. Thus, whether in an animal model of human disease or in a clinical setting, the quantification of nitrotyrosine levels should provide support for NOS-driven pathology and its blockade following therapeutic intervention.  相似文献   

9.
3-nitrotyrosine (NO2Tyr), an L-tyrosine derivative during nitrative stress, can substitute the COOH-terminal tyrosine of alpha-tubulin, posttranslationally altering microtubular functions. Because infection of the cells by respiratory syncytial virus (RSV) may require intact microtubules, we tested the hypothesis that NO2Tyr would inhibit RSV infection and intracellular signaling via nitrotyrosination of alpha-tubulin. A human bronchial epithelial cell line (BEAS-2B) was incubated with RSV with or without NO2Tyr. The release of chemokines and viral particles and activation of interferon regulatory factor-3 (IRF-3) were measured. Incubation with NO2Tyr increased nitrotyrosinated alpha-tubulin, and NO2Tyr colocalized with microtubules. RSV-infected cells released viral particles, RANTES, and IL-8 in a time- and dose-dependent manner, and intracellular RSV proteins coprecipitated with alpha-tubulin. NO2Tyr attenuated the RSV-induced release of RANTES, IL-8, and viral particles by 50-90% and decreased alpha-tubulin-associated RSV proteins. 3-chlorotyrosine, another L-tyrosine derivative, had no effects. NO2Tyr also inhibited the RSV-induced shift of the unphosphorylated form I of IRF-3 to the phosphorylated form II. Pre-exposure of the cells to NO(2) (0.15 ppm, 4 h), which produced diffuse protein tyrosine nitration, did not affect RSV-induced release of RANTES, IL-8, or viral particles. NO2Tyr did not affect the potential of viral spreading to the neighboring cells since the RSV titers were not decreased when the uninfected cells were cocultured with the preinfected cells in NO2Tyr-containing medium. These results indicate that NO2Tyr, by replacing the COOH-terminal tyrosine of alpha-tubulin, attenuated RSV infection, and the inhibition appeared to occur at the early stages of RSV infection.  相似文献   

10.
Halogenation and nitration of biomolecules have been proposed as key mechanisms of host defense against bacteria, fungi, and viruses. Reactive oxidants also have the potential to damage host tissue, and they have been implicated in disease. In the current studies, we describe specific, sensitive, and quantitative methods for detecting three stable markers of oxidative damage: 3-chlorotyrosine, 3-bromotyrosine, and 3-nitrotyrosine. Our results indicate that electron capture-negative chemical ionization-gas chromatography/mass spectrometry (EC-NCI GC/MS) is 100-fold more sensitive than liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-MS/MS) for analyzing authentic 3-chlorotyrosine, 3-bromotyrosine, and 3-nitrotyrosine. Using an isotopomer of tyrosine to evaluate artifactual production of the analytes during sample preparation and analysis, we found that artifact generation was negligible with either technique. However, LC-MS/MS proved cumbersome for analyzing multiple samples because it required 1.5 h of run and equilibration time per analysis. In contrast, EC-NCI GC/MS required only 5 min of run time per analysis. Using EC-NCI GC/MS, we were able to detect and quantify attomole levels of free 3-chlorotyrosine, 3-bromotyrosine, and 3-nitrotyrosine in human plasma. Our results indicate that EC-NCI GC/MS is a sensitive and specific method for quantifying free 3-chlorotyrosine, 3-bromotyrosine, and 3-nitrotyrosine in biological fluids in a single, rapid analysis and that it avoids generating any of the analytes ex vivo.  相似文献   

11.
A sensitive and specific isotope dilution liquid chromatography-electrospray tandem mass spectrometry method was developed for the determination of the 3-nitrotyrosine residue levels in rat plasma proteins. The assay is based on the cleavage of proteins with concentrated hydrochloric acid to release both 3-nitrotyrosine and tyrosine. To control the potential artifactual nitration of tyrosine residues during the proteolysis, samples are spiked with (13)C(9)-labeled tyrosine and the level of (13)C(9)-labeled 3-nitrotyrosine is measured. The clean-up process entails hydrolysate fortification with 2,5,6-d(3)-3-nitrotyrosine, followed by solid-phase extraction on octadecylsilyl (to isolate tyrosine) and aminopropylsilyl (to isolate 3-nitrotyrosine) cartridges. Tyrosine and 3-nitrotyrosine fractions are mixed in an appropriate ratio prior to the analysis. The method was applied to animals exposed to ferric nitrilotriacetate to induce oxidative stress.  相似文献   

12.
The balance between nitric oxide (NO) and vasoconstrictors like endothelin is essential for vascular tone and endothelial function. L-Arginine is converted to NO and L-citrulline by NO synthase (NOS). Asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) are endogenous inhibitors of NO formation. ADMA is degraded by dimethylamino dimethylhydrolases (DDAHs), while SDMA is exclusively eliminated by the kidney. In the present article we report a LC-tandem MS method for the simultaneous determination of arginine, ADMA, and SDMA in plasma. This method is designed for high sample throughput of only 20-mul aliquots of human or mouse plasma. The analysis time is reduced to 1.6 min by LC-tandem MS electrospray ionisation (ESI) in the positive mode. The mean plasma levels of l-arginine, ADMA, and SDMA were 74+/-19 (SD), 0.46+/-0.09, and 0.37+/-0.07 microM in healthy humans (n=85), respectively, and 44+/-14, 0.72+/-0.23, and 0.19+/-0.06 microM in C57BL/6 mice. Also, the molar ratios of arginine to ADMA were different in man and mice, i.e. 166+/-50 and 85+/-22, respectively.  相似文献   

13.
Compared to the arachidonic acid (C20:4) cascade, the oleic acid (C18:1) family comprises a handful known metabolites. The pathophysiology of oleic acid and its oxidized and nitrated metabolites, i.e., cis-9,10-epoxyoctadecanoic acid (cis-EpOA) and the two vinylic nitro-oleic acids cis-9-nitro-oleic acid (9-NO(2)-OA) and cis-10-nitro-oleic acid (10-NO(2)-OA), is only little investigated and little understood. cis-EpOA, 9-NO(2)-OA and 10-NO(2)-OA have been detected in plasma of healthy and ill human subjects by means of gas chromatography-tandem mass spectrometry (GC-MS/MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques in their acid and esterified forms. cis-EpOA is formed from oleic acid by the catalytic action of various cytochrome P450 isozymes. In end-stage liver disease, cis-EpOA plasma concentration is lower than in healthy subjects suggesting liver as the main organ responsible for cis-EpOA synthesis. The origin of 9-NO(2)-OA and 10-NO(2)-OA and of other nitrated oleic acid metabolites is unknown. In vitro models, nitro-oleic acid species can be formed non-enzymatically from oleic acid and nitrogen dioxide. Thus, endogenous nitro-oleic acids could serve as biomarkers of fatty acid nitration by reactive nitrogen species. Synthetic 9-NO(2)-OA and 10-NO(2)-OA at concentrations of three orders of magnitude higher than their endogenous counterparts have interesting pharmacological features and are currently intensely investigated. The present article reviews and discusses currently available analytical methods for the quantitative determination of cis-EpOA, 9-NO(2)-OA and 10-NO(2)-OA in biological samples, notably in human plasma, and the potential biological significance of these oleic acid metabolites. Special emphasis is given to GC-MS/MS and LC-MS/MS methods utilizing the stable-isotope dilution technique. The sensitivity and specificity of the MS/MS approach make electron-capture negative ion chemical ionization (ECNICI) GC-MS/MS and negative electrospray ionization (NESI) LC-MS/MS methodologies indispensable in experimental and clinical settings on oxidative and nitrative oleic acid metabolism. These techniques are particularly suited to delineate the oleic acid cascade.  相似文献   

14.
Bradykinin is a vasoactive nonapeptide involved in cardiorenal physiology and inflammatory states. It has been linked to the pathophysiology of hypertension and diabetes. Correlating levels of bradykinin with disease states has been hampered by its rapid degradation, artifactual production during blood sampling, and nonspecific radioimmunoassay techniques. We previously identified BK1-5 as the stable in vivo plasma metabolite of systemic bradykinin in humans. We now report a sensitive and specific assay method for BK1-5 in human blood utilizing liquid chromatography-tandem mass spectrometry(MS) with electrospray ionization. [(13)C(2),(15)N]Glycine was incorporated into chemically synthesized BK1-5 for use as an internal standard. Blood samples (5 ml) were collected into 15-ml chilled ethanol to prevent artifactual kinin production and degradation. BK1-5 in ethanolic plasma supernatant was purified on a polymeric solid phase extraction cartridge. MS analysis was in the selective reaction monitoring mode. Precision of the assay is +/-7.5% and accuracy is 99%. Recovery of BK1-5 through sample preparation was 43% and the lower limit of detection is 4 fmol/ml blood. Concentrations of BK1-5 in 12 normal volunteers were 44.2 +/- 7.1 fmol/ml blood (mean +/- SE). During blood sampling, no artifactual production of BK1-5 was detected for up to 60 s prior to denaturing the sample. This assay provides the first accurate and precise method using MS to quantify BK1-5 in human blood as a marker for the production of systemic bradykinin in humans.  相似文献   

15.
Aminoethylcysteine ketimine decarboxylated dimer (AECK-DD; systematic name: 1,2-3,4-5,6-7,8-octahydro-1,8a-diaza-4,6-dithiafluoren-9(8aH)-one) is a previously described metabolite of cysteamine that has been reported to be present in mammalian brain, urine, plasma, and cells in culture and vegetables and to possess potent antioxidative properties. Here, we describe a stable isotope gas chromatography-tandem mass spectrometry (GC-MS/MS) method for specific and sensitive determination of AECK-DD in biological samples. (13)C(2)-labeled AECK-DD was synthesized and used as the internal standard. Derivatization was carried out by N-pentafluorobenzylation with pentafluorobenzyl bromide in acetonitrile. Quantification was performed by selected reaction monitoring of the mass transitions m/z 328 to 268 for AECK-DD and m/z 330 to 270 for [(13)C(2)]AECK-DD in the electron capture negative ion chemical ionization mode. The procedure was systematically validated for human plasma and urine samples. AECK-DD was not detectable in human plasma above approximately 4nM but was present in urine samples of healthy humans at a maximal concentration of 46nM. AECK-DD was detectable in rat brain at very low levels of approximately 8pmol/g wet weight. Higher levels of AECK-DD were detected in mouse brain (~1nmol/g wet weight). Among nine dietary vegetables evaluated, only shallots were found to contain trace amounts of AECK-DD (~6.8pmol/g fresh tissue).  相似文献   

16.
Capillary porous graphitic carbon (PGC) columns have been utilized for separation of several catecholamines and related compounds (i.e. L-tyrosine, L-DOPA, 3-O-methyl-DOPA, dopamine, 3,4-dihydroxy-phenyl-acetic acid (DOPAC), homovanillic acid, noradrenaline, vanillomandelic acid and adrenaline) on-line with electrospray ionization tandem mass spectrometry (ESI-MS/MS). The use of a mobile phase without ion-pairing agents and with high content of organic modifier facilitated the coupling to the selective and sensitive mass spectrometric detection. Minimum detectable sample concentration (MDC sample) for noradrenaline, dopamine and L-tyrosine in a standard solution was estimated to 3, 10 and 30 nM, respectively (3 S/N corresponds to MDQ for L-tyrosine of approximately 8 x 10(-14)mol). The developed strategy was applied for analysis of brain tissue, i.e. a substantia nigra (ns) sample.  相似文献   

17.
An analytical method is described for the quantification of S-nitrosoglutathione (GSNO), a potent physiological vasodilator and inhibitor of platelet aggregation, in the presence of a high excess of reduced glutathione (GSH). The method is based on the quantitative elimination of GSH by N-ethylmaleimide, the conversion of GSNO by 2-mercaptoethanol to GSH, its reaction with o-phthalaldehyde (OPA) to form a highly fluorescent and UV-absorbing tricyclic isoindole derivative, and subsequent high-performance liquid chromatographic (HPLC) separation with fluorescence and/or UV absorbance detection. The OPA derivatives of GSH and GSNO obtained by this method were found to be identical by mass spectrometry. GSH (up to 50 microM) did not interfere with the analysis of GSNO (up to 1000 nM). The limits of detection of the method for buffered aqueous solutions of GSNO were determined as 3 nM using fluorescence and 70 nM using UV absorbance detection. Isolation of GSNO by HPLC analysis (pH 7.0) of plasma ultrafiltrate samples (200 microl) prior to derivatization allows specific and artifact-free quantification of GSNO in human and rat plasma. Reduced and oxidized glutathione, nitrite, and cysteine did not interfere with the measurement of GSNO in human and rat plasma. The limit of quantitation (LOQ) of the combined method was determined as 100 nM of GSNO in human plasma ultrafiltrate using fluorescence detection. No endogenous GSNO could be detected in ultrafiltrate samples of plasma of 10 healthy humans at concentrations exceeding the LOQ of the method. After iv infusion of GSNO (125 micromol/kg body wt) in a rat for 20 min GSNO and GSH were detected in rat plasma at 60 and 130 microM, respectively. The method should be useful to investigate formation, metabolism, and reactions of GSNO in vitro and in vivo at physiologically relevant concentrations.  相似文献   

18.
Hemodynamics, specifically, fluid shear stress, modulates the focal nature of atherogenesis. Superoxide anion (O2(-.)) reacts with nitric oxide (.NO) at a rapid diffusion-limited rate to form peroxynitrite (O2(-.) + .NO-->ONOO(-)). Immunohistostaining of human coronary arterial bifurcations or curvatures, where OSS develops, revealed the presence of nitrotyrosine staining, a fingerprint of peroxynitrite; whereas in straight segments, where PSS occurs, nitrotyrosine was absent. We examined vascular nitrative stress in models of oscillatory (OSS) and pulsatile shear stress (PSS). Bovine aortic endothelial cells (BAEC) were exposed to fluid shear stress that simulates arterial blood flow: (1) PSS at a mean shear stress (tau(ave)) of 23 dyn cm(-2) and a temporal gradient (partial differential(tau)/partial differential(t)) at 71 dyn cm(-2) s(-1), and (2) OSS at tau(ave) = 0.02 dyn cm(- 2) and partial differential(tau)/partial differential(t) = +/- 3.0 dyn cm(-2) s(-1) at a frequency of 1 Hz. OSS significantly up-regulated one of the NADPH oxidase subunits (NOx4) expression accompanied with an increase in O2(-.) production. In contrast, PSS up-regulated eNOS expression accompanied with .NO production (total NO(2)(-) and NO(3)(-)). To demonstrate that O2(-.) and .NO are implicated in ONOO(-) formation, we added low-density lipoprotein cholesterol (LDL) to the medium in which BAEC were exposed to the above flow conditions. The medium was analyzed for LDL apo-B-100 nitrotyrosine by liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI/MS/MS). OSS induced higher levels of 3-nitrotyrosine, dityrosine, and o-hydroxyphenylalanine compared with PSS. In the presence of ONOO(-), specific apo-B-100 tyrosine residues underwent nitration in the alpha and beta helices: alpha-1 (Tyr(144)), alpha-2 (Tyr(2524)), beta-2 (Tyr(3295)), alpha-3 (Tyr(4116)), and beta-2 (Tyr(4211)). Hence, the characteristics of shear stress in the arterial bifurcations influenced the relative production of O2(-.) and .NO with an implication for ONOO(-) formation as evidenced by LDL protein nitration.  相似文献   

19.
The F(2)-isoprostanes are products of free-radical-induced oxidation of arachidonic acid (AA) that are stereoisomers of prostaglandin F(2alpha) (PGF(2alpha)). We describe a method for quantitation of several 15-series PGF isomers (15-PGFs) and AA by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS). Plasma samples were subjected to alkaline hydrolysis and acidified, and total (free + esterified) 15-PGFs and AA were extracted with organic solvents. The analytes were separated by gradient reverse-phase HPLC and detected by multiple reaction monitoring on a triple-quadrupole mass spectrometer, using deuterated internal standards for quantitation. The assay had a linear range of 1-40 pg of 8-iso-PGF(2alpha) on column and can quantify as little as 40 pg/mL (0.11 nM) in plasma. Outcomes significantly correlated (p < 0.0001) with data obtained by gas chromatography-mass spectrometry GC-MS or enzyme-linked immunosorbent assay. All plasma 15-PGF isomers increased over time with in vitro cigarette smoke exposure and correlated (p < 0.0001) with each other. The same strong inter-15-PGF correlations were observed in plasma from healthy young adult subjects. The coefficients of variation of HPLC-MS-MS measurements (24-32%) were smaller than those obtained by GC-MS (53%). Thus, HPLC-MS-MS potentially offers greater precision and allows quantitation of more compounds with simpler sample preparation than existing methods. Ours is the first validated quantitative assay using HPLC-tandem MS applied to plasma total 15-PGFs.  相似文献   

20.
A method to determine sildenafil in human plasma involving liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed. Sildenafil and the internal standard (I.S.), diazepam, are extracted from human plasma with ether-dichloromethane (3:2, v/v) at basic pH and analyzed by reversed-phase high-performance liquid chromatography (HPLC) using methanol-10mM ammonium acetate pH 7.0 (85:15, v/v) as the mobile phase. Detection by electrospray positive ionization mass spectrometry in the multiple-reaction monitoring mode was linear over the concentration range 0.125-40.0 ng/ml. Intra- and inter-day precision of the assay at four concentrations within this range were 2.5-8.0%. The method was used to evaluate plasma concentration-time profiles in healthy volunteers given an oral dose of 20mg sildenafil as a combination tablet also containing apomorphine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号