首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homogenous regulatory subunit from rabbit skeletal muscle cAMP-dependent protein kinase (isozyme I) was partially hydrolyzed with low (1 g/1300 g) or high (1 g/6 g) concentrations of trypsin. After treatment with low trypsin two main peptides (Mr = 35,000 and 12,000) were produced. The cAMP-binding activity (2 mol cAMP/mol of subunit monomer) was recovered in the monomeric Mr = 35,000 peptide. The ability of either fragment to inhibit catalytic subunit activity was lost. Treatment of the regulatory subunit with a high concentration of trypsin yielded three main fragments (Mr = 32,000, 16,000, and 6,000) which could be resolved by Sephadex G-75 and purified further on DEAE-cellulose columns. One of the peptides (Mr = 32,000) bound 2 mol cAMP/mol fragment. The Mr = 16,000 fragment was very labile and bound cAMP with an undetermined stoichiometry. Cyclic AMP dissociation curves for the native regulatory subunit and its Mr = 32,000 component were similar and suggested the presence of two nonidentical binding sites in each monomer. Using the same procedure, the Mr = 16,000 fragment or homogenous cGMP-dependent protein kinase appeared to contain a single type of binding site. Purified Mr = 32,000 fragment was readily converted to the Mr = 16,000 fragment using high trypsin as assessed by protein bands on SDS-disc gels or by following transfer of radioactivity from Mr = 32,000 peptide covalently labeled with 8-N3-[32P] cAMP to radiolabeled Mr = 16,000 fragment. The smallest regulatory subunit fragment (Mr = 6,000) did not bind cAMP, but was dimeric and could be part of the dimerization domain in the native protein. A model is presented to explain the possible structural-functional relationships of the regulatory subunit.  相似文献   

2.
Exposure of sarcoplasmic reticulum to trypsin in the presence of 1 M sucrose results in degradation of the Mr = 102,000 ATPase enzyme to two fragments of Mr = 55,000 and 45,000 with subsequent appearance of fragments of Mr = 30,000 and 20,000. These fragments were purified by column chromatography in sodium dodecyl sulfate. Antibodies were raised against the ATPase and the Mr = 55,000, 45,000, and 20,000 fragments. There was no antigenic cross-reactivity between the Mr = 55,000 and 45,000 fragments, indicating that they were derived from a single linear cleavage of the larger enzyme. There was antigenic cross-reactivity between the Mr = 20,000 and 55,000 fragments, indicating an origin of the Mr = 20,000 fragment in the Mr = 55,000 fragment. None of the antibodies inhibited (Ca2+ + Mg2+)-dependent ATPase or Ca2+ transport. The Mr = 20,000 fragment and the Mr = 55,000 fragment were active in Ca2+ ionophore assays. The active site of ATP hydrolysis was labeled with [gamma-32P]ATP and the site of ATP binding was labeled with tritiated N-ethylmaleimide. In both cases radioactivity was found in the intact ATPase and in the Mr = 55,000 and 30,000 fragments, indicating that the Mr = 30,000 fragment was also derived from the Mr = 55,000 fragment. Amino acid composition data showed that the Mr = 45,000 fragment contained about 60% nonpolar and 40% polar amino acids, while the Mr = 55,000 fragment and the Mr = 20,0000 fragment contained about equal amounts of polar and nonpolar amino acids. Studies of the reaction of various antibodies at the external surface of sarcoplasmic reticulum vesicles showed that the ATPase was exposed, whereas calsequestrin and the high affinity Ca2+-binding protein were not. The use of antibodies against the various fragments indicated that the Mr = 55,000 fragment was in large part exposed, whereas the Mr = 20,000 and the 45,000 fragments were only poorly exposed. It is probable that the site of ATP hydrolysis in the Mr = 55,000 fragment is external, whereas the ionophore site is only partially exposed and the Mr = 45,000 fragment is largely buried within the membrane.  相似文献   

3.
Proteolysis of factor Va by factor Xa and activated protein C   总被引:6,自引:0,他引:6  
Bovine Factor Va, produced by selective proteolytic cleavage of Factor V by thrombin, consists of a heavy chain (D chain) of Mr = 94,000 and a light chain (E chain) of Mr = 74,000. These peptides are noncovalently associated in the presence of divalent metal ion(s). Each chain is susceptible to proteolysis by activated protein C and by Factor Xa. Sodium dodecyl sulfate electrophoretic analysis indicates that cleavage of the E chain by either activated protein C or Factor Xa yields two major fragments: Mr = 30,000 and Mr = 48,000. Amino acid sequence analysis indicates that the Mr = 30,000 fragments have identical NH2-terminal sequences and that this sequence corresponds to that of intact E chain. The Mr = 48,000 fragments also have identical NH2-terminal sequences, indicating that activated protein C and Factor Xa cleave the E chain at the same position. Sodium dodecyl sulfate electrophoretic analysis indicates that activated protein C cleavage of the D chain yields two products: Mr = 70,000 and Mr = 24,000. Amino acid sequence analysis indicates that the Mr = 70,000 fragment has the same NH2-terminal sequence as intact D chain, whereas the Mr = 24,000 fragment does not. Factor Xa cleavage of the D chain also yields two products: Mr = 56,000 and Mr = 45,000. The Mr = 56,000 fragment corresponds to the NH2-terminal end of the D chain and Factor V. Functional studies have shown that both chains of Factor Va may be entirely cleaved to products by Factor Xa without loss of activity, whereas activated protein C cleavage results in loss of activity. Since activated protein C and Factor Xa cleave the E chain at the same position, the cleavage of the D chain by activated protein C is responsible for the inactivation of Factor Va.  相似文献   

4.
Evidence is presented that in increasing concentrations of methanol the structure of the subfragment 1 is perturbed in such a way that the Mr = 50,000 central portion of the associated heavy chain is preferentially unfolded. This unfolding is accompanied by the loss in ATPase function where the rate of inactivation can be correlated with the loss in the amount of the Mr = 50,000 fragment generated under standard tryptic digestion conditions. The residual protein appears to be a soluble aggregate of a complex of the Mr = 27,000, 21,000, and light chain with no intact Mr = 50,000 fragment. Tryptic digestions in the presence of MgATP are restricted to the usual linker regions and the Mr = 50,000 fragment is completely protected from attack. Binding of actin to subfragment 1 also results in the protection of the Mr = 50,000 segment and of the Mr = 50,000/21,000 junction from tryptic attack. The data suggest that, in terms of methanolic perturbation, the subfragment 1 appears to be comprised of two domains with differential stability. One domain appears to be the central Mr = 50,000 segment of the heavy chain which is preferentially unfolded by methanol and requires the presence of MgATP or of actin for stabilization. The other domain is more stable and appears to consist of the interacting Mr = 27,000, 21,000, and light chain. The results also suggest that the integrity of the Mr = 50,000 segment is essential for the ATPase function of the protein.  相似文献   

5.
6.
Several strains of Staphylococcus aureus secrete a protein, staphylocoagulase, that binds stoichiometrically to human prothrombin, resulting in a coagulant complex designated staphylothrombin. In the present study, staphylocoagulase was digested with alpha-chymotrypsin and the resulting fragments were isolated by gel filtration. One fragment (Mr 43,000) exhibited a high affinity for human prothrombin (Kd = 1.7 X 10(-9) M), which is comparable to the affinity observed using intact staphylocoagulase (Kd = 4.6 X 10(-10) M). A complex of the Mr 43,000 fragment and prothrombin possessed both clotting and amidase activity essentially identical to that observed in a complex of intact staphylocoagulase and prothrombin. A second fragment (Mr 30,000) exhibited weaker affinity for prothrombin (Kd = 1.2 X 10(-7) M). While clotting activity was not observed with a complex of this fragment and prothrombin, it nonetheless possessed a weak amidase activity. A third fragment (Mr 20,000) was found to bind to prothrombin, but the resultant complex did not exhibit clotting or amidase activity. Amino-terminal sequence analyses of these staphylocoagulase fragments revealed that the Mr 43,000 fragment constitutes the amino-terminal portion of staphylocoagulase and also contains the Mr 30,000 and 20,000 fragments. Moreover, the amino-terminal sequence of the Mr 20,000 fragment was identical to that observed for the Mr 30,000 fragment. From these results, we conclude that the functional region of staphylocoagulase for binding and activation of human prothrombin is localized in the amino-terminal region of the intact bacterial protein.  相似文献   

7.
cGMP-stimulated phosphodiesterase (PDE) has been directly photolabeled with [32P]cGMP using UV light. Sequence analysis of peptide fragments obtained from partial proteolysis or cyanogen bromide cleavage indicate that two different domains are labeled. One site, on a Mr = 36,000 chymotryptic fragment located near the COOH terminus, has characteristics consistent with it being close to or part of the catalytic site of the enzyme. This peptide contains a region of sequence that is highly conserved in all mammalian cyclic nucleotide PDEs and has been postulated to contain the catalytic domain of the enzyme. The other site, on a Mr = 28,000 cyanogen bromide cleavage fragment located near the middle of the molecule, probably makes up part of the allosteric site of the molecule. Labeling of the enzyme is concentration dependent and Scatchard analysis of labeling yields a biphasic plot with apparent half labeling concentrations of about 1 and 30 microM consistent with two types of sites being labeled. Limited proteolysis of the PDE by chymotrypsin yields five prominent fragments that separate by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at Mr = 60,000, 57,000, 36,000, 21,000, and 17,000. Both the Mr = 60,000 and 57,000 apparently have blocked NH2 termini suggesting that the Mr = 57,000 fragment is a subfragment of the Mr = 60,000 fragment. Primary sequence analysis indicates that both the Mr = 21,000 and 17,000 fragments are subfragments of the Mr = 36,000 fragment. Autoradiographs of photolabeled then partially proteolyzed enzyme show labeled bands at Mr = 60,000, 57,000, and 36,000. Addition of 5 microM cAMP prior to photolabeling eliminates photolabeling of the Mr = 36,000 fragment but not the Mr = 60,000 or 57,000 fragments. The labeled site not blocked by cAMP is also contained in a Mr = 28,000 cyanogen bromide fragment of the enzyme that does not overlap with the Mr = 36,000 proteolytic fragment. Limited chymotryptic proteolysis also increases basal activity and eliminates cGMP stimulation of cAMP hydrolysis. The chymotryptic fragments can be separated by either ion exchange high performance liquid chromatography (HPLC) or solid-phase monoclonal antibody treatment. A solid-phase monoclonal antibody against the cGMP-stimulated PDE removes the Mr = 60,000 and 57,000 labeled fragments and any intact, unproteolyzed protein but does not remove the Mr = 36,000 fragment or the majority of activity. Ion exchange HPLC separates the fragments into three peaks (I, II, and III). Peaks I and II contain activity of approximately 40 and 100 units/mg, respectively. Peak II is the undigested or slightly nicked native enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Brain ankyrin. Purification of a 72,000 Mr spectrin-binding domain   总被引:19,自引:0,他引:19  
Polypeptides of Mr = 190,000-220,000 that cross-react with erythrocyte ankyrin were detected in immunoblots of membranes from pig lens, pig brain, and rat liver. The cross-reacting polypeptides from brain were cleaved by chymotrypsin to fragments of Mr = 95,000 and 72,000 which are the same size as fragments obtained with erythrocyte ankyrin. The brain 72,000 Mr fragment associated with erythrocyte spectrin, and the binding occurred at the same site as that of erythrocyte ankyrin 72,000 Mr fragment since (a) brain 72,000 Mr fragment was adsorbed to erythrocyte spectrin-agarose and (b) 125I-labeled erythrocyte spectrin bound to brain 72,000 Mr fragment following transfer of the fragment from a sodium dodecyl sulfate gel to nitrocellulose paper, and this binding was displaced by erythrocyte ankyrin 72,000 Mr fragment. Brain 72,000 Mr fragment was purified about 400-fold by selective extraction and by continuous chromatography on columns attached in series containing DEAE-cellulose followed by erythrocyte spectrin coupled to agarose, and finally hydroxylapatite. The brain 72,000 Mr fragment was not derived from contaminating erythrocytes since peptide maps of pig brain and pig erythrocyte 72,000 Mr fragments were distinct. The amount of brain 72,000 Mr fragment was estimated as 0.28% of membrane protein or 39 pmol/mg based on radioimmunoassay with 125I-labeled brain fragment and antibody against erythrocyte ankyrin. Brain spectrin tetramer was present in about the same number of copies (30 pmol/mg of membrane protein) based on densitometry of Coomassie blue-stained sodium dodecyl sulfate gels. The binding site on brain spectrin for both brain and erythrocyte ankyrin 72,000 Mr fragments was localized by electron microscopy to the midregion of spectrin tetramers about 90 nM from the near end and 110 nM from the far end. These studies demonstrate the presence in brain membranes of a protein closely related to erythrocyte ankyrin, and are consistent with a function of the brain ankyrin as a membrane attachment site for brain spectrin.  相似文献   

9.
Treatment of both transverse tubules and terminal cisternae with a combination of Triton X-100 and hypertonic K cacodylate causes dissolution of nonjunctional proteins and selective retention of membrane fragments which are capable of junction formation. Treatment of vesicles with Triton X-100 and either KCl or K gluconate causes complete dissolution of all components. Therefore K cacodylate exerts a specific preservative action on the junctional material. The membrane fragment from treatment of transverse tubules with Triton X-100 + cacodylate contains a protein of Mr = 80,000 in SDS gel electrophoresis as the predominant protein while lipid composition is enriched in cholesterol. The membrane fragment retains in electron microscopy the trilaminar appearance of the intact vesicles. Freeze fracture of transverse tubule fragments reveals a high density of low-profile, intercalated particles, which frequently form strings or occasional small arrays. The fragments from Triton X-100 plus cacodylate treatment of terminal cisternae include the protein of Mr = 80,000 as well as the spanning protein of the triad, calsequestrin, and some minor proteins. The fragments are almost devoid of lipid and display an amorphous morphology suggesting membrane disruption. The ability of the transverse tubular fragment, which contains predominantly the Mr = 80,000 protein, to form junctions with terminal cisternae fragments suggests that it plays a role in anchoring the membrane to the junctional processes of the triad. The junctional proteins may be solubilized in a combination of nonionic detergent and hypertonic NaCl. Subsequent molecular sieve chromatography gives an enriched preparation of the spanning protein. This protein has subunits of Mr = 300,000, 270,000 and 140,000 and migrates in the gel as a protein of Mr = 1.2 X 10(6) indicating a polymeric structure.  相似文献   

10.
Antibodies were raised in rabbits against synthetic peptides corresponding to the N-terminal (residues 1-15) and the C-terminal (residues 477-492) regions of the human erythrocyte glucose transporter. The antisera recognized the intact transporter in enzyme-linked immunosorbent assays (ELISA) and Western blots. In addition, the anti-C-terminal peptide antibodies were demonstrated, by competitive ELISA and by immunoadsorption experiments, to bind to the native transporter. Competitive ELISA, using intact erythrocytes, unsealed erythrocyte membranes, or membrane vesicles of known sidedness as competing antigen, showed that these antibodies bound only to the cytoplasmic surface of the membrane, indicating that the C terminus of the protein is exposed to the cytoplasm. On Western blots, the anti-N-terminal peptide antiserum labeled the glycosylated tryptic fragment of the transporter, of apparent Mr = 23,000-42,000, showing that this originates from the N-terminal half of the protein. The anti-C-terminal peptide antiserum labeled higher Mr precursors of the Mr = 18,000 tryptic fragment, although not the fragment itself, indicating that the latter, with its associated cytochalasin B binding site, is derived from the C-terminal half of the protein. Antiserum against the intact transporter recognized the C-terminal peptide on ELISA, and the Mr = 18,000 fragment but not the glycosylated tryptic fragment on Western blots.  相似文献   

11.
Purified human C9 was treated separately with three proteolytic enzymes: trypsin, plasmin, and alpha-thrombin, and the digestion products were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Trypsin initially cleaved the Mr = 71,000 C9 to produce a Mr = 47,000 fragment plus numerous smaller fragments and prolonged digestion reduced the molecule to small polypeptides. Plasmin produced a Mr = 37,000 fragment which was stable to further digestion, plus fragments smaller than Mr = 10,000. Human alpha-thrombin cleaved C9 (7.8% carbohydrate) at a single internal site to produce a Mr = 37,000 fragment (11.3% carbohydrate) and a Mr = 34,000 fragment (3.9% carbohydrate). Statistical analysis of the amino acid compositions of the fragments and alkaline polyacrylamide gel electrophoresis showed that C9 is highly amphiphilic; the Mr = 34,000 fragment contains a majority of the acidic amino acids and migrates rapidly on alkaline gels; the Mr = 37,000 fragment is hydrophobic with a slow electrophoretic mobility. The two fragments remain noncovalently associated, but were separated by sodium dodecyl sulfate-hydroxylapatite chromatography. The NH2-terminal sequence analysis of native C9, of alpha-thrombin-cleaved C9, and for the isolated fragments showed that the acidic Mr = 34,000 fragment is the NH2-terminal C9a domain and the more hydrophobic Mr = 37,000 fragment is the carboxyl-terminal C9b domain. Hemolytic activity of C9 was unaffected by alpha-thrombin cleavage.  相似文献   

12.
The functional domains of the in situ red cell membrane calcium pump were mapped by a double labeling technique. In inside-out vesicles (IOVs) the calcium pump was phosphorylated by [gamma-32P]ATP, the proteins blotted onto nitrocellulose and tagged by monoclonal antibodies raised against the purified pump protein. After proteolytic treatment of the IOVs by trypsin, chymotrypsin, or calpain-I, the fragmentation pattern of the enzyme was followed on the double-labeled immunoblots. The changes in the kinetics of the pump were examined by parallel measurements of the active calcium uptake in IOVs. By analysis of the results of tryptic digestion, it was possible to show that the antibodies recognized three different domains of the pump: 1) a Mr = 10,000-15,000 fragment (not seen directly) which includes the calmodulin-binding domain, 2) a nonphosphorylated Mr = 35,000 tryptic fragment, and 3) a phosphorylated fragment of Mr = 76,000-81,000. Chymotrypsin or calpain-I digestion of the membranes produced one major, Mr = 125,000 fragment, which had lost antibody-binding region 1. Production of this fragment coincided with the loss of calmodulin dependence and with a calmodulin-like activation of IOV calcium uptake (high Vmax, cooperativity in calcium activation). The Mr = 125,000 fragment was further activated by acidic lipids producing high Vmax and low K 1/2 (Ca2+) with no cooperativity. Based on these data a kinetic model and a functional map of the plasma membrane calcium pump is suggested.  相似文献   

13.
Extraction of a basement-membrane-producing mouse tumor with 6 M guanidine/HCl in the presence of protease inhibitors allowed the purification of the genuine form of the matrix protein nidogen (Mr = 150,000) and, in addition, two defined fragments (Mr = 130,000 and 100,000). Smaller fragments (Mr = 80,000 and 40,000) were obtained under conditions with less stringent control of endogenous proteolysis. Intact nidogen and the larger fragments were similar in amino acid and carbohydrate (about 5%) composition, the presence of a single polypeptide chain, conformational features as revealed by CD spectroscopy and all shared major epitopes located on the Mr = 80,000 fragment. Additional epitopes were found on intact nidogen and the Mr = 130,000 fragment. Nidogen and the various fragments possess different N-terminal amino acid sequences indicating a stepwise degradation from the N-terminal end of the molecule. Electron microscopical and hydrodynamic studies of the Mr = 80,000 fragment demonstrated a structure consisting of a globular head connected to a thin tail. Intact nidogen appears to contain a somewhat larger globule but the same tail, which is terminated at its opposite end by a second, smaller globular structure. The data suggest a multidomain structure for nidogen containing sites highly susceptible to proteolytic cleavage.  相似文献   

14.
An active form of phosphorylase phosphatase of Mr = 33,000, referred to as the catalytic subunit for over a decade, was purified to near-homogeneity from rabbit skeletal muscle. Repeated immunization of a sheep produced immunoglobulins that blocked the activity of the phosphatase. These immunoglobulins were affinity-purified on columns of immobilized phosphorylase phosphatase and used as macromolecular probes in a "Western" immunoblotting procedure with peroxidase-conjugated rabbit anti-sheep immunoglobulins. Only one protein, of Mr = 33,000, was stained in samples of the immunogen, attesting to the specificity of the probes. However, the Mr = 33,000 phosphatase protein was not detected in muscle extracts or in partially purified preparations. Instead, a single protein of Mr = 70,000 was detected. Limited proteolysis, in particular by Staphylococcus aureus V8 protease and thermolysin, converted the immunoreactive protein from Mr = 70,000 to Mr = 33,000. Coagulation of the phosphatase preparation with 80% ethanol at room temperature rendered the Mr = 70,000 protein insoluble, but allowed extraction of the Mr = 33,000 protein from the precipitate. Thus, we conclude that the immunoreactive protein of Mr = 70,000 is the "catalytic subunit" of phosphorylase phosphatase with a catalytic domain of Mr = 33,000. Previous purification schemes have yielded only the fragment of Mr = 33,000 due to its relative resistance to proteolysis and coagulation. Gel filtration chromatography of the "native" form of phosphorylase phosphatase showed Mr approximately 230,000. Both the Mr = 70,000 catalytic subunit and a Mr = 60,000 protein related to inhibitor-2 were detected by immunoblotting in the same fractions that exhibited activity after treatment with Co2+ and trypsin. Only the Mr = 60,000 protein was degraded during this activation process. We propose that the native phosphorylase phosphatase is an elongated structure with two-fold symmetry, containing one catalytic subunit of Mr = 70,000 and one regulatory subunit of Mr = 60,000.  相似文献   

15.
The dimeric bifunctional enzyme aspartokinase II-homoserine dehydrogenase II (Mr = 2 X 88,000) of Escherichia coli K12 can be cleaved into two nonoverlapping fragments by limited proteolysis with subtilisin. These two fragments can be separated under nondenaturing conditions as dimeric species, which indicates that each fragment has retained some of the association areas involved in the conformation of the native protein. The smaller fragment (Mr = 2 X 24,000) is devoid of aspartokinase and homoserine dehydrogenase activity. The larger fragment (Mr = 2 X 37,000) is endowed with full homoserine dehydrogenase activity. These results show that the polypeptide chains of the native enzyme are organized in two different domains, that both domains participate in building up the native dimeric structure, and that one of these domains only is responsible for homoserine dehydrogenase activity. A model of aspartokinase II-homoserine dehydrogenase II is proposed, which accounts for the present results.  相似文献   

16.
Limited tryptic hydrolysis of a partially purified delta-toxin (Mr = 100,000) from Bacillus thuringiensis, has produced a polypeptide fragment of Mr = 60,000 containing the full biological activity. The fragment was the only polypeptide observed in the polyacrylamide-gel electrophoresis of the delta-toxin after treatment with trypsin and could be purified by DEAE-cellulose chromatography. Amino acid and partial sequence analyses indicate that the 60,000 Mr fragment has been derived from the mid-section of the holotoxin peptide; over 80% of Lys, 65% of Pro and 50% of His residues in the holotoxin have been lost in the active fragment. This section must contain the active site since its specific insecticidal activity is approximately twice that of the holotoxin. The active fragment shows complete cross-reactivity with the antiserum raised against the native toxin, and appeared to possess higher thermal stability than the mother protein. It provides a powerful tool for studies of the structure involved in the insecticidal activity.  相似文献   

17.
Two major high molecular weight proteins of human platelets are highly susceptible to proteolytic degradation by endogenous calcium-activated protease activities. Of the two proteins, one has been identified as filamin (Mr = 250,000 subunit); the second, a Mr = 235,000 subunit protein contributing 3-8% of the total platelet proteins, has not been previously characterized. We have now purified this protein, designated P235, to apparent homogeneity (greater than 95%). P235 was extracted by a Triton X-100 and EDTA containing buffer at pH 9.0 and purified by a series of DEAE-cellulose, phosphocellulose, and gel filtration chromatographies. Purified P235 is a dimer of Mr = 235,000 subunit. Its Stokes radius (67 A) and frictional ratio of 1.3 suggest that P235 is approximately globular. Despite this similarity in subunit and molecular weight of P235 to filamin, spectrin, fibronectin, and myosin, its amino acid composition, immunological properties, and peptide map are distinctly different and showed no precursor-product relationship to these proteins. Calcium-activated protease(s) in crude platelet extract rapidly degrade P235 into a Mr = 200,000 stable fragment. Upon prolonged storage at 4 degrees C, purified P235 partially degrades into a Mr = 220,000 and a Mr = 200,000 fragment. This degradation pattern suggests that P235 contains a large Mr = 200,000 protease-resistant domain. The availability of pure P235 will be useful in elucidating the functional role of this platelet protein, as well as the role of calcium-activated proteases in platelet function.  相似文献   

18.
The plasma proteins, alpha 2-macroglobulin and complement components 3 and 4, contain an internal thiol ester involving a glutamyl and cysteinyl residue. The thiol ester is susceptible to cyclization at greater than 37 degrees C and forms an unstable 5-oxyproline intermediate. The latter can be hydrolyzed to produce two peptide fragments. We propose that enzymes having activated glutamyl residues as part of their catalytic mechanisms may undergo an analogous cyclization and peptidyl cleavage. As a model, we have investigated pig heart succinyl-CoA:3-keto acid transferase. When the CoA-enzyme thiolester intermediate is heated at pH 7.4 and 70 degrees C for 1 h, approximately 60% of the Mr = 60,000 subunits are cleaved to give Mr = 40,000 and 20,000 fragments. We have shown that formation of the enzyme thiolester is an obligate precursor for the protein fragmentation. However, the reaction was incomplete with a maximum of approximately 65% cleavage at times greater than 60 min. These results suggest that there is a competing, deactivation reaction; namely, the thiol ester and oxyproline intermediates are hydrolyzed to regenerate the active site glutamic acid. Although the maximum rate of cleavage is at 70 degrees C, approximately 15% autolysis also occurs at 37 degrees C. The Mr = 40,000 fragment had the same amino terminal sequence as the Mr = 60,000 subunit, (Trp-Lys-Phe-Tyr-Thr-Asp-Ala-Val-Glu-Ala-). No amino terminal could be detected for the Mr = 20,000 fragment, even after digesting the fragment with pyroglutaminase. Peptide maps of the fragments and the uncleaved subunit indicate that the fragments are generated in parallel. The size of the fragments puts the active site about two-thirds of the way from the amino terminal of the protein.  相似文献   

19.
The basement membrane heparan sulfate proteoglycan produced by the Englebreth-Holm-Swarm (EHS) tumor and by glomeruli were compared by immunological methods. Antibodies to the EHS proteoglycan immunoprecipitated a single precursor protein (Mr = 400,000) from [35S]methionine-pulsed glomeruli, the same size produced by EHS cells. These antibodies detected both heparan sulfate proteoglycans and glycoproteins in extracts of unlabeled glomeruli and glomerular basement membrane. The proteoglycans contained core proteins of varying size (Mr = 150,000 to 400,000) with a Mr = 250,000 species being predominant. The glycoproteins are fragments of the core protein which lack heparan sulfate side chains. Antibodies to glomerular basement membrane proteoglycan immunoprecipitated the precursor protein (Mr = 400,000) synthesized by EHS cells and also reacted with most of the proteolytic fragments of the EHS proteoglycan. This antibody did not, however, react with the P44 fragment, a peptide situated at one end of the EHS proteoglycan core protein. These data suggest that the glomerular basement membrane proteoglycan is synthesized from a large precursor protein which undergoes specific proteolytic processing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号