首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
重金属递进胁迫对黑麦草初期生长的影响   总被引:14,自引:0,他引:14  
通过研究Cu2+、Zn2+、Cd2+与Pb2+胁迫对黑麦草初期生长的影响,结果表明:4种重金属对种子发芽率抑制效应相对较小,尤其Cu2+与Zn2+的抑制作用最小。高浓度Cu2+、Cd2+胁迫对株高、根系长度、地上生物量的抑制作用相对较大,尤其Cu2+对根系生长的抑制效应最大,在300 mg·L-1下,与对照相比,根长最高下降了 85.48%。高浓度Cd2+胁迫显著降低了叶绿素含量,在300 mg·L-1时比对照降低了45.51%;与对照相比,Cu2+与Zn2+所有处理都增加了叶绿素含量。从递进胁迫进程看,一些重金属对某一生长指标的影响往往表现在低浓度具有促进作用,而高浓度又存在明显的抑制效应。  相似文献   

2.
Sugar beet (Beta vulgaris L. cv. Monohill) were cultivated ina nutrient solution with different combinations of Ca2+ (36,180, 720 or 3560µM) and Cd2+ (0, 1, 5 or 20µM).The dry and fresh weights, the content of Ca2+ and Cd2+ , sucrose,fructose, glucose and starch in 5-week-old plants was analysedas well as the rate of [14C]-sucrose uptake in discs from 3-month-oldstorage roots. The carbohydrate metabolism was indirectly affectedby the presence of calcium or cadmium. Cadmium caused a diminisheddry weight and carbohydrate concentration. The dry weight wasunaffected by the Ca2+ level but the carbohydrate distributionbetween storage and growth processes was affected; at low Ca2+in the tissue, the growth was retarded and the level of storagecarbohydrate increased, while at high Ca2+ the opposite wasfound. The [14C]-sucrose uptake decreased in tap roots cultivatedat low Ca2+ . Long term exposure to Cd2+ also decreased thesucrose uptake in tap roots. Direct Cd2+ addition to the assaymedium, however, increased the sucrose uptake, probably at thetonoplast, while Ca2+ had no transient effect on the uptake.Cadmium increased the Ca2+ concentration in the plant, but Ca2+did not affect the net-uptake of Cd2+. Key words: Sugar beet, cadmium uptake, calcium uptake, carbohydrate formation, growth  相似文献   

3.
Probing the extracellular release site of the plasma membrane calcium pump   总被引:1,自引:0,他引:1  
Theplasma membrane Ca2+ pump is known to mediateCa2+/H+ exchange. Extracellular protonsactivated 45Ca2+ efflux from human red bloodcells with a half-maximal inhibition constant of 2 nM when theintracellular pH was fixed. An increase in pH from 7.2 to 8.2 decreasedthe IC50 for extracellular Ca2+ from ~33 to~6 mM. Changing the membrane potential by >54 mV had no effect onthe IC50 for extracellular Ca2+. This arguesagainst Ca2+ release through a high-field access channel.Extracellular Ni2+ inhibited Ca2+ efflux withan IC50 of 11 mM. Extracellular Cd2+ inhibitedwith an IC50 of 1.5 mM, >10 times better thanCa2+. The Cd2+ IC50 also decreasedwhen the pH was raised from 7.1 to 8.2, consistent withCa2+, Cd2+, and H+ competing forthe same site. The higher affinity for inhibition by Ni2+and Cd2+ is consistent with a histidine or cysteine as partof the release site. The cysteine reagent 2-(trimethylammonium)ethylmethanethiosulfonate did not inhibit Ca2+ efflux. Ourresults are consistent with the notion that the release site contains a histidine.

  相似文献   

4.
We have studied the effects of heavy metals (Hg2+, Cu2+, Cd2+) on growth hormone (GH) activation of tyrosine kinase and Ca2+ signaling in the trout (Oncorhynchus mykiss) hepatoma cell line RTH-149. Molecular cloning techniques using primer designed on Oncorhynchus spp. growth hormone receptor (GHR) genes allowed to isolate a highly homologous cDNA fragment from RTH-149 mRNA. Thereafter, cells were analysed by Western blotting or, alternatively, with Ca2+ imaging using fura-2/AM. Exposure of cells to ovine GH alone produced a stimulation of the JAK2/STAT5 pathway and intracellular free Ca2+ variations similar to what has been observed in mammalian models. Cell pre-exposure to Cu2+, Hg2+ or Cd2+ affected cell response to GH by enhancing (Cu2+) or inhibiting (Cd2+) the phosphorylation of JAK2 and STAT5. Heavy metals induced the activation of the MAP kinase p38, and pre-exposure to Hg2+ or Cu2+ followed by GH enhanced the effect of metal alone. Image analysis of fura2-loaded cells indicated that pre-treatment with Hg2+ prior to GH produced a considerable increase of the [Ca2+]i variation produced by either element, while using Cu2+ or Cd2+ the result was similar but much weaker. Data suggest that heavy metals interfere with GH as follows: Hg2+ is nearly ineffective on JAK/STAT and strongly synergistic on Ca2+ signaling; Cu2+ is activatory on JAK/STAT and slightly activatory on Ca2+; Cd2+ is strongly inhibitory on JAK/STAT and slightly activatory on Ca2+; heavy metals could partially activate STAT via p38 independently from GH interaction.Published online: March 2005  相似文献   

5.
Despite technological developments and improved liner-material applications, heavy metals in landfill leachate still penetrate the soil profile, polluting the soil and ground-water. An alternative approach therefore must be explored to reduce heavy-metal migration in soil-bentonite landfill liners. By considering the interaction of different heavy metals and their synergetic and antagonistics behaviors, such an approach could be developed. Low mobility metals such as Cu2+, and Pb2+ inhibit the adsorption of Cd2+ which is a moderate-mobility metal and Cu2+ sorption is decreased by the presence of Zn2+ and Cd2+. Therefore, Zn2+, a low-mobility metal, cannot be grouped with Cu2+. This way, four compatible metal groups have been identified: (1) low mobility: Pb2+, Cu2+, and Ag, (2) low mobility: Zn2+ and Cr3+; (3) moderate mobility: As2+, Fe2+, and Ni2+; (4) high mobility: Cd2+ and Hg2+. Cd2+ with a moderate mobility pattern is synergetic to Fe2+ and is more mobile with Ni2+. Therefore, Cd2+ is separated from the moderate-mobility group and is consigned with Hg, a high-mobility metal. The liner materials suitable for Hg2+ are assumed to be suitable for Cd2+ as well. Based on this concept, and to reduce heavy metal mobility, wastes should be segregated on compatibility basis according to their heavy metal contents before being disposed in different individual compartments. For wastes containing several incompatible heavy metals, sorting should be based on the heavy-metal with the highest concentration. Another solution is the manufacturing of products using compatible heavy metal combinations and then labeling them accordingly. Such waste segregation and landfill compartmentalization lowers risks of groundwater contamination and liner cost.  相似文献   

6.
Pulmonary vasoconstriction and vascularmedial hypertrophy greatly contribute to the elevated pulmonaryvascular resistance in patients with pulmonary hypertension. A rise incytosolic free Ca2+ ([Ca2+]cyt)in pulmonary artery smooth muscle cells (PASMC) triggers vasoconstriction and stimulates cell growth. Membrane potential (Em) regulates[Ca2+]cyt by governing Ca2+influx through voltage-dependent Ca2+ channels. Thusintracellular Ca2+ may serve as a shared signaltransduction element that leads to pulmonary vasoconstriction andvascular remodeling. In PASMC, activity of voltage-gated K+(Kv) channels regulates resting Em. In thisstudy, we investigated whether changes of Kv currents[IK(V)], Em, and[Ca2+]cyt affect cell growth by comparingthese parameters in proliferating and growth-arrested PASMC. Serumdeprivation induced growth arrest of PASMC, whereas chelation ofextracellular Ca2+ abolished PASMC growth. Resting[Ca2+]cyt was significantly higher, andresting Em was more depolarized, inproliferating PASMC than in growth-arrested cells. Consistently, wholecell IK(V) was significantly attenuated in PASMCduring proliferation. Furthermore, Emdepolarization significantly increased resting[Ca2+]cyt and augmented agonist-mediatedrises in [Ca2+]cyt in the absence ofextracellular Ca2+. These results demonstrate that reducedIK(V), depolarized Em, and elevated [Ca2+]cyt may play a criticalrole in stimulating PASMC proliferation. Pulmonary vascular medialhypertrophy in patients with pulmonary hypertension may be partlycaused by a membrane depolarization-mediated increase in[Ca2+]cyt in PASMC.

  相似文献   

7.
8.
The sensitivity of twelve strains of Saccharomyces cerevisiaeto Cd2+ was examined in correlation with the uptake of Cd2+.Strains of S. cerevisiae were grouped into three categoriesdepending on the sensitivity of cells grown on agar-plates containingvarious concentrations of Cd2+. 1) The sensitive group did notgrow in 0.1 mM Cd2+. 2) The sub-tolerant group was capable ofgrowth at 0.3 min Cd2+, but not at 0.4 mM Cd2+. 3) The tolerantgroup was capable of growth at 0.4 mM Cd2+ or higher. In thesestrain groups the increase in sensitivity to Cd2+ was associatedwith an increase in the activity of Cd2+ absorption. 1 This study is dedicated to the late president J. Ashida ofEhime University. (Received November 25, 1982; Accepted February 14, 1983)  相似文献   

9.
TARHANEN  S. 《Annals of botany》1998,82(6):735-746
Effects of simulated acid rain and heavy metal deposition onthe ultrastructure of the lichenBryoria fuscescens(Gyeln.) Brodoand Hawksw. were examined in a field study conducted in northernFinland. Lichens were exposed to simulated rain containing twolevels of a mixture of copper (Cu2+) and nickel (Ni2+) ionsalone or in combination with acid rain (H2SO4) at pH 3 over2 months in addition to ambient rainfall. The algal and fungalcomponents responded differently to pH and there was an interactionwith metal toxicity. The algal partner was the most sensitiveto acid rain and heavy metal combinations and had more degeneratecells than the fungal partner. Damage was apparent in chloroplastsand mitochondria, where thylakoid and mitochondrial cristaewere swollen. The fungal partner was the more sensitive to highconcentrations of metal ions in the absence of acidity, suggestingan ameliorating interaction between the metals and acidity.For algae, critical metal concentrations in the thallus were>50 µg g-1for Cu and >7 µg g-1for Ni in thepresence of acidity, and >20 µ g g-1for Ni in the absenceof acidity. Detrimental effects of heavy metals on fungal ultrastructurewere seen when thallus metal concentrations exceeded 400 µgg-1for Cu and 100 µg g-1d. wt for Ni. The results suggestthat acid wet deposition containing metal ions may reduce survivalof lichens in northern environments.Copyright 1998 Annals ofBotany Company. Copper, nickel, sulphuric acid, ultrastructure,Bryoria fuscescens(Gyeln.) Brodo and Hawksw., epiphytic lichen, air pollution.  相似文献   

10.
The heavy metal resistant ciliate, Stylonychia mytilus, isolated from industrial wastewater has been shown to be potential bioremediator of contaminated wastewater. The ciliate showed tolerance against Zn2+ (30 μg/mL), Hg2+ (16 μg/mL) and Ni2+ (16 μg/mL). The metal ions slowed down the growth of the ciliate as compared with the culture grown without metal stress. The reduction in cell population was 46% for Cd2+, 38% for Hg2+, 23% for Zn2+, 39% for Cu2+ and 51% for Ni2+ after 8 days of metal stress. S. mytilus reduced 91% of Cd2+, 90% of Hg2+ and 98% of Zn2+ from the medium after 96 h of incubation in a culture medium containing 10 μg/mL of the respective metal ions. Besides this, the ciliate could also remove 88% of Cu2+ and 73% Ni2+ from the medium containing 5 μg/mL of each metal after 96 h. The ability of Stylonychia to take up variety of heavy metals from the medium could be exploited for metal detoxification and environmental clean-up operations.  相似文献   

11.
Amakawa  Taisaku 《Chemical senses》1978,3(4):413-422
1) Ca+ + (1 to 10 mM) lowered the binding affinity of sugarreceptor-site for sucrose in the labellar sugar receptor ofthe blowfly, Phormia regina, without changing the maximum-responseamplitude. It also elevated the values of the Hill coefficient(nH) in some degrees. 2) Other divalent cations such as Mg+ +, Ba+ + or Cd+ + alsoshowed almost the same property as above. The sequence of theeffect is as follows: Ba+ +, Mg+ + x Ca+ + x Cd+ +. Trivalentcation, La+ + + (1 mM), changed the value of nH from 1 (La++ +-free) to 2. 3) On the contrary, the action of monovalent cations such asK+ or Na+, of which ionic strength was made the same as thatof the divalents hardly suppressed the response. 4) The results obtained do not support the hypothesis, at leaston the sugar receptor of the fly, that the receptor potentialis attributable to a change of the surface potential (zeta potential)as is proposed for the frog sugar receptor.  相似文献   

12.
The present work deals with the biosorption performance of dried and non-growing biomasses of Exiguobacterium sp. ZM-2, isolated from soil contaminated with tannery effluents, for the removal of Cd2+, Ni2+, Cu2+, and Zn2+ from aqueous solution. The metal concentrations studied were 25 mg/l, 50 mg/l, 100 mg/l, 150 mg/l and 200 mg/l. The effect of solution pH and contact time was also studied. The biosorption capacity was significantly altered by pH of the solution. The removal of metal ions was conspicuously rapid; most of the total sorption occurred within 30 min. The sorption data have been analyzed and fitted to the Langmuir and Freundlich isotherm models. The highest Qmax value was found for the biosorption of Cd2+ at 43.5 mg/g in the presence of the non-growing biomass. Recovery of metals (Cd2+, Zn2+, Cu2+ and Ni2+) was found to be better when dried biomass was used in comparison to non-growing biomass. Metal removal through bioaccumulation was determined by growing the bacterial strain in nutrient broth amended with different concentrations of metal ions. This multi-metal resistant isolate could be employed for the removal of heavy metals from spent industrial effluents before discharging them into the environment.  相似文献   

13.
The effect of -adrenergic stimulation on cardiac Na+/Ca2+ exchange has been controversial. To clarify the effect, we measured Na+/Ca2+ exchange current (INCX) in voltage-clamped guinea pig, mouse, and rat ventricular cells. When INCX was defined as a 5 mM Ni2+-sensitive current in guinea pig ventricular myocytes, 1 µM isoproterenol apparently augmented INCX by 32%. However, this increase was probably due to contamination of the cAMP-dependent Cl current (CFTR-Cl current, ICFTR-Cl), because Ni2+ inhibited the activation of ICFTR-Cl by 1 µM isoproterenol with a half-maximum concentration of 0.5 mM under conditions where INCX was suppressed. Five or ten millimolar Ni2+ did not inhibit ICFTR-Cl activated by 10 µM forskolin, an activator of adenylate cyclase, suggesting that Ni2+ acted upstream of adenylate cyclase in the -adrenergic signaling pathway. Furthermore, in a low-extracellular Cl bath solution, 1 µM isoproterenol did not significantly alter the amplitude of Ni2+-sensitive INCX at +50 mV, which is close to the reversal potential of ICFTR-Cl. No change in INCX amplitude was induced by 10 µM forskolin. When INCX was activated by extracellular Ca2+, it was not significantly affected by 1 µM isoproterenol in guinea pig, mouse, or rat ventricular cells. We concluded that -adrenergic stimulation does not have significant effects on INCX in guinea pig, mouse, or rat ventricular myocytes. cystic fibrosis transmembrane conductance regulator; nickel ion  相似文献   

14.
A Cd-resistant strain of yeast (Saccharomyces cerevisiae, strain30IN) accumulated Cd with the concomitant synthesis of a Cd-bindingprotein of low molecular weight when grown in Cd2+-containingmedium. Analysis of the amino acid composition, N-terminal sequenceand immunological properties of the protein revealed its structuralhomology to Cu-metallothionein (Cu-MT) in S. cerevisiae 2186,a Cu-resistant strain of yeast (Winge et al. 1985). The synthesisof MT in Cu-resistant strains of yeast is known to be underthe strict control of Cu2+ ions, while that in 301N was inducedboth by Cd2+ and Cu2+ ions. When 301N was precultured for 48h in the presence of 1 mM CuSO4, its resistance to Cu2+ andthe synthesis of MT in response to Cu2+ were enhanced whileanalogous responses to Cd2+ were conversely reduced. These resultssuggest that the synthesis of MT is controlled by Cd2+ and Cu2+in a counteractive manner in strain 301N and, therefore, theregulation of the synthesis of MT plays a role in the adaptationof this strain to conditions when either metal is present. (Received November 1, 1990; Accepted February 22, 1991)  相似文献   

15.
Opposite effects of Ni2+ on Xenopus and rat ENaCs expressed in Xenopus oocytes. Am J Physiol Cell Physiol 289: C946–C958, 2005. First published June 8, 2005; .—The epithelial Na+ channel (ENaC) is modulated by various extracellular factors, including Na+, organic or inorganic cations, and serine proteases. To identify the effect of the divalent Ni2+ cation on ENaCs, we compared the Na+ permeability and amiloride kinetics of Xenopus ENaCs (xENaCs) and rat ENaCs (rENaCs) heterologously expressed in Xenopus oocytes. We found that the channel cloned from the kidney of the clawed toad Xenopus laevis [wild-type (WT) xENaC] was stimulated by external Ni2+, whereas the divalent cation inhibited the channel cloned from the rat colon (WT rENaC). The kinetics of amiloride binding were determined using noise analysis of blocker-induced fluctuation in current adapted for the transoocyte voltage-clamp method, and Na+ conductance was assessed using the dual electrode voltage-clamp (TEVC) technique. The inhibitory effect of Ni2+ on amiloride binding is not species dependent, because Ni2+ decreased the affinity (mainly reducing the association rate constant) of the blocker in both species in competition with Na+. Importantly, using the TEVC method, we found a prominent difference in channel conductance at hyperpolarizing voltage pulses. In WT xENaCs, the initial ohmic current response was stimulated by Ni2+, whereas the secondary voltage-activated current component remained unaffected. In WT rENaCs, only a voltage-dependent block by Ni2+ was obtained. To further study the origin of the xENaC stimulation by Ni2+, and based on the rationale of the well-known high affinity of Ni2+ for histidine residues, we designed -subunit mutants of xENaCs by substituting histidines that were expressed in oocytes, together with WT - and -subunits. Changing His215 to Asp in one putative amiloride-binding domain (WYRFHY) in the extracellular loop between Na+ channel membrane segments M1 and M2 had no influence on the stimulatory effect of Ni2+, and neither did complete deletion of this segment. Next, we mutated His416 flanked by His411 and Cys417, a unique site for possible heavy metal ion chelation, and, with this quality, most proximal (100 amino acids upstream of the second putative amiloride binding site at the pore entrance), was found localized at M2. Replacing His416 with arginine, aspartate, tyrosine, and alanine clearly affected amiloride binding in all cases, as well as Na+ conductance, as expressed in the xENaC current-voltage relationship, especially with regard to aspartate and tyrosine. However, similarly to those obtained with the WYRFHY stretch, none of these mutations could either abolish the stimulating effect of Ni2+ or reverse it to an inhibitory type. epithelia; divalent cations; amiloride; Na+; voltage clamp  相似文献   

16.
李艳敏  方琦  胡萃  叶恭银 《昆虫学报》2010,53(9):969-977
为了揭示重金属对昆虫细胞免疫的影响及其机理,本文采用血细胞计数、台盼蓝染色、延展与包囊率测定, 以及显微与超微结构观察等方法,以经重金属Cd2+(浓度为150 μg/g)处理的棕尾别麻蝇Boettcherisca peregrina及其对照为研究对象,分别测定了处理组与对照组血细胞的数量与存活率、延展与包囊率,观察其形态结构,并比较了两组间的差异。结果表明: 棕尾别麻蝇初产幼虫经连续喂饲含Cd2+的饲料24,48,72和96 h后,与对照相比其血细胞总数和存活率显著下降,而血细胞的延展率和包囊作用的显著下降则分别出现于取食72和48 h之内,此后则下降不显著;由Cd2+处理幼虫发育形成蛹的血细胞包囊作用也显著低于对照。形态结构观察结果表明,Cd2+处理对幼虫的原血细胞、浆血细胞、颗粒血细胞和类绛色血细胞的显微形态影响不大,但可导致部分浆血细胞不能产生伪足;但均能导致各类血细胞的超微结构发生不同程度的变化,其中主要变化包括:细胞膜受损或破裂,染色质呈现凝聚, 线粒体和内质网等细胞器明显减少,以及胞质内出现空囊泡。结果说明重金属Cd2+对棕尾别麻蝇的血细胞可具有毒害作用。  相似文献   

17.
在10℃的较低温度条件下,研究了冬春季节生长旺盛的沉水植物菹草(Potamogeton crispus L.)对重金属离子Cu2+,Pb2+,Zn2+的生物吸附特征及解吸情况,对不同初始浓度重金属水体中的重金属离子去除率情况,以及在此过程中菹草各器官(叶、茎、根茎、根)对重金属离子的富集情况。结果表明,菹草对Cu2+,Zn2+的吸附在20 min内达到平衡,对Pb2+的吸附在50 min内达到平衡,吸附动力学结果符合伪二级动力学方程,决定系数分别达1,1,0.997 8。Freundlich等温线可较好地拟合菹草吸附Cu2+,Pb2+,Zn2+的过程,Cu2+,Pb2+,Zn2+的吸附容量分别达到66.900 6,26.543 0,30.371 8 mg·L-1。以去离子水作洗脱剂,解吸液中3种重金属离子浓度均低于仪器检出限(0.01 mg·L-1),解吸程度微弱。投放菹草后,随着初始处理浓度的升高,水体Cu2+的去除率先降低后升高,Pb2+的去除率的变化趋势与Cu2+类似。Zn2+去除率则随水体Zn2+初始浓度的升高而逐渐升高。菹草各器官对水体3种重金属离子的富集能力不同,排序为Cu2+>Zn2+>Pb2+。不同器官对同一种重金属离子的富集量差异显著,叶是富集重金属离子的主要器官。水体重金属离子的初始浓度会影响菹草各器官富集重金属离子的能力,一般随水体重金属初始浓度升高,菹草各器官的重金属离子富集量虽有不同程度的增加但富集系数持续减小。  相似文献   

18.
Kitada  Yasuyuki 《Chemical senses》1994,19(3):265-277
Fibers of the frog glossopharyngeal nerve (water fibers) thatare sensitive to water also respond to CaCl2, MgCl2 and NaCl.In the present study, interaction among cations (Ca2+, Mg2+and Na+) on taste cell membrane in frogs was studied using transitionmetals (NiCl2, CoCl2 and MnCl2), which themselves are barelyeffective in producing neural response at concentrations below5 mM. Unitary discharges from single water fibers were recordedfrom fungiform papillae with suction electrode. Transition metalions (0.05–5.0 mM) had exclusively enhancing effects onthe responses to 50 mM Ca2+, 100 mM Mg2+ and 500 mM Na+. Theeffects of transition metal ions were always reversible. Therank order of effectiveness of transition metals at 1 mM inthe enhancement of the responses to 50 mM CaCl2, 100 mM MgCl2and 500 mM NaCl was NiCl2 > CoCl2 > MnCl2. The concentrationof transition metal ions effective to enhance salt responsewas almost the same among Ca2+, Mg2+ and Na+ responses. Theresults suggest that a common mechanism is involved in the enhancementof Ca2+, Mg2+ and Na+ taste responses. The enhanced Mg2+ responseand the enhanced Na+ response were greatly inhibited by theaddition of Ca2+ ions, and the enhanced Ca2+ response was inhibitedby the addition of Mg2+ or Na+ ions, suggesting that competitiveantagonism occurs between Ca2+ and Mg2+ ions and between Ca2+and Na+ ions in the presence of Ni2+ ions. Ni2+ ions had a dualeffect on the Ca2+ response induced by low concentration (0.1mM) of CaCl2: enhancement at lower concentrations (0.02–0.1mM) of NiCl2 and inhibition at higher concentrations (0.5–5mM)of NiCl2. The present results suggest that transition metalions do not affect the receptor-antagonist complex, but affectonly the receptor-agonist complex.  相似文献   

19.
Kitada  Yasuyuki 《Chemical senses》1994,19(5):401-411
Unitary discharges from single water fibers of the frog glossopharyngealnerve, caused by stimulation with 0.02–5 mM CaSO4, wererecorded from fungiform papillae with a suction electrode. NiSO4at concentrations of 0.2–2 mM, namely, at concentrationsthat are barely effective in producing impulses, had a dualaction on the Ca2+ response: NiSO4 caused both inhibition andenhancement of the Ca2+ response. In the present study, thisdual action of Ni2+ ions on the Ca2+ response was investigatedin detail. Single water fibers yielded a saturation type ofconcentration-response curve for CaSO4, which suggested thatsulfateions do not affect the Ca2+ response. Thus, sulfateswere used as test salts in the present study. At low concentrationsof Ca2+ ions, Ni2+ ions inhibited the Ca2+ response, but athigher concentrations of Co2+ ions they enhanced it. The resultscan be explained quantitatively by the hypothesis that Ni2+ions inhibit the Ca2+ response by competing with Ca2+ ions forthe Ca2+ receptor (Xca) that is responsible for the Ca2+ responseand that Ni2+ ions enhance the Ca2+ response by acting on amembrane element that interacts with Xca. Double-reciprocalplots of the data indicate that the enhancing action of Ni2+ions is saturated at 1–2 mM Ni2+ ions and that Ni2+ ionsat these concentrations increase the maximal response of theCa2+ response by 182%. Dissociation constants for the Ca-Xcacomplex and the Ni-Xca, complex were 4.2 x 10–5 M and7.6 x 10–5 M, respectively. The analysis suggests thatNi2+ ions enhance the Ca2+ response by affecting the Ca-Xcacomplex without altering the affinity of Xca, for Ca2+ ions.  相似文献   

20.
After growing barley (Hordeum vulgare L.) in nutrient solutionscontaining EDTA, uptake of the nutrient metals was determinedat three harvests and concentrations of the various chemicalspecies of each metal in the growth solutions was modelled bycomputer simulation. Complexation with EDTA had different effectson the uptake of the ions Fe3+, Mn2+, Cu2+, and Zn2+. At thehighest EDTA level (EDTA/Fe=2/l) the plants were chlorotic andgrowth was inhibited. This is attributed to a deficiency inZn rather than in Fe. The critical level of free Zn2+ requiredin nutrient solutions for healthy growth was found to be approximately10–1010–10 mol dm–3, which is consistent withthat found by earlier workers for other plant species. Barleytolerated much lower levels of the free ions of copper and ironwithout exhibiting any obvious adverse effects. Key words: EDTA, micronutrients, trace metals, computer simulation, deficiencies, absorption, iron, manganese, copper, zinc  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号