首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have characterized the role of YPR128cp, the orthologue of human PMP34, in fatty acid metabolism and peroxisomal proliferation in Saccharomyces cerevisiae. YPR128cp belongs to the mitochondrial carrier family (MCF) of solute transporters and is localized in the peroxisomal membrane. Disruption of the YPR128c gene results in impaired growth of the yeast with the medium-chain fatty acid (MCFA) laurate as a single carbon source, whereas normal growth was observed with the long-chain fatty acid (LCFA) oleate. MCFA but not LCFA beta-oxidation activity was markedly reduced in intact ypr128cDelta mutant cells compared to intact wild-type cells, but comparable activities were found in the corresponding lysates. These results imply that a transport step specific for MCFA beta-oxidation is impaired in ypr128cDelta cells. Since MCFA beta-oxidation in peroxisomes requires both ATP and CoASH for activation of the MCFAs into their corresponding coenzyme A esters, we studied whether YPR128cp is an ATP carrier. For this purpose we have used firefly luciferase targeted to peroxisomes to measure ATP consumption inside peroxisomes. We show that peroxisomal luciferase activity was strongly reduced in intact ypr128cDelta mutant cells compared to wild-type cells but comparable in lysates of both cell strains. We conclude that YPR128cp most likely mediates the transport of ATP across the peroxisomal membrane.  相似文献   

2.
Dietary medium chain fatty acids (MCFA) and linoleic acid follow different metabolic routes, and linoleic acid activates PPAR receptors. Both these mechanisms may modify lipoprotein and fatty acid metabolism after dietary intervention. Our objective was to investigate how dietary MCFA and linoleic acid supplementation and body fat distribution affect the fasting lipoprotein subclass profile, lipoprotein kinetics, and postprandial fatty acid kinetics. In a randomized double blind cross-over trial, 12 male subjects (age 51±7 years; BMI 28.5±0.8 kg/m2), were divided into 2 groups according to waist-hip ratio. They were supplemented with 60 grams/day MCFA (mainly C8:0, C10:0) or linoleic acid for three weeks, with a wash-out period of six weeks in between. Lipoprotein subclasses were measured using HPLC. Lipoprotein and fatty acid metabolism were studied using a combination of several stable isotope tracers. Lipoprotein and tracer data were analyzed using computational modeling. Lipoprotein subclass concentrations in the VLDL and LDL range were significantly higher after MCFA than after linoleic acid intervention. In addition, LDL subclass concentrations were higher in lower body obese individuals. Differences in VLDL metabolism were found to occur in lipoprotein lipolysis and uptake, not production; MCFAs were elongated intensively, in contrast to linoleic acid. Dietary MCFA supplementation led to a less favorable lipoprotein profile than linoleic acid supplementation. These differences were not due to elevated VLDL production, but rather to lower lipolysis and uptake rates.  相似文献   

3.
The Saccharomyces cerevisiae peroxisomal membrane protein Pex11p has previously been implicated in peroxisome proliferation based on morphological observations of PEX11 mutant cells. Pex11p-deficient cells fail to increase peroxisome number in response to growth on fatty acids and instead accumulate a few giant peroxisomes. We report that mutants deficient in genes required for medium-chain fatty acid (MCFA) beta-oxidation display the same phenotype as Pex11p-deficient cells. Upon closer inspection, we found that Pex11p is required for MCFA beta-oxidation. Disruption of the PEX11 gene results in impaired formation of MCFA-CoA esters as measured in intact cells, whereas their formation is normal in cell lysates. The sole S. cerevisiae MCFA-CoA synthetase (Faa2p) remains properly localized to the inner leaflet of the peroxisomal membrane in PEX11 mutant cells. Therefore, the in vivo latency of MCFA activation observed in Pex11p-deficient cells suggests that Pex11p provides Faa2p with substrate. When PEX11 mutant cells are shifted from glucose to oleate-containing medium, we observed an immediate deficiency in beta-oxidation of MCFAs whereas giant peroxisomes and a failure to increase peroxisome abundance only became apparent much later. Our observations suggest that the MCFA oxidation pathway regulates the level of a signaling molecule that modulates the number of peroxisomal structures in a cell.  相似文献   

4.
Saccharomyces cerevisiae medium-chain acyl elongase (ELO1) mutants have previously been isolated in screens for fatty acid synthetase (FAS) mutants that fail to grow on myristic acid (C14:0)-supplemented media. Here we report that wild-type cells cultivated in myristoleic acid (C14:1Delta(9))-supplemented media synthesized a novel unsaturated fatty acid that was identified as C16:1Delta(11) fatty acid by gas chromatography-mass spectroscopy. Synthesis of C16:1Delta(11) was dependent on a functional ELO1 gene, indicating that Elo1p catalyzes carboxy-terminal elongation of unsaturated fatty acids (alpha-elongation). In wild-type cells, the C16:1Delta(11) elongation product accounted for approximately 12% of the total fatty acids. This increased to 18% in cells that lacked a functional acyl chain desaturase (ole1Delta mutants) and hence were fully dependent on uptake and elongation of C14:1. The observation that ole1Delta mutant cells grew almost like wild type on medium supplemented with C14:1 indicated that uptake and elongation of unsaturated fatty acids were efficient. Interestingly, wild-type cells supplemented with either C14:1 or C16:1 fatty acids displayed dramatic alterations in their phospholipid composition, suggesting that the availability of acyl chains is a dominant determinant of the phospholipid class composition of cellular membranes. In particular, the relative content of the two major phospholipid classes, phosphatidylethanolamine and phosphatidylcholine, was strongly dependent on the chain length of the supplemented fatty acid. Moreover, analysis of the acyl chain composition of individual phospholipid classes in cells supplemented with C14:1 revealed that the relative degree of acyl chain saturation characteristic for each phospholipid class appeared to be conserved, despite the gross alteration in the cellular acyl chain pool. Comparison of the distribution of fatty acids that were taken up and elongated (C16:1Delta(11)) to those that were endogenously synthesized by fatty acid synthetase and then desaturated by Ole1p (C16:1Delta(9)) in individual phospholipid classes finally suggested the presence of two different pools of diacylglycerol species. These results will be discussed in terms of biosynthesis of different phospholipid classes via either the de novo or the Kennedy pathway.  相似文献   

5.
6.
Thyroid hormone responsive protein Spot 14 has been consistently associated with de novo fatty acid synthesis activity in multiple tissues, including the lactating mammary gland, which synthesizes large quantities of medium chain fatty acids (MCFAs) exclusively via FASN. However, the molecular function of Spot14 remains undefined during lactation. Spot14-null mice produce milk deficient in total triglyceride and de novo MCFA that does not sustain optimal neonatal growth. The lactation defect was rescued by provision of a high fat diet to the lactating dam. Transgenic mice overexpressing Spot14 in mammary epithelium produced total milk fat equivalent to controls, but with significantly greater MCFA. Spot14-null dams have no diminution of metabolic gene expression, enzyme protein levels, or intermediate metabolites that accounts for impaired de novo MCFA. When [13C] fatty acid products were quantified in vitro using crude cytosolic lysates, native FASN activity was 1.6-fold greater in control relative to Spot14-null lysates, and add back of Spot14 partially restored activity. Recombinant FASN catalysis increased 1.4-fold and C = 14:0 yield was enhanced 4-fold in vitro following addition of Spot14. These findings implicate Spot14 as a direct protein enhancer of FASN catalysis in the mammary gland during lactation when maximal MCFA production is needed.  相似文献   

7.
The lipid composition of a Saccharomyces cerevisiae mutant (GL 1–38) lacking δ-aminolevulinic acid synthase (EC 2.3.1.37) was investigated. This mutant is unable to synthesize heme compounds and, as a consequence, cannot make unsaturated fatty acids or ergosterol. The mutant cells were grown (i) in medium supplemented with δ-aminolevulinic acid or (ii) in medium supplemented with Tween 80 (as a source of oleate) and ergosterol. After growth in the presence of δ-aminolevulinic acid, the fatty acid composition of total lipids and mitochondrial lipids was the same as that of the corresponding wild-type strain. After growth in the presence of Tween 80 and ergosterol, the mutant cells contained increased levels of oleate and greatly decreased levels of palmitoleate. The ratio of unsaturated to saturated fatty acids in these cells was still close to that of the wild type but much lower than that of the medium. The sphingolipids accounted for 5.2% of the lipid phosphate in the wild type and, after growth in Tween 80 and ergosterol, for 12.7% in the mutant. Changes in other phospholipids were too small to be considered significant.  相似文献   

8.
The effects of medium-chain fatty acids (MCFA) on intracellular calcium (Ca2+) levels and actin filaments in the Caco-2 monolayer were investigated. A site-dependent increase in intracellular Ca2+ levels caused by decanoic acid (C10) at 13 mM was observed by confocal laser scanning microscopy. The area in which the intracellular Ca2+ levels was increased was measured by image analysis, and increased to 11% of the total area of the monolayer within 1 minute. This was maintained for 5 minutes, and decreased thereafter. The other MCFAs did not significantly increase the intracellular Ca2+ levels. Obvious morphological changes of actin filaments were induced by only C10 among C8-C14. The area in which actin filaments were depleted was also quantified, and the increase in area became significant after 40 minutes. The area of the actin-depleted spot corresponded to the area occupied by 5 to 10 cells as well as that in which the intracellular Ca2+ level was increased. The effectiveness of only C10 suggested that the mechanism of the absorption enhancement by C10 would be different from that by the other MCFAs, or that C10 has some additional physiological functions although the mechanism of the enhancement is the same as for the other MCFAs.  相似文献   

9.
Listeria monocytogenes is a foodborne psychrotrophic pathogen that grows at refrigeration temperatures. Previous studies of fatty acid profiles of wild-type and cold-sensitive, branched-chain fatty acid deficient mutants of L. monocytogenes suggest that the fatty acid 12-methyltetradecanoic (anteiso-C(15:0)) plays a critical role in low-temperature growth of L. monocytogenes, presumably by maintaining membrane fluidity. The fluidity of isolated cytoplasmic membranes of wild-type (SLCC53 and 10403S), and a cold-sensitive mutant (cld-1) of L. monocytogenes, grown with and without the supplementation of 2-methylbutyric acid, has been studied using a panel of hydrocarbon-based nitroxides (2N10, 3N10, 4N10, and 5N10) and spectral deconvolution and simulation methods to obtain directly the Lorentzian line widths and hence rotational correlation times (tau(c)) and motional anisotropies of the nitroxides in the fast motional region. tau(c) values over the temperature range of -7 degrees C to 50 degrees C were similar for the membranes of strains SLCC53 and 10403S grown at 10 degrees C and 30 degrees C, and for strain cld-1 grown with 2-methylbutyric acid supplementation (which restores branched-chain fatty acids) at 30 degrees C. However, strain cld-1 exhibited a threefold higher tau(c) when grown without 2-methylbutyric acid supplementation (deficient in branched-chain fatty acids) compared to strains SLCC53, 10403S, and supplemented cld-1. No evidence was seen for a clear lipid phase transition in any sample. We conclude that the fatty acid anteiso-C(15:0) imparts an essential fluidity to the L. monocytogenes membrane that permits growth at refrigeration temperatures.  相似文献   

10.
Microbial cell factories have been extensively engineered to produce free fatty acids (FFAs) as key components of crucial nutrients, soaps, industrial chemicals, and fuels. However, our ability to control the composition of microbially synthesized FFAs is still limited, particularly, for producing medium-chain fatty acids (MCFAs). This is mainly due to the lack of high-throughput approaches for FFA analysis to engineer enzymes with desirable product specificity. Here we report a mass spectrometry (MS)-based method for rapid profiling of MCFAs in Saccharomyces cerevisiae by using membrane lipids as a proxy. In particular, matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) MS was used to detect shorter acyl chain phosphatidylcholines from membrane lipids and a higher m/z peak ratio at 730 and 758 was used as an indication for improved MCFA production. This colony-based method can be performed at a rate of ~2 s per sample, representing a substantial improvement over gas chromatography-MS (typically >30 min per sample) as the gold standard method for FFA detection. To demonstrate the power of this method, we performed site-saturation mutagenesis of the yeast fatty acid synthase and identified nine missense mutations that resulted in improved MCFA production relative to the wild-type strain. Colony-based MALDI-ToF MS screening provides an effective approach for engineering microbial fatty acid compositions in a high-throughput manner.  相似文献   

11.
Thiazolidinediones (TZDs) act through peroxisome proliferator activated receptor (PPAR) γ to increase insulin sensitivity in type 2 diabetes (T2DM), but deleterious effects of these ligands mean that selective modulators with improved clinical profiles are needed. We obtained a crystal structure of PPARγ ligand binding domain (LBD) and found that the ligand binding pocket (LBP) is occupied by bacterial medium chain fatty acids (MCFAs). We verified that MCFAs (C8-C10) bind the PPARγ LBD in vitro and showed that they are low-potency partial agonists that display assay-specific actions relative to TZDs; they act as very weak partial agonists in transfections with PPARγ LBD, stronger partial agonists with full length PPARγ and exhibit full blockade of PPARγ phosphorylation by cyclin-dependent kinase 5 (cdk5), linked to reversal of adipose tissue insulin resistance. MCFAs that bind PPARγ also antagonize TZD-dependent adipogenesis in vitro. X-ray structure B-factor analysis and molecular dynamics (MD) simulations suggest that MCFAs weakly stabilize C-terminal activation helix (H) 12 relative to TZDs and this effect is highly dependent on chain length. By contrast, MCFAs preferentially stabilize the H2-H3/β-sheet region and the helix (H) 11-H12 loop relative to TZDs and we propose that MCFA assay-specific actions are linked to their unique binding mode and suggest that it may be possible to identify selective PPARγ modulators with useful clinical profiles among natural products.  相似文献   

12.
13.
Medium-chain fatty acids (MCFAs) have antimicrobial properties and cause negative or positive effects on animal performance depending on its dosage. We hypothesized that MCFA supplementation at a lower dose (i.e., 0.05–0.2% of dietary DM) would increase rumen pH and milk production without decreasing nutrient digestibility which is typically observed with the higher inclusion rates (i.e., >1% of dietary DM). The objective of this study was to evaluate the effects of MCFA supplementation at a lower dose on productivity, plasma energy metabolite concentrations, apparent total tract nutrient digestibility, rumen fermentation, and rumen microbial profile of lactating dairy cows. Thirty (n = 8 primiparous, n = 22 multiparous) Holstein cows in mid-lactation (637 ± 68.5 kg of initial BW, 98.5 ± 27.4 d in milk; mean ± standard deviation) were used in a crossover design with two 28-d periods. The MCFA supplement, consisted of 25% MCFA (containing 32% C8:0, 21% C10:0, 47% C12:0 on DM basis) and 75% carrier ingredients, was fed at 0.25% of dietary DM replacing dry ground corn in control (CON). Total inclusion of MCFA was 0.063% of dietary DM. No differences were observed in DM intake, apparent total tract nutrient digestibility and BW change between MCFA and CON. Milk and milk component yields did not differ between treatment groups. The MCFA supplementation tended to have higher minimum rumen pH (5.66 vs. 5.54), and decreased daily fluctuation range of rumen pH (1.17 vs. 1.40) compared to CON. However, the duration of acidosis (pH < 5.8, min/d) did not differ between treatment groups and ruminal total volatile fatty acid concentration and its profile did not differ between treatment groups. For rumen microbiota, the Chao1 index of bacterial community tended to be lower (10.9 vs. 11.6) whereas the Shannon index did not differ (0.91 vs. 0.93) in MCFA compared to CON, and both indices did not differ for archaeal and protozoan communities between treatment groups. The relative abundance of Methanobrevibacter gottschalkii increased when supplemented with MCFA (5.14 vs. 4.92%). These results suggest that supplementation of MCFA at 0.063% dietary DM may not affect overall animal performance or total tract nutrient digestibility, but decrease the daily range of pH and the bacterial richness in the rumen.  相似文献   

14.
Dietary intake of long-chain fatty acids (LCFAs) plays a causative role in insulin resistance and risk of diabetes. Whereas LCFAs promote lipid accumulation and insulin resistance, diets rich in medium-chain fatty acids (MCFAs) have been associated with increased oxidative metabolism and reduced adiposity, with few deleterious effects on insulin action. The molecular mechanisms underlying these differences between dietary fat subtypes are poorly understood. To investigate this further, we treated C2C12 myotubes with various LCFAs (16:0, 18:1n9, and 18:2n6) and MCFAs (10:0 and 12:0), as well as fed mice diets rich in LCFAs or MCFAs, and investigated fatty acid-induced changes in mitochondrial metabolism and oxidative stress. MCFA-treated cells displayed less lipid accumulation, increased mitochondrial oxidative capacity, and less oxidative stress than LCFA-treated cells. These changes were associated with improved insulin action in MCFA-treated myotubes. MCFA-fed mice exhibited increased energy expenditure, reduced adiposity, and better glucose tolerance compared with LCFA-fed mice. Dietary MCFAs increased respiration in isolated mitochondria, with a simultaneous reduction in reactive oxygen species generation, and subsequently low oxidative damage. Collectively our findings indicate that in contrast to LCFAs, MCFAs increase the intrinsic respiratory capacity of mitochondria without increasing oxidative stress. These effects potentially contribute to the beneficial metabolic actions of dietary MCFAs.  相似文献   

15.
During anaerobic fermentation, Saccharomyces cerevisiae releases large amounts of medium-chain fatty acids (MCFAs) and related ethyl esters which are very important for aromatic quality of fermented beverages. The physiological function of ester synthesis is not yet understood. As MCFAs are toxic, their conversion to esters has been proposed to be a detoxification mechanism. Esterases possess ester synthesizing ability. Throughout an anaerobic fermentation of a lipid-free synthetic medium carried out with a S. cerevisiae strain selected for wine making, we have monitored MCFA and ethyl ester production and, at the same time, measured growth and esterasic activity of intact cells. Because no correlation was found between the concentration of each fatty acid and its ethyl ester, there is no evidence that ester synthesis reduces the toxicity of MCFAs. Esterasic activity did not show any correlation with ester synthesis, but it was related to the release of MCFAs. A model is proposed in which ester synthesis is a consequence of the arrest of lipid biosynthesis resulting from a lack of oxygen. Under these conditions, an excess of acyl coenzyme A is produced, and acyl esters are formed as secondary products of reactions aimed at recovering free coenzyme A.  相似文献   

16.
17.
To understand the biosynthetic network of fatty acids in the methylotrophic yeast Hansenula polymorpha, which is able to produce poly-unsaturated fatty acids, we have attempted to identify genes encoding fatty acid elongase. Here we have characterized HpELO1, a fatty acid elongase gene encoding a 319-amino-acid protein containing five predicted membrane-spanning regions that is conserved throughout the yeast Elo protein family. Phylogenetic analysis of the deduced amino acid sequence suggests that HpELO1 is an ortholog of the Saccharomyces cerevisiae ELO3 gene that is involved in the elongation of very long-chain fatty acids (VLCFAs). In the fatty acid profile of the Hpelo1Delta disruptant by gas chromatography/mass spectrometry, the amount of C24:0 and C26:0 decreased to undetectable levels, whereas there was a large accumulation of C22:0, suggesting that the HpELO1 is involved in the elongation of VLCFAs and is essential for the production of C24:0. Expression of HpELO1 suppressed the lethality of the S. cerevisiae elo2Delta elo3Delta double disruptant and recovered the synthesis of VLCFAs. Similar to the S. cerevisiae elo3Delta strain, the Hpelo1Delta disruptant exhibited the extraordinary growth sensitivity to fumonisin B(1), a ceramide synthase inhibitor. Furthermore, cells of the Hpelo1Delta disruptant were more sensitive to Zymolyase and more flocculent than the wild-type cells, clumping together and falling rapidly out of suspension, suggesting that the Hpelo1Delta mutation causes changes in cell wall composition and structure.  相似文献   

18.
In order to determine the regulation mechanisms of ergosterol biosynthesis in yeast, we developed growth conditions leading to high or limiting ergosterol levels in wild type and sterol-auxotrophic mutant strains. An excess of sterol is obtained in anaerobic sterol-supplemented cultures of mutant and wild type strains. A low sterol level is obtained in aerobic growth conditions in mutant strains cultured with optimal sterol supplementation and in wild type strain deprived of pantothenic acid, as well as in anaerobic cultures without sterol supplementation. Measurements of the specific activities of acetoacetyl-CoA thiolase, HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) synthase and HMG-CoA reductase (the first three enzymes of the pathway), show that in cells deprived of ergosterol, acetoacetyl-CoA thiolase and HMG-CoA synthase are generally increased. In an excess of ergosterol, in anaerobiosis, the same enzymes are strongly decreased. A 5-10-fold decrease is observed for acetoacetyl-CoA thiolase and HMG-CoA synthase. In contrast, HMG-CoA reductase is only slightly affected by these conditions. These results show that ergosterol could regulate its own synthesis, at least partially, by repression of the first two enzymes of the pathway. Our results also show that exogenous sterols, even if strongly incorporated by auxotrophic mutant cells, cannot suppress enzyme activities in aerobic growth conditions. Measurement of specific enzyme activities in mutant cells also revealed that farnesyl pyrophosphate thwarts the enhancement of the activities of the two first enzymes.  相似文献   

19.
20.
The growth conditions known to influence the occurrence of mitochondrial profiles and other cell membrane systems in anaerobic cells of S. cerevisiae have been examined, and the effect of the several growth media on the lipid composition of the organism has been determined. The anaerobic cell type containing neither detectable mitochondrial profiles nor the large cell vacuole may be obtained by the culture of the organism on growth-limiting levels of the lipids, ergosterol, and unsaturated fatty acids. Under these conditions, the organism has a high content of short-chain saturated fatty acids (10:0, 12:0), phosphatidyl choline, and squalene, compared with aerobically grown cells, and it is especially low in phosphatidyl ethanolamine and the glycerol phosphatides (phosphatidyl glycerol + cardiolipin). The high levels of unsaturated fatty acids normally found in the phospholipids of the aerobic cells are largely replaced by the short-chain saturated acids, even though the phospholipid fraction contains virtually all of the small amounts of unsaturated fatty acid present in the anaerobic cells. Such anaerobic cells may contain as little as 0.12 mg of ergosterol per g dry weight of cells while the aerobic cells contain about 6 mg of ergosterol per g dry weight. Anaerobic cell types containing mitochondrial profiles can be obtained by the culture of the organism in the presence of excess quantities of ergosterol and unsaturated fatty acids. Such cells have increased levels of total phospholipid, ergosterol, and unsaturated fatty acids, although these compounds do not reach the levels found in aerobic cells. The level of ergosterol in anaerobic cells is markedly influenced by the nature of the carbohydrate in the medium; those cells grown on galactose media supplemented with ergosterol and unsaturated fatty acids have well defined mitochondrial profiles and an ergosterol content (2 mg per g dry weight of cells) three times that of equivalent glucose-grown cells which have poorly defined organelle profiles. Anaerobic cells which are low in ergosterol synthesize increased amounts of squalene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号