首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
C S Tailor  D Kabat 《Journal of virology》1997,71(12):9383-9391
The surface (SU) envelope glycoproteins of feline leukemia virus subgroup B (FeLV-B) and amphotropic murine leukemia virus (A-MLV) are highly related, even in the variable regions VRA and VRB that have been shown to be required for receptor recognition. However, FeLV-B and A-MLV use different sodium-dependent phosphate symporters, Pit1 and Pit2, respectively, as receptors for infection. Pit1 and Pit2 are predicted to have 10 membrane-spanning domains and five extracellular loops. The close relationship of the retroviral envelopes enabled us to generate pseudotype virions carrying chimeric FeLV-B/A-MLV envelope glycoproteins. We found that some of the pseudotype viruses could not use Pit1 or Pit2 proteins but could efficiently utilize specific chimeric Pit1/Pit2 proteins as receptors. By studying Mus dunni tail fibroblasts expressing chimeric Pit1/Pit2 proteins and pseudotype virions carrying chimeric FeLV-B/A-MLV envelopes, we show that FeLV-B and A-MLV VRA and VRB interact in a modular manner with specific receptor domains. Our results suggest that FeLV-B VRA interacts with Pit1 extracellular loops 4 and 5 and that residues Phe-60 and Pro-61 of FeLV-B VRA are essential for receptor choice. However, this interaction is insufficient for infection, and an additional interaction between FeLV-B VRB and Pit1 loop 2 is essential. Similarly, A-MLV infection requires interaction of A-MLV VRA with Pit2 loops 4 and 5 and VRB with Pit2 loop 2, with residues Tyr-60 and Val-61 of A-MLV VRA being critical for receptor recognition. Together, our results suggest that FeLV-B and A-MLV infections require two major discrete interactions between the viral SU envelope glycoproteins and their respective receptors. We propose a common two-step mechanism for interaction between retroviral envelope glycoproteins and cell surface receptors.  相似文献   

3.
Entry by retroviruses is mediated through interactions between the viral envelope glycoprotein and the host cell receptor(s). We recently identified two host cell proteins, FeLIX and Pit1, that are necessary for infection by cytopathic, T-cell-tropic feline leukemia viruses (FeLV-T). Pit1 is a classic multiple transmembrane protein used as a receptor by several other simple retroviruses, including subgroup B FeLV (FeLV-B), and FeLIX is a secreted cellular protein expressed from endogenous FeLV-related sequences (enFeLV). FeLIX is nearly identical to FeLV-B envelope sequences that encode the N-terminal half of the viral surface unit (SU), because these FeLV-B sequences are acquired by recombination with enFeLV. FeLV-B SUs can functionally substitute for FeLIX in mediating FeLV-T infection. Both of these enFeLV-derived cofactors can efficiently facilitate FeLV-T infection only of cells expressing Pit1, not of cells expressing the related transport protein Pit2. We therefore have used chimeric Pit1/Pit2 receptors to map the determinants for cofactor binding and FeLV-T infection. Three distinct determinants appear to be required for cofactor-dependent infection by FeLV-T. We also found that Pit1 sequences within these same domains were required for binding by FeLIX to the Pit receptor. In contrast, these determinants were not all required for receptor binding by the FeLV-B SU cofactors used in this study. These data indicate that cofactor binding is not sufficient for FeLV-T infection and suggest that there may be a direct interaction between FeLV-T and the Pit1 receptor.  相似文献   

4.
The mammalian gammaretroviruses gibbon ape leukemia virus (GALV) and feline leukemia virus subgroup B (FeLV-B) can use the same receptor, Pit1, to infect human cells. A highly polymorphic nine-residue sequence within Pit1, designated region A, has been proposed as the virus binding site, because mutations in this region abolish Pit1-mediated cellular infection by GALV and FeLV-B. However, a direct correlation between region A mutations deleterious for infection and loss of virus binding has not been established. We report that cells expressing a Pit1 protein harboring mutations in region A that abolish receptor function retain the ability to bind virus, indicating that Pit1 region A is not the virus binding site. Furthermore, we have now identified a second region in Pit1, comprising residues 232 to 260 (region B), that is required for both viral entry and virus binding. Epitope-tagged Pit1 proteins were used to demonstrate that mutations in region B result in improper orientation of Pit1 in the cell membrane. Compensatory mutations in region A can restore proper orientation and full receptor function to these region B mutants. Based on these results, we propose that region A of Pit1 confers competence for viral entry by influencing the topology of the authentic binding site in the membrane and hence its accessibility to a viral envelope protein. Based on glycosylation studies and results obtained by using N- and C-terminal epitope-tagged Pit1, region A and region B mutants, and the transmembrane helices predicted with the PHD PredictProtein algorithm, we propose a new Pit1 topology model.  相似文献   

5.
Because mutations in envelope glycoproteins of retroviruses or in their cell surface receptors can eliminate function by multiple mechanisms, it has been difficult to unambiguously identify sites for their interactions by site-directed mutagenesis. Recently, we developed a gain-of-function approach to overcome this problem. Our strategy relies on the fact that feline leukemia virus subgroup B (FeLV-B) and amphotropic murine leukemia virus (A-MLV) have closely related gp70 surface envelope glycoproteins and use related Na(+)-dependent phosphate symporters, Pit1 and Pit2, respectively, as their receptors. We previously observed that FeLV-B/A-MLV envelope glycoprotein chimeras spliced between the variable regions VRA and VRB were unable to use Pit1 or Pit2 as a receptor but could efficiently use specific Pit1/Pit2 chimeras. The latter study suggested that the VRA of A-MLV and FeLV-B functionally interact with the presumptive extracellular loops 4 and 5 (ECL4 and -5) of their respective receptors, whereas VRB interacts with ECL2. We also found that FeLV-B gp70 residues F60 and P61 and A-MLV residues Y60 and V61 in the first disulfide-bonded loop of VRA were important for functional interaction with the receptor's ECL4 or -5. We have now extended this approach to identify additional VRA and VRB residues that are involved in receptor recognition. Our studies imply that FeLV-B VRA residues F60 and P61 interact with the Pit1 ECL5 region, whereas VRA residues 66 to 78 interact with Pit1 ECL4. Correspondingly, A-MLV VRA residues Y60 and V61 interact with the Pit2 ECL5 region, whereas residues 66 to 78 interact with Pit2 ECL4. Similar studies that focused on the gp70 VRB implicated residues 129 to 139 as contributing to specific interactions with the receptor ECL2. These results identify three regions of gp70 that interact in a specific manner with distinct portions of their receptors, thereby providing a map of the functionally interacting surfaces.  相似文献   

6.
Cytopathic, T-cell-tropic feline leukemia viruses (FeLV-T) evolve from FeLV-A in infected animals and demonstrate host cell specificities that are distinct from those of their parent viruses. We recently identified two cellular proteins, FeLIX and Pit1, required for productive infection by these immunodeficiency-inducing FeLV-T variants (M. M. Anderson, A. S. Lauring, C. C. Burns, and J. Overbaugh, Science 287:1828-1830, 2000). FeLV-T is the first example of a naturally occurring type C retrovirus that requires two proteins to gain entry into target cells. FeLIX is an endogenous protein that is highly related to the N-terminal portion of the FeLV envelope protein, which includes the receptor-binding domain. Pit1 is a multiple-transmembrane phosphate transport protein that also functions as a receptor for FeLV-B. The FeLV-B envelope gene is derived by recombination with endogenous FeLV-like sequences, and its product can functionally substitute for FeLIX in facilitating entry through the Pit1 receptor. In the present study, we tested other retrovirus envelope surface units (SUs) with their cognate receptors to determine whether they also could mediate infection by FeLV-T. Cells were engineered to coexpress the transmembrane form of the envelope proteins and their cognate receptors, or SU protein was added as a soluble protein to cells expressing the receptor. Of the FeLV, murine leukemia virus, and gibbon ape leukemia virus envelopes tested, we found that only those with receptor-binding domains derived from endogenous FeLV could render cells permissive for FeLV-T. We also found that there is a strong preference for Pit1 as the transmembrane receptor. Specifically, FeLV-B SUs could efficiently mediate infection of cells expressing the Pit1 receptor but could only inefficiently mediate infection of cells expressing the Pit2 receptor, even though these SUs are able to bind to Pit2. Expression analysis of feline Pit1 and FeLIX suggests that FeLIX is likely the primary determinant of FeLV-T tropism. These results are discussed in terms of current models for retrovirus entry and the interrelationship among FeLV variants that evolve in vivo.  相似文献   

7.
Feline leukemia virus subgroup B (FeLV-B) and gibbon ape leukemia virus (GALV) utilize the human protein Pit1 but not the related protein, Pit2, as receptor. A stretch of 9 amino acids, named region A, was identified in the putative fourth extracellular loop of Pit1 (residues 550 through 558) as critical for FeLV-B and GALV receptor function. However, the presence of Pit1 region A did not confer receptor function for FeLV-B upon Pit2, while it did so for GALV. We have here shown that the presence of two Pit1-specific loop 4 residues (tyrosine 546 and valine 548) in addition to Pit1 region A is sufficient to make Pit2 an efficient FeLV-B receptor; that is, a stretch of 13 amino acids encompassing all loop 4 amino acid differences between Pit1 and Pit2 comprises a C-terminal determinant for FeLV-B receptor function. Thus, the same limited receptor region is sufficient to confer receptor function for both viruses upon Pit2.  相似文献   

8.
Pit1 is the human receptor for gibbon ape leukemia virus (GALV) and feline leukemia virus subgroup B (FeLV-B), while the related human protein Pit2 is a receptor for amphotropic murine leukemia virus (A-MuLV). The A-MuLV-related isolate 10A1 can utilize both Pit1 and Pit2 as receptors. A stretch of amino acids named region A was identified in Pit1 (residues 550 to 558 in loop 4) as critical for GALV and FeLV-B receptor function. We have here investigated the role of region A in A-MuLV and 10A1 entry. Insertion of a single amino acid in region A of mouse Pit1 resulted in a functional A-MuLV receptor, showing that region A plays a role in A-MuLV infection. Moreover, the downregulation of 10A1 receptor function by changes in region A of human Pit1 indicates that this region is also involved in 10A1 entry. Therefore, region A seems to play a role in infection by all viruses utilizing Pit1 and/or Pit2 as receptors.  相似文献   

9.
Murine leukemia virus (MLV)-derived envelope proteins containing alterations in or adjacent to the highly conserved PHQ motif present at the N terminus of the envelope surface subunit (SU) are incorporated into vector particles but are not infectious due to a postbinding block to viral entry. These mutants can be rendered infectious by the addition of soluble receptor-binding domain (RBD) proteins in the culture medium. The RBD proteins that rescue the infectivity of these defective MLV vectors can be derived from the same MLV or from other MLVs that use distinct receptors to mediate entry. We have now constructed functional immunologically reactive gibbon ape leukemia virus (GALV) envelope proteins, tagged with a feline leukemia virus (FeLV)-derived epitope tag, which are efficiently incorporated into infectious particles. Tagged GALV envelope proteins bind specifically to cells expressing the phosphate transporter protein Pit1, demonstrating for the first time that Pit1 is the binding receptor for GALV and not a coreceptor or another type of GALV entry factor. We have also determined that GALV particles bearing SU proteins with an insertion C-terminal to the PHQ motif (GALV I(10)) bind Pit1 but fail to infect cells. Incubation with soluble GALV RBD renders GALV I(10) particles infectious, whereas incubation with soluble RBDs from MLV or FeLV-B does not. This finding is consistent with the results obtained by Lauring et al. using FeLV-T, a virus that employs Pit1 as a receptor but requires soluble FeLV RBD for entry. MLV and GALV RBDs are not able to render FeLV-T infectious (A. S. Lauring, M. M. Anderson, and J. Overbaugh, J. Virol. 75:8888-8898, 2001). Together, these results suggest that fusion-defective FeLV-T and GALV are restricted to homologous RBD rescue of infectivity.  相似文献   

10.
For the amphotropic murine leukemia virus (MuLV), a 208-amino-acid amino-terminal fragment of the surface unit (SU) of the envelope glycoprotein is sufficient to bind to its receptor, Pit2. Within this binding domain, two hypervariable regions, VRA and VRB, have been proposed to be important for receptor recognition. In order to specifically locate residues that are important for the interaction with Pit2, we generated a number of site-specific mutations in both VRA and VRB and analyzed the resulting envelope proteins when expressed on retroviral vectors. Concurrently, we substituted portions of the amphotropic SU with homologous regions from the polytropic MuLV envelope protein. The amphotropic SU was unaffected by most of the point mutations we introduced. In addition, the deletion of eight residues in a region of VRA that was previously suggested to be essential for Pit2 utilization only decreased titer on NIH 3T3 cells by 1 order of magnitude. Although the replacement of the amino-terminal two-thirds of VRA with the polytropic sequence abolished receptor binding, smaller nonoverlapping substitutions did not affect the function of the protein. We were not able to identify a single critical receptor contact point within VRA, and we suggest that the amphotropic receptor binding domain probably makes multiple contacts with the receptor and that the loss of some of these contacts can be tolerated.  相似文献   

11.
We compared the host cell range of T-lymphotropic feline leukemia virus (FeLV-T) with that of FeLV subgroup B (FeLV-B) by pseudotype assay in the presence of FeLIX, a truncated envelope glycoprotein of endogenous FeLV. Although both viruses use Pit1 as a receptor and FeLIX does not hamper FeLV-B infection by receptor interference, the host ranges of FeLV-T and -B were not exactly the same, suggesting a different Pit1 usage at the post-binding level. A comparison of Pit1 sequences of various mammalian species indicated that extracellular loop 1 in a topology model deduced with the PHD PredictProtein algorism may be one of the regions responsible for efficient infection by FeLV-T.  相似文献   

12.
Glvr1 encodes the human receptor for gibbon ape leukemia virus (GALV) and feline leukemia virus subgroup B (FeLV-B), while the related gene Glvr2 encodes the human receptor for amphotropic murine leukemia viruses (A-MLVs). The two proteins are 62% identical in their amino acid sequences and are predicted to have 10 transmembrane domains and five extracellular loops. A stretch of nine amino acids (region A) in the predicted fourth extracellular loop was previously shown to be critical for the function of Glvr1 as receptor for GALV and FeLV-B. Glvr1 and -2 show clusters of amino acid differences in several of their predicted extracellular loops, with the highest degree of divergence in region A. Chimeras were made between the two genes to further investigate the role of Glvr1 region A in defining receptor specificity for GALV and FeLV-B and to map which regions of Glvr2 control receptor specificity for A-MLVs. Region A from Glvr1 was sufficient to confer receptor specificity for GALV upon Glvr2, with the same chimera failing to act as a receptor for FeLV-B. However, introduction of additional N- or C-terminal Glvr1-encoding sequences in addition to Glvr1 region A-encoding sequences resulted in functional FeLV-B receptors. Therefore, FeLV-B is dependent on Glvr1 sequences outside region A for infectivity. The receptor specificity of Glvr2 for A-MLV could not be mapped to a single critical region; rather, N-terminal as well as C-terminal Glvr2-encoding sequences could confer specificity for A-MLV infection upon Glvr1. Surprisingly, though GALV/FeLV-B and A-MLV belong to different interference groups, some chimeras functioned as receptors for all three viruses.  相似文献   

13.
The surface glycoprotein (SU) of murine leukemia viruses (MuLVs) comprises two domains connected by a proline-rich hinge. The interaction of MuLV particles with subgroup-specific cell surface receptors depends primarily on two variable regions (VRA and VRB) located in the amino-terminal domain. To delineate the minimal receptor-binding domains, we examined the capacity of soluble envelope fragments to compete with the entry of virus particles. Amphotropic, ecotropic, polytropic, and xenotropic truncated SUs were produced by inserting stop codons in the env gene of the 4070A, Friend, MCF247 and NZB MuLVs, respectively. These fragments, as well as full-length envelope glycoproteins, were stably expressed in cells bearing the corresponding receptor. Synthesis, posttranslational modifications, transport, and secretion of the env gene products were monitored by immunoprecipitation. Cells expressing the modified SUs or naive cells preincubated with SU-containing conditioned media were infected with different pseudotypes of a retroviral vector carrying a beta-galactosidase marker gene. Reduction of cell susceptibility to infection in the presence of SU was used as a measure of receptor occupancy. The results indicated that the amphotropic and ecotropic envelope amino-terminal domains contain all of the determinants required for receptor binding. In contrast, additional sequences in the proline-rich region were needed for efficient interaction of the polytropic and xenotropic amino-terminal domains with the receptors.  相似文献   

14.
The type III sodium-dependent phosphate (NaPi) cotransporter, Pit2, is a receptor for amphotropic murine leukemia virus (A-MuLV) and 10A1 MuLV. In order to determine what is sufficient for Pit2 receptor function, a deletion mutant lacking about the middle half of the protein was made. The mutant supported entry for both viruses, unequivocally narrowing down the identification of the sequence that is sufficient to specify the receptor functions of Pit2 to its N-terminal 182 amino acids and C-terminal 170 amino acids.  相似文献   

15.
Pseudotypes of gibbon ape leukemia virus/simian sarcoma-associated virus (GALV/SSAV) and feline leukemia virus subgroup B (FeLV-B) have been constructed by rescuing a Moloney murine leukemia virus vector genome with wild-type GALV/SSAV or FeLV-B. The resulting recombinant viruses utilized core and envelope proteins from the wild-type virus and conferred resistance to growth in L-histidinol upon infected cells by virtue of the HisD gene encoded by the vector genome. They displayed the host range specificity of the rescuing viruses and could be neutralized by virus-specific antisera. Receptor cross-interference was observed when the GALV/SSAV or FeLV-B pseudotypes were used to superinfect cells productively infected with either GALV/SSAV or FeLV-B. Although murine cells are resistant to FeLV-B infection, murine cells expressing the human gene for the GALV/SSAV receptor became susceptible to FeLV-B infection. Therefore GALV/SSAV and FeLV-B utilize the same cell surface receptor.  相似文献   

16.
Argaw T  Wilson CA 《Journal of virology》2012,86(17):9096-9104
Replication-competent porcine endogenous retroviruses (PERVs) are either human cell tropic (PERV-A and PERV-B) or non-human cell tropic (PERV-C). We previously demonstrated that PERV in vitro cell tropism is modulated by 2 residues within the C terminus of SU and that the PERV receptor binding domain (RBD) extends beyond the variable regions A and B (VRA and VRB, respectively), to include the proline rich-region (PRR) of SU (M. Gemeniano et al., Virology 346:108-117, 2000; T. Argaw et al., J. Virol. 82:7483-7489, 2008). The present study aimed to identify the specific elements within the PERV RBD that interact with the C-terminal elements of SU to facilitate human cell infection. We constructed a series of chimeric and mutated envelopes between PERV-A and PERV-C and using pseudotyped retroviral vectors to map the human cell tropism-determining sequences within the PERV RBD. We show that the PRR from PERV-A is both necessary and sufficient to allow human cell infection when substituted into the homologous region of the PERV-C envelope carrying two C-terminal amino acid substitutions shown to influence human cell tropism, Q374R and I412V (PERV-Crv). Furthermore, substitution of a single amino acid residue in the PRR of the non-human-tropic PERV-Crv envelope allows vectors carrying this envelope to infect human cells. Receptor interference assays showed that these modified PERV-C envelopes do not bind either of the human PERV-A receptors, suggesting the presence of a distinct human PERV-C receptor. Finally, vectors carrying these modified PERV-C envelopes infect primary human endothelial cells, a cell type likely to be exposed to PERV in clinical use of certain porcine xenotransplantation products.  相似文献   

17.
Gammaretroviruses that enter cells via binding to a surface receptor use one of two fundamental mechanisms. In the first, binding of the virus particle to its cognate receptor is followed by fusion and internalization. The second, less common mechanism requires the addition of an accessory protein in order to achieve fusion and entry into the target cells; this protein is usually the soluble form of the envelope protein containing the receptor-binding domain (RBD). For some viruses, such as amphotropic murine leukemia virus (A-MLV), particles with fusion-defective envelope proteins can enter cells in the presence of their own RBD or that of another viral envelope, regardless of its cognate receptor, suggesting that these viruses share a common entry mechanism. A notable exception is gibbon ape leukemia virus (GALV). Fusion-impaired GALV envelope mutants can be trans-activated for infectivity only by GALV RBDs. Using dually functional GALV/A-MLV receptors, we examined the role of receptor with respect to which RBD could overcome fusion impaired virus entry.  相似文献   

18.
Gammaretroviruses, including the subgroups A, B, and C of feline leukemia virus (FeLV), use a multiple-membrane-spanning transport protein as a receptor. In some cases, such as FeLV-T, a nonclassical receptor that includes both a transport protein (Pit1) and a soluble cofactor (FeLIX) is required for entry. To define which regions confer specificity to classical versus nonclassical receptor pathways, we engineered mutations found in either FeLV-A/T or FeLV-T, individually and in combination, into the backbone of the transmissible form of the virus, FeLV-A. The receptor specificities of these viruses were tested by measuring infection and binding to cells expressing the FeLV-A receptor or the FeLV-T receptors. FeLV-A receptor specificity was maintained when changes at amino acid position 6, 7, or 8 of the mature envelope glycoprotein were introduced, although differences in infection efficiency were observed. When these N-terminal mutations were introduced together with a C-terminal 4-amino-acid insertion and an adjacent amino acid change, the resulting viruses acquired FeLV-T receptor specificity. Additionally, a W-->L change at amino acid position 378, although not required, enhanced infectivity for some viruses. Thus, we have found that determinants in the N and C termini of the envelope surface unit can direct entry via the nonclassical FeLV-T receptor pathway. The region that has been defined as the receptor binding domain of gammaretroviral envelope proteins determined entry via the FeLV-A receptor independently of the presence of the N- and C-terminal FeLV-T receptor determinants.  相似文献   

19.
Pit2 is the human receptor for amphotropic murine leukemia virus (A-MuLV); the related human protein Pit1 does not support A-MuLV entry. Interestingly, chimeric proteins in which either the N-terminal or the C-terminal part of Pit2 was replaced by the Pit1 sequence all retained A-MuLV receptor function. A possible interpretation of these observations is that Pit1 harbors sequences which can specify A-MuLV receptor function when presented in a protein context other than Pit1, e.g., in Pit1-Pit2 hybrids. We reasoned that such Pit1 sequences might be identified if presented in the Neurospora crassa protein Pho-4. This protein is distantly related to Pit1 and Pit2, predicted to have a similar membrane topology with five extracellular loops, and does not support A-MuLV entry. We show here that introduction of the Pit1-specific loop 2 sequence conferred A-MuLV receptor function upon Pho-4. Therefore, we conclude that (i) a functional A-MuLV receptor can be constructed by combining sequences from two proteins each lacking A-MuLV receptor function and that (ii) a Pit1 sequence can specify A-MuLV receptor function when presented in another protein context than that provided by Pit1 itself. Previous results indicated a role of loop 4 residues in A-MuLV entry, and the presence of a Pit2-specific loop 4 sequence was found here to confer A-MuLV receptor function upon Pho-4. Moreover, the introduction of a Pit1-specific loop 4 sequence, but not of a Pit2-specific loop 4 sequence, abolished the A-MuLV receptor function of a Pho-4 chimera harboring the Pit1-specific loop 2 sequence. Together, these data suggest that residues in both loop 2 and loop 4 play a role in A-MuLV receptor function. A-MuLV is, however, not dependent on the specific Pit2 loop 2 and Pit2 loop 4 sequences for entry; rather, the role played by loops 2 and 4 in A-MuLV entry can be fulfilled by several different combinations of loop 2 and loop 4 sequences. We predict that the residues in loops 2 and 4, identified in this study as specifying A-MuLV receptor function, are to be found among those not conserved among Pho-4, Pit1, and Pit2.  相似文献   

20.
J L Battini  J M Heard    O Danos 《Journal of virology》1992,66(3):1468-1475
The envelope glycoproteins (SU) of mammalian type C retroviruses possess an amino-terminal domain of about 200 residues, which is involved in binding a cell surface receptor. In this domain, highly conserved amino acid sequences are interrupted by two segments of variable length and sequence, VRA and VRB. We have studied the role of these variable regions in receptor recognition and binding by constructing chimeric molecules in which portions of the amino-terminal domains from amphotropic (4070A), xenotropic (NZB), and polytropic (MCF 247) murine leukemia virus SU proteins were permuted. These chimeras, which exchanged either one or two variable regions, were expressed at the surface of replication-defective viral particles by a pseudotyping assay. Wild-type or recombinant env genes were transfected into a cell line producing Moloney murine leukemia virus particles devoid of envelope glycoproteins in which a retrovirus vector genome carrying an Escherichia coli lacZ gene was packaged. The host range and sensitivity to interference of pseudotyped virions were assayed, and we observed which permutations resulted in receptor switch or loss of function. Our results indicate that the determinants of receptor choice are found within the just 120 amino acids of SU proteins. Downstream sequences contribute to the stabilization of the receptor-specific structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号