首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tellurite (TeO3(2-)) is highly toxic to most microorganisms. The mechanisms of toxicity or resistance are poorly understood. It has been shown that tellurite rapidly depletes the reduced thiol content within wild-type Escherichia coli. We have shown that the presence of plasmid-borne tellurite-resistance determinants protects against general thiol oxidation by tellurite. In the present study we observe that the tellurite-dependent depletion of cellular thiols in mutants of the glutathione and thioredoxin thiol:redox system was less than in wild-type cells. To identify the type of low-molecular-weight thiol compounds affected by tellurite exposure, the thiol-containing molecules were analyzed by reverse phase HPLC as their monobromobimane derivatives. Results indicated that reduced glutathione is a major initial target of tellurite reactivity within the cell. Other thiol species are also targeted by tellurite, including reduced coenzyme A. The presence of the tellurite resistance determinants kilA and ter protect against the loss of reduced glutathione by as much as 60% over a 2 h exposure. This protection of glutathione oxidation is likely key to the resistance mechanism of these determinants. Additionally, the thiol oxidation response curves were compared between selenite and tellurite. The loss of thiol compounds within the cell recovered from selenite but not to tellurite.  相似文献   

2.
The integration of glutathione homeostasis and redox signaling   总被引:2,自引:0,他引:2  
Formation of reactive oxygen species (ROS) is a common feature of abiotic and biotic stress reactions. ROS need to be detoxified to avoid deleterious reactions, but at the same time, the increased formation of ROS can also be exploited for redox signaling. Glutathione, as the most abundant low-molecular weight thiol in the cellular redox system, is used for both detoxification of ROS and transmission of redox signals. Detoxification of H(2)O(2) through the glutathione-ascorbate cycle leads to a transient change in the degree of oxidation of the cellular glutathione pool, and thus a change in the glutathione redox potential. The shift in the glutathione redox potential can be sensed by glutaredoxins (GRXs), small ubiquitous oxidoreductases, which reversibly transfer electrons between the glutathione redox buffer and thiol groups of target proteins. While very little is known about native GRX target proteins and their behavior in vivo, it is shown here that reduction-oxidation-sensitive GFP (roGFP), when expressed in plants, is an artificial target protein of GRXs. The specific interaction of roGFP with GRX results in continuous formation and release of the roGFP disulfide bridge depending on the actual redox potential of the cellular glutathione buffer. Ratiometric analysis of redox-dependent fluorescence allows dynamic imaging of the glutathione redox potential. It was hypothesized that a similar equilibration occurs between the glutathione buffer and native target proteins of GRXs. As a consequence, even minor deviations in the glutathione redox potential due to either depletion of reduced glutathione (GSH) or increasing oxidation can be exploited for fine tuning the activity of target proteins. The integration of the glutathione buffer with redox-active target proteins is a local reaction in specific subcellular compartments. This observation emphasizes the importance of subcellular compartmentalization in understanding the biology of the cellular redox system in plants.  相似文献   

3.
Thiols like glutathione may serve as reducing cofactors in the production of nitric oxide (NO) and protect NO from inactivation by radical oxygen species. Depletion of thiol compounds reduces NO-mediated vascular effects in vitro and in vivo. The mechanisms underlying these actions are not clear, but may involve decreased synthesis of NO and/or increased degradation of NO. This study investigates the effect of glutathione depletion on the response to NO-mediated vasodilation induced by acetylcholine (Ach, 10 micrograms/kg), endothelial NO synthase (eNOS) activity and potential markers of vascular superoxide anion (O2.-) production in conscious chronically catheterized rats. Thiol depletion induced by buthionine sulfoximine (BSO, 1 g i.p. within 24 h) decreased the hypotensive effect of Ach by 30% (MAP reduction before BSO 27 +/- 3 mmHg, 19 +/- 3 mmHg after BSO, (mean +/- SEM), p < .05, n = 8). The impaired effect of Ach was associated with a significant reduction in eNOS activity (control: 7.7 +/- 0.8, BSO: 3.9 +/- 0.4 pmol/min/mg protein (p < .05), n = 6). In contrast, neither NADH/NADPH driven membrane-associated oxidases nor lucigenin reductase activity were significantly (p < .05) affected by BSO (BSO: 4415 +/- 123, control: 4105 +/- 455 counts/mg; n = 6) in rat aorta. It is concluded that in vivo thiol depletion results in endothelial dysfunction and a reduced receptor-mediated vascular relaxation. This effect is caused by reduced endothelial NO formation.  相似文献   

4.
Genetic variation in the number and reactivity of beta globin sulfhydryl groups causes variation in erythrocyte redox status in mouse populations. These experiments demonstrate the use of capillary isoelectric focusing for measuring endogenous S-glutathionyl hemoglobin and identifying mouse beta globin (Hbb) haplotype in inbred and outbred mouse strains with mono-cysteinyl or di-cysteinyl beta globins. Hbb haplotype can be readily determined in all strains based on characteristic differences in peak profiles or on peak mobility shift induced by thiol exchange with glutathione disulfide in vitro. This method could prove useful for in vivo study of factors that influence thiol protein modification.  相似文献   

5.
Glutathione is the most abundant low molecular weight thiol in the eukaryotic cytosol. The compartment-specific ratio and absolute concentrations of reduced and oxidized glutathione (GSH and GSSG, respectively) are, however, not easily determined. Here, we present a glutathione-specific green fluorescent protein-based redox probe termed redox sensitive YFP (rxYFP). Using yeast with genetically manipulated GSSG levels, we find that rxYFP equilibrates with the cytosolic glutathione redox buffer. Furthermore, in vivo and in vitro data show the equilibration to be catalyzed by glutaredoxins and that conditions of high intracellular GSSG confer to these a new role as dithiol oxidases. For the first time a genetically encoded probe is used to determine the redox potential specifically of cytosolic glutathione. We find it to be -289 mV, indicating that the glutathione redox status is highly reducing and corresponds to a cytosolic GSSG level in the low micromolar range. Even under these conditions a significant fraction of rxYFP is oxidized.  相似文献   

6.
In most cells, the major intracellular redox buffer is glutathione (GSH) and its disulfide-oxidized (GSSG) form. The GSH/GSSG system maintains the intracellular redox balance and the essential thiol status of proteins by thiol disulfide exchange. Topoisomerases are thiol proteins and are a target of thiol-reactive substances. In this study, the inhibitory effect of physiological concentration of GSH and GSSG on topoisomerase IIα activity in vitro was investigated. GSH (0-10 mM) inhibited topoisomerase IIα in a concentration-dependent manner while GSSG (1-100 μM) had no significant effect. These findings suggest that the GSH/GSSG system could have a potential in vivo role in regulating topoisomerase IIα activity.  相似文献   

7.
The thiol/disulfide oxidoreductase DsbA is the strongest oxidant of the thioredoxin superfamily and is required for efficient disulfide bond formation in the periplasm of Escherichia coli. To determine the importance of the redox potential of the final oxidant in periplasmic protein folding, we have investigated the ability of the most reducing thiol/disulfide oxidoreductase, E.coli thioredoxin, of complementing DsbA deficiency when secreted to the periplasm. In addition, we secreted thioredoxin variants with increased redox potentials as well as the catalytic a-domain of human protein disulfide isomerase (PDI) to the periplasm. While secreted wild-type thioredoxin and the most reducing thioredoxin variant could not replace DsbA, all more oxidizing thioredoxin variants as well as the PDI a-domain could complement DsbA deficiency in a DsbB-dependent manner. There is an excellent agreement between the activity of the secreted thioredoxin variants in vivo and their ability to oxidize polypeptides fast and quantitatively in vitro. We conclude that the redox potential of the direct oxidant of folding proteins and in particular its reactivity towards reduced polypeptides are crucial for efficient oxidative protein folding in the bacterial periplasm.  相似文献   

8.
Almost all therapeutic proteins and most extracellular proteins contain disulfide bonds. The production of these proteins in bacteria or in vitro is challenging due to the need to form the correctly matched disulfide bonds during folding. One important parameter for efficient in vitro folding is the composition of the redox buffer, a mixture of a small molecule thiol and small molecule disulfide. The effects of different redox buffers on protein folding, however, have received limited attention. The oxidative folding of denatured reduced lysozyme was followed in the presence of redox buffers containing varying concentrations of five different aromatic thiols or the traditional aliphatic thiol glutathione (GSH). Aromatic thiols eliminated the lag phase at low disulfide concentrations, increased the folding rate constant up to 11-fold, and improved the yield of active protein relative to GSH. The yield of active protein was similar for four of the five aromatic thiols and for glutathione at pH 7 as well as for glutathione at pH 8.2. At pH 6 the positively charged aromatic thiol provided a higher yield than the negatively charged thiols.  相似文献   

9.
Reversible thiol/disulfide exchange equilibria between rabbit muscle phosphofructokinase and glutathione redox buffers results in a dependence of the activity of the enzyme on the thiol to disulfide ratio of the redox buffer (Gilbert, H. F. (1982) J. Biol. Chem. 257, 12086-12091). The transition between fully reduced (active) and fully oxidized (inactive) enzyme is half complete at a [GSH]/[GSSG] ratio of 6.5 +/- 1 at pH 8.0 and 5.6 +/- 0.9 at pH 7.2. In the presence of excess GSSG approximately 40-50% of the activity is lost in a rapid process (k = 110 M-1 min-1), while the remaining activity is lost more slowly (k = 1.9 M-1 min-1). Two equivalents of radiolabeled glutathione are incorporated covalently, one coincident with each phase of inactivation. The most rapidly oxidized sulfhydryl group is also the most rapidly reduced by GSH in the reverse reaction (k = 150 M-1 min-1). Reduction of a more slowly reacting protein-glutathione mixed disulfide is required to regenerate the original activity (k = 0.33 M-1 min-1). The thiol/disulfide oxidation equilibrium constant (Kox) for the most rapidly oxidized sulfhydryl group is estimated to be 0.7 while that for the more slowly oxidized group is 6.1. The sulfhydryl group which is more easily oxidized kinetically is the more thermodynamically resistant to oxidation. The magnitude of the equilibrium constants for these reversible oxidations would suggest that the oxidation state (and activity) of phosphofructokinase would not be significantly affected by typical metabolic changes in the glutathione oxidation state in vivo.  相似文献   

10.
11.
Co-ordination of zinc to the thiol group of cysteine allows mobilization of zinc through oxidation of its ligand. This molecular property links the binding and release of zinc in metallothionein (MT) to the cellular redox state [Maret W. & Vallee B.L. (1998) Proc. Natl Acad. Sci. USA 95, 3483-3488]. Biological disulfides such as glutathione disulfide (GSSG) oxidize MT with concomitant release of zinc, while glutathione (GSH) reduces the oxidized protein to thionein, which then binds to available zinc. Neither of these two redox processes is very efficient, even at high concentrations of GSSG or GSH. However, the GSH/GSSG redox pair can efficiently couple with the MT/thionein system in the presence of a selenium compound that has the capacity to form a catalytic selenol(ate). This coupling provides a very effective means of modulating oxidation and reduction. Remarkably, selenium compounds catalyze the oxidation of MT even under overall reducing conditions such as those prevailing in the cytosol. In this manner, the binding and release of zinc from zinc-thiolate co-ordination sites is linked to redox catalysis by selenium compounds, changes in the glutathione redox state, and the availability of either a zinc donor or a zinc acceptor. The results also suggest that the pharmacological actions of selenium compounds in cancer prevention and other antiviral and anti-inflammatory therapeutic applications, as well as unknown functions of selenium-containing proteins, may relate to coupling between the thiol redox state and the zinc state.  相似文献   

12.
GSNO (S-nitrosoglutathione) is emerging as a key regulator in NO signalling as it is in equilibrium with S-nitrosated proteins. Accordingly, it is of great interest to investigate GSNO metabolism in terms of competitive pathways and redox state. The present study explored ADH3 (alcohol dehydrogenase 3) in its dual function as GSNOR (GSNO reductase) and glutathione-dependent formaldehyde dehydrogenase. The glutathione adduct of formaldehyde, HMGSH (S-hydroxymethylglutathione), was oxidized with a k(cat)/K(m) value approx. 10 times the k(cat)/K(m) value of GSNO reduction, as determined by fluorescence spectroscopy. HMGSH oxidation in vitro was greatly accelerated in the presence of GSNO, which was concurrently reduced under cofactor recycling. Hence, considering the high cytosolic NAD(+)/NADH ratio, formaldehyde probably triggers ADH3-mediated GSNO reduction by enzyme-bound cofactor recycling and might result in a decrease in cellular S-NO (S-nitrosothiol) content in vivo. Formaldehyde exposure affected S-NO content in cultured cells with a trend towards decreased levels at concentrations of 1-5 mM, in agreement with the proposed mechanism. Product formation after GSNO reduction to the intermediate semimercaptal responded to GSH/GSNO ratios; ratios up to 2-fold allowed the spontaneous rearrangement to glutathione sulfinamide, whereas 5-fold excess of GSH favoured the interception of the intermediate to form glutathione disulfide. The sulfinamide and its hydrolysis product, glutathione sulfinic acid, inhibited GST (glutathione transferase) activity. Taken together, the findings of the present study provide indirect evidence for formaldehyde as a physiological trigger of GSNO depletion and show that GSNO reduction can result in the formation of GST inhibitors, which, however, is prevented under normal cellular redox conditions.  相似文献   

13.
Gough JD  Gargano JM  Donofrio AE  Lees WJ 《Biochemistry》2003,42(40):11787-11797
The production of proteins via recombinant DNA technology often requires the in vitro folding of inclusion bodies, which are protein aggregates. To create a more efficient redox buffer for the in vitro folding of disulfide containing proteins, aromatic thiols were investigated for their ability to increase the folding rate of scrambled RNase A. Scrambled RNase A is fully oxidized RNase A with a relatively random distribution of disulfide bonds. The importance of the thiol pK(a) value was investigated by the analysis of five para-substituted aromatic thiols with pK(a) values ranging from 5.2 to 6.6. Folding was measured at pH 6.0 where the pK(a) value of the thiols would be higher, lower, or equal to the solution pH. Thus, relative concentrations of thiol and thiolate would vary across the series. At pH 6.0, the aromatic thiols increased the folding rate of RNase A by a factor of 10-23 over that observed for glutathione, the standard additive. Under optimal conditions, the apparent rate constant increased as the thiol pK(a) value decreased. Optimal conditions occurred when the concentration of protonated thiol in solution was approximately 2 mM, although the total thiol concentration varied considerably. The importance of the concentration of protonated thiol in solution can be understood based on equilibrium effects. Kinetic studies suggest that the redox buffer participates as the nucleophile and/or the center thiol in the key rate determining thiol disulfide interchange reactions that occur during protein folding. Aromatic thiols proved to be kinetically faster and more versatile than classical aliphatic thiol redox buffers.  相似文献   

14.
The cellular glutathione redox buffer is assumed to be part of signal transduction pathways transmitting environmental signals during biotic and abiotic stress, and thus is essential for regulation of metabolism and development. Ratiometric redox-sensitive GFP (roGFP) expressed in Arabidopsis thaliana reversibly responds to redox changes induced by incubation with H(2)O(2) or DTT. Kinetic analysis of these redox changes, combined with detailed characterization of roGFP2 in vitro, shows that roGFP2 expressed in the cytosol senses the redox potential of the cellular glutathione buffer via glutaredoxin (GRX) as a mediator of reversible electron flow between glutathione and roGFP2. The sensitivity of roGFP2 toward the glutathione redox potential was tested in vivo through manipulating the glutathione (GSH) content of wild-type plants, through expression of roGFP2 in the cytosol of low-GSH mutants and the endoplasmic reticulum (ER) of wild-type plants, as well as through wounding as an example for stress-induced redox changes. Provided the GSH concentration is known, roGFP2 facilitates the determination of the degree of oxidation of the GSH solution. Assuming sufficient glutathione reductase activity and non-limiting NADPH supply, the observed almost full reduction of roGFP2 in vivo suggests that a 2.5 mm cytosolic glutathione buffer would contain only 25 nm oxidized glutathione disulfide (GSSG). The high sensitivity of roGFP2 toward GSSG via GRX enables the use of roGFP2 for monitoring stress-induced redox changes in vivo in real time. The results with roGFP2 as an artificial GRX target further suggest that redox-triggered changes of biologic processes might be linked directly to the glutathione redox potential via GRX as the mediator.  相似文献   

15.
In vitro protein folding of disulfide containing proteins is aided by the addition of a redox buffer, which is composed of a small molecule disulfide and/or a small molecule thiol. In this study, we examined redox buffers containing asymmetric dithiols 1-5, which possess an aromatic and aliphatic thiol, and symmetric dithiols 6 and 7, which possess two aromatic thiols, for their ability to fold reduced lysozyme at pH 7.0 and 8.0. Most in vivo protein folding catalysts are dithiols. When compared to glutathione and glutathione disulfide, the standard redox buffer, dithiols 1-5 improved the protein folding rates but not the yields. However, dithiols 6 and 7, and the corresponding monothiol 8 increased the folding rates 8-17 times and improved the yields 15-42% at 1mg/mL lysozyme. Moreover, aromatic dithiol 6 increased the in vitro folding yield as compared to the corresponding aromatic monothiol 8. Therefore, aromatic dithiols should be useful for protein folding, especially at high protein concentrations.  相似文献   

16.
Various 5-substituted 4-nitroimidazoles have been shown to be much more efficient radiosensitizers and much more toxic than would have been predicted from their electron affinities, as measured by values of one-electron reduction potential, E17. Using Chinese hamster V79 cells in vitro, a comparison has been made with some isomeric 4-substituted 5-nitroimidazoles. These compounds have E17 values some 64mV greater than the 4-nitroimidazoles, yet show much lower sensitizing efficiency and also lower toxicity. Neither series of compounds shows the greater toxicity towards hypoxic cells usually associated with nitroaromatic and nitroheterocyclic compounds. The second-order rate constants, k2, for reaction of these isomeric nitroimidazoles with glutathione and dithiothreitol were determined. Within each series the value of k2 increased with increasing electron affinity, however, the 4-nitroimidazoles were always more reactive than their corresponding 5-nitro isomers. The sensitizing and toxic properties of these compounds may involve depletion of intracellular thiols; this possibility is discussed.  相似文献   

17.
Aliphatic thiols are effective as redox buffers for folding non-native disulfide-containing proteins into their native state at high pH values (8.0-8.5) but not at neutral pH values (6-7.5). In developing more efficient and flexible redox buffers, a series of aromatic thiols was analyzed for its ability to fold scrambled ribonuclease A (sRNase A). At equivalent pH values, the aromatic thiols folded sRNase A 10-23 times faster at pH 6.0, 7-12 times faster at pH 7.0, and 5-8 times faster at pH 7.7 than the standard aliphatic thiol glutathione. Similar correlations between thiol pK(a) values and folding rates at each pH value suggest that the apparent folding rate constants (k(app)) are a function of the redox buffer properties (pH, thiol pK(a) and [RSH]). Fitting the observed data to a three-variable model (logk(app)=-4.216(+/-0.030)+0.5816(+/-0.0036)pH-0.233(+/-0.004)pK(a)+log(1-e(-0.98(+/-0.02)[RSH]))) gave good statistics: r2=0.915, s=0.10.  相似文献   

18.
The efficiency of 35 nitroaromatic and nitroheterocyclic compounds in radiosensitizing hypoxic Chinese Hamster cells in vitro was determined. The concentration C of the compound required to achieve an enhancement ratio of 1.6 was measured, and the redox and partition properties were quantified as the one-electron reduction potential at pH 7, E, and the octanol: water partition coefficient, P, respectively. Most of the compounds studied were 2-nitroimidazoles, but some 4- and 5-nitromidazoles, 5-nitrofurans and nitrobenzenes were investigated for comparison. Together with data for nine nitroimidazoles previously reported, the results were fitted to a structure-activity relationship of the form -log C = b0 + b1E + b2 log P + b3 (log P)2 using multiple linear regression analysis. Statistical tests showed that the coefficients b2 and b3 were not significantly different from zero and the simpler equation, obtained by omitting the terms in log P, explained 85 per cent of the variance in log C. Earlier reports that the radiosensitization efficiency of nitro compounds in vitro largely depends on the reduction potential were confirmed. The conclusive demonstration that P is unimportant in vitro is valuable in interpreting the results of experiments in vivo, where P is expected to have a much greater influence on biological response.  相似文献   

19.
Peroxiredoxin 2 is a member of the mammalian peroxiredoxin family of thiol proteins that is important in antioxidant defense and redox signaling. We have examined its reactivity with various biological oxidants, in order to assess its ability to act as a direct physiological target for these species. Human erythrocyte peroxiredoxin 2 was oxidized stoichiometrically to its disulfide-bonded homodimer by hydrogen peroxide, as monitored electrophoretically under nonreducing conditions. The protein was highly susceptible to oxidation by adventitious peroxide, which could be prevented by treating buffers with low concentrations of catalase. However, this did not protect peroxiredoxin 2 against oxidation by added H(2)O(2). Experiments measuring inhibition of dimerization indicated that at pH 7.4 catalase and peroxiredoxin 2 react with hydrogen peroxide at comparable rates. A rate constant of 1.3 x 10(7) M(-1) s(-1) for the peroxiredoxin reaction was obtained from competition kinetic studies with horseradish peroxidase. This is 100-fold faster than is generally assumed. It is sufficiently high for peroxiredoxin to be a favored cellular target for hydrogen peroxide, even in competition with catalase or glutathione peroxidase. Reactions of t-butyl and cumene hydroperoxides with peroxiredoxin were also fast, but amino acid chloramines reacted much more slowly. This contrasts with other thiol compounds that react many times faster with chloramines than with hydrogen peroxide. The alkylating agent iodoacetamide also reacted extremely slowly with peroxiredoxin 2. These results demonstrate that peroxiredoxin 2 has a tertiary structure that facilitates reaction of the active site thiol with hydrogen peroxide while restricting its reactivity with other thiol reagents.  相似文献   

20.
Tert-butylhydroperoxide (tBHP) challenge caused an initial depletion of cellular reduced glutathione (GSH), which was followed by a gradual restoration of cellular GSH in AML12, H9c2, and differentiated PC12 cells. The time-dependent changes in cellular GSH induced by tBHP were monitored as a measure of GSH recovery capacity (GRC), of which glutathione reductase (GR)-mediated glutathione redox cycling and γ-glutamate cysteine ligase (GCL)-mediated GSH synthesis were found to play an essential role. While glutathione redox cycling sustained the GSH level during the initial tBHP-induced depletion, GSH synthesis restores the GSH level thereafter. The effects of (-)schisandrin B [(-)Sch B] and its analogs (Sch A and Sch C) on GRC were also examined in the cells. (-)Sch B and Sch C, but not Sch A, ameliorated the extent of tBHP-induced GSH depletion, indicative of enhanced glutathione redox cycling. However, the degree of restoration of GSH post-tBHP challenge was not affected or even decreased. Pretreatment with (-)Sch B and Sch C, but not Sch A, protected against oxidant injury in the cells. The (-)Sch B afforded cytoprotection was abolished by N,N'-bis(chloroethyl)-N-nitrosourea pretreatment suggesting the enhancement of glutathione redox cycling is crucially involved in the cytoprotection afforded by (-)Sch B against oxidative stress-induced cell injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号