首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Studies examined net photosynthesis (Pn) and dry matter production of mycorrhizal and nonmycorrhizalPinus taeda at 6 intervals over a 10-month period. Pn rates of mycorrhizal plants were consistently greater than nonmycorrhizal plants, and at 10 months were 2.1-fold greater. Partitioning of current photosynthate was examined by pulse-labelling with14CO2 at each of the six time intervals. Mycorrhizal plants assimilated more14CO2, allocated a greater percentage of assimilated14C to the root systems, and lost a greater percentage of14C by root respiration than did nonmycorrhizal plants. At 10 months, the quantity of14CO2 respired by roots per unit root weight was 3.6-fold greater by mycorrhizal than nonmycorrhizal plants. Although the stimulation of photosynthesis and translocation of current photosynthate to the root system by mycorrhiza formation was consistent with the source-sink concept of sink demand, foliar N and P concentrations were also greater in mycorrhizal plants.Further studies examined Pn and dry matter production ofPinus contorta in response to various combinations of N fertilization (3, 62, 248 ppm), irradiance and mycorrhizal fungi inoculation. At 16 weeks of age, 6 weeks following inoculation with eitherPisolithus tinctorius orSuillus granulatus, Pn rates and biomass were significantly greater in mycorrhizal than nonmycorrhizal plants. Mycorrhizal plants had significantly greater foliar %P, but not %N, than did nonmycorrhizal plants. Fertilization with 62 ppm N resulted in greater mycorrhiza formation than either 3 or 248 ppm. Increased irradiance resulted in increased mycorrhiza formation.  相似文献   

2.
3.
The relationship between phosphate status and photosynthesis in leaves   总被引:19,自引:0,他引:19  
K.-J. Dietz  C. Foyer 《Planta》1986,167(3):376-381
Spinach (Spinacia oleracea L.) and barley (Hordeum vulgare L.) were grown in hydroponic culture with varying levels of orthophosphate (Pi). When leaves were fed with 20 mmol·l–1 Pi at low CO2 concentrations, a temporary increase of CO2 uptake was observed in Pi-deficient leaves but not in those from plants grown at 1 mmol·l–1 Pi. At high concentrations of CO2 (at 21% or 2% O2) the Pi-induced stimulation of CO2 uptake was pronounced in the Pi-deficient leaves. The contents of phosphorylated metabolites in the leaves decreased as a result of Pi deficiency but were restored by Pi feeding. These results demonstrate that there is an appreciable capacity for rapid Pi uptake by leaf mesophyll cells and show that the effects of long-term phosphate deficiency on photosynthesis may be reversed (at least temporarily) within minutes by feeding with Pi.Abbreviation Pi orthophosphate  相似文献   

4.
In view of the close association between ericaceous shrubs and ectomycorrhizal trees in forest ecosystems, the interaction between ectomycorrhizal basidiomycetes and the hair roots of four typical ericoid mycorrhizal hosts was investigated in vitro. Seedlings of Vaccinium myrtillus, V. vitis-idaea, V. macrocarpon and Calluna vulgaris were inoculated with each of four ectomycorrhizal basidiomycetes from different phylogenetic groups (Laccaria bicolor, Lactarius musteus, Suillus variegatus and Tomentellopsis submollis) in a low carbon and nutrient agar-cellophane culture system. Two ericoid mycorrhizal Helotiales ascomycetes (Meliniomyces bicolor in the Rhizoscyphus ericae aggregate and a mycobiont out of the Rhizoscyphus ericae aggregate) were included for comparison. Interactions between fungi and hair roots ranged from neutral to surface attachment, and the formation of intracellular hyphal coils. Root and shoot responses to inoculation were different between the host/fungus combinations. The ectomycorrhizal fungus L. bicolor formed extensive intracellular colonization, spreading cell-to-cell with multiple hyphal entry points and intracellular hyphal coils with single entry points in C. vulgaris and V. macrocarpon epidermal cells respectively, however, no significant effects on plant growth were detected. Meliniomyces bicolor formed intracellular hyphal coils in the epidermal cells of V. myrtillus and V. macrocarpon but not the other host spp. The M. bicolor isolate stimulate V. myrtillus root length about 2.5 times. Interestingly, although the unknown ascomycete strain out of the Rhizoscyphus ericae aggregate formed intracellular hyphal coils in epidermal cells of all host plants, it suppressed the growth of C. vulgaris, V. myrtillus, and V. vitis-idaea but not to V. macrocarpon. Further and more detailed experimentation under more ecological realistic conditions for a longer period of time is needed.  相似文献   

5.
Extraradical mycelia from different ectomycorrhizal (ECM) roots coexist and interact under the forest floor. We investigated structural connections of conspecific mycelia and translocation of carbon and phosphorus between the same or different genets. Paired ECM Pinus thunbergii seedlings colonized by the same or different Pisolithus isolates were grown side by side in a rhizobox as their mycelia contacted each other. (14)CO(2) or (33)P-phosphoric acid was fed to leaves or a spot on the mycelium in one of the paired seedlings. Time-course distributions of (14)C and (33)P were visualized using a digital autoradiographic technique with imaging plates. Hyphal connections were observed between mycelia of the same Pisolithus isolate near the contact site, but hyphae did not connect between different isolates. (14)C and (33)P were translocated between mycelia of the same isolate. In (33)P-fed mycelia, accumulation of (33)P from the feeding spot toward the host ECM roots was observed. No (14)C and (33)P translocation occurred between mycelia of different isolates. These results provide direct evidence that contact and hyphal connection between mycelia of the same ECM isolate can cause nutrient translocation. The ecological significance of contact between extraradical mycelia is discussed.  相似文献   

6.
The ability of the mycorrhizal fungus Paxillus involutus to mobilize nitrogen and phosphorus from discrete patches of beech ( Fagus sylvatica ), birch ( Betula pendula ) and pine ( Pinus sylvestris ) litter collected from the fermentation horizon of three forest soils, and to transfer the nutrients to colonized B. pendula Roth seedlings, was investigated in transparent observation chambers. The mycelium of P. involutus foraged intensively in all three types of litter, leading to a significant decline in their phosphorus contents after 90 d. Over the same period only one of the litter types, beech, showed more than a 10% loss of its N contents. Exploitation of the litter led to invigoration of the vegetative mycelium of the fungus throughout the chambers as well as to significant increases of biomass production and leaf area in seedlings grown in the plus litter (+L) relative to those in minus litter (−L) systems. The yield increases were associated with gains in whole plant tissue content and concentration of P, but in content only in the case of N. Calculations suggest that a major proportion of the phosphorus lost from litter originated in its organic fraction. The possible basis of the discrepancy between values of N loss from litter and gain by the plant is discussed and the extent to which the distinctive pattern of nutrient mobilization is a feature peculiar to this fungus-plant combination is considered. It is concluded that nutrient mobilization from natural organic substrates in the fermentation horizon of forest soils may be a key function of the vegetative mycelium of mycorrhizal systems. The need for experimental analyses of a greater range of fungus-plant partnerships is stressed.  相似文献   

7.
Total nodule nitrogenase activity (TNA, μmols ethylene plant-1 h-1) in pigeonpea (Cajanus cajari) increased with plant growth to reach maximum at flowering (75 days after sowing), decreasing thereafter until maturity (120 days after sowing). However, specific nodule nitrogenase activity (SNA, μmols ethylene g-1 nodule fresh wt h-1) reached its maximum earlier (45 days after sowing). The rate of photosynthesis and shoot and nodule respiration followed a similar pattern to TNA. However, higest rates of root respiration were observed at flowering and again immediately before final harvest. 14CO2 feeding studies showed that assimilates produced in leaves before flowering were retained in the vegetative parts. Assimilates produced after flowering were exported to the reproductive structure at the expense of the nodules. It is suggested that the decreased availability of photosynthate to nodules decreased nitrogen fixation.  相似文献   

8.
9.
10.
In Northeast of Portugal, the macrofungal community associated to chestnut tree (Castanea sativa Mill.) is rich and diversified. Among fungal species, the ectomycorrhizal Pisolithus tinctorius and the saprotroph Hypholoma fasciculare are common in this habitat. The aim of the present work was to assess the effect of the interaction between both fungi on growth, nutritional status, and physiology of C. sativa seedlings. In pot experiments, C. sativa seedlings were inoculated with P. tinctorius and H. fasciculare individually or in combination. Inoculation with P. tinctorius stimulated the plant growth and resulted in increased foliar-N, foliar-P, and photosynthetic pigment contents. These effects were suppressed when H. fasciculare was simultaneously applied with P. tinctorius. This result could be related to the inhibition of ectomycorrhizal fungus root colonization as a result of antagonism or to the competition for nutrient sources. If chestnut seedlings have been previously inoculated with P. tinctorius, the subsequent inoculation of H. fasciculare 30 days later did not affect root colonization, and mycorrhization benefits were observed. This work confirms an antagonistic interaction between ectomycorrhizal and saprotrophic fungi with consequences on the ectomycorrhizal host physiology. Although P. tinctorius is effective in promoting growth of host trees by establishing mycorrhizae, in the presence of other fungi, it may not always be able to interact with host roots due to an inability to compete with certain fungi.  相似文献   

11.
Maintenance of ion homeostatic mechanisms is essential for living cells, including the budding yeast Saccharomyces cerevisiae. Whereas the impact of changes in phosphate metabolism on metal ion homeostasis has been recently examined, the inverse effect is still largely unexplored. We show here that depletion of potassium from the medium or alteration of diverse regulatory pathways controlling potassium uptake, such as the Trk potassium transporters or the Pma1 H+‐ATPase, triggers a response that mimics that of phosphate (Pi) deprivation, exemplified by accumulation of the high‐affinity Pi transporter Pho84. This response is mediated by and requires the integrity of the PHO signaling pathway. Removal of potassium from the medium does not alter the amount of total or free intracellular Pi, but is accompanied by decreased ATP and ADP levels and rapid depletion of cellular polyphosphates. Therefore, our data do not support the notion of Pi being the major signaling molecule triggering phosphate‐starvation responses. We also observe that cells with compromised potassium uptake cannot grow under limiting Pi conditions. The link between potassium and phosphate homeostasis reported here could explain the invasive phenotype, characteristic of nutrient deprivation, observed in potassium‐deficient yeast cells.  相似文献   

12.
Photosynthetic CO2 assimilation, photorespiration and levels of glycollate oxidase and ribulose bisphosphate (RuBP) carboxylase were measured in barley, wheat and maize plants grown on media containing nitrate or ammonium or in plants transferred from nitrate to ammonium. The CO2 compensation point and photorespiratory CO2 release were not altered by the nitrogen growth regime nor by transfer from nitrate to ammonium. In barley and wheat plants grown on ammonium the levels of glycollate oxidase and RuBP carboxylase per unit leaf area were higher than in nitrate grown material. These differences were not evident when the results were expressed on a protein or chlorophyll basis. The ratio of glycollate oxidase activity to RuBP carboxylase activity was not altered by the nitrogen regime.  相似文献   

13.
Transfer of 15N between interacting mycelia of a wood-decomposing fungus (Hypholoma fasciculare) and an ectomycorrhizal fungus (Tomentellopsis submollis) was studied in a mature beech (Fagus sylvatica) forest. The amount of 15N transferred from the wood decomposer to the ectomycorrhizal fungus was compared to the amount of 15N released from the wood-decomposing mycelia into the soil solution as 15N-NH4. The study was performed in peat-filled plastic containers placed in forest soil in the field. The wood-decomposing mycelium was growing from an inoculated wood piece and the ectomycorrhizal mycelium from an introduced root from a mature tree. The containers were harvested after 41 weeks when physical contact between the two foraging mycelia was established. At harvest, 15N content was analyzed in the peat (total N and 15NH4 +) and in the mycorrhizal roots. A limited amount of 15N was transferred to the ectomycorrhizal fungus and this transfer could be explained by 15NH4 + released from the wood-decomposing fungus without involving any antagonistic interactions between the two mycelia. Using our approach, it was possible to study nutritional interactions between basidiomycete mycelia under field conditions and this and earlier studies suggest that the outcomes of such interactions are highly species-specific and depend on environmental conditions such as resource availability.  相似文献   

14.
Plant and Soil - Belowground competition and allelopathic interference of neighbouring plants play important roles in shaping plant performance. We assessed the effect of belowground interactions...  相似文献   

15.
Interactions between photosynthesis, mitochondrial respiration (mitorespiration), and chlororespiration have been investigated in the green alga Chlamydomonas reinhardtii using flash illumination and a bare platinum electrode. Depending on the physiological status of algae, flash illumination was found to induce either a fast (t(1/2) approximately 300 ms) or slow (t(1/2) approximately 3 s) transient inhibition of oxygen uptake. Based on the effects of the mitorespiratory inhibitors myxothiazol and salicyl hydroxamic acid (SHAM), and of propyl gallate, an inhibitor of the chlororespiratory oxidase, we conclude that the fast transient is due to the flash-induced inhibition of chlororespiration and that the slow transient is due to the flash-induced inhibition of mitorespiration. By measuring blue-green fluorescence changes, related to the redox status of the pyridine nucleotide pool, and chlorophyll fluorescence, related to the redox status of plastoquinones (PQs) in C. reinhardtii wild type and in a photosystem I-deficient mutant, we show that interactions between photosynthesis and chlororespiration are favored when PQ and pyridine nucleotide pools are reduced, whereas interactions between photosynthesis and mitorespiration are favored at more oxidized states. We conclude that the plastid oxidase, similar to the mitochondrial alternative oxidase, becomes significantly engaged when the PQ pool becomes highly reduced, and thereby prevents its over-reduction.  相似文献   

16.
17.
18.
The mechanisms of arsenic (As) hyperaccumulation in Pteris vittata, the first identified As hyperaccumulator, are unknown. We investigated the interactions of arsenate and phosphate on the uptake and distribution of As and phosphorus (P), and As speciation in P. vittata. In an 18-d hydroponic experiment with varying concentrations of arsenate and phosphate, P. vittata accumulated As in the fronds up to 27,000 mg As kg(-1) dry weight, and the frond As to root As concentration ratio varied between 1.3 and 6.7. Increasing phosphate supply decreased As uptake markedly, with the effect being greater on root As concentration than on shoot As concentration. Increasing arsenate supply decreased the P concentration in the roots, but not in the fronds. Presence of phosphate in the uptake solution decreased arsenate influx markedly, whereas P starvation for 8 d increased the maximum net influx by 2.5-fold. The rate of arsenite uptake was 10% of that for arsenate in the absence of phosphate. Neither P starvation nor the presence of phosphate affected arsenite uptake. Within 8 h, 50% to 78% of the As taken up was distributed to the fronds, with a higher translocation efficiency for arsenite than for arsenate. In fronds, 49% to 94% of the As was extracted with a phosphate buffer (pH 5.6). Speciation analysis using high-performance liquid chromatography-inductively coupled plasma mass spectroscopy showed that >85% of the extracted As was in the form of arsenite, and the remaining mostly as arsenate. We conclude that arsenate is taken up by P. vittata via the phosphate transporters, reduced to arsenite, and sequestered in the fronds primarily as As(III).  相似文献   

19.
20.
良好的睡眠质量是维护人体健康和体力的重要保证,且与机体免疫调节、营养代谢等生理功能关系极为密切。睡眠机制目前还不清楚,绝大部分研究仍处于起始阶段。体内肠道菌群的微生物丰度及其代谢活动会对机体的行为产生深远影响。针对影响睡眠机制的因素,本研究综述了调节睡眠机制研究的现状及其发展趋势,并讨论肠道微生物对睡眠的调节作用以及与相关疾病的发病机制之间的关系,旨在为今后研究肠道微生物对人体的健康以及睡眠等慢性疾病发生发展的影响提供参考和思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号