首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Edmunds, L.N., Jr. (Ed.): Cell Cycle Clocks. (Marcel Dekker, Inc. New York/Basel/Swiss F 277) (approx. $100.00)  相似文献   

2.
Recent advances in the development of protocols for in vitro culture and genetic manipulation have provided new avenues for the development of novel varieties of Pelargonium and for use as model systems for investigating the factors controlling plant morphogenesis. Optimized techniques of meristem culture have supplemented the culture indexing methods in commercial greenhouse production resulting in availability of large-scale pathogen indexed planting material. Currently, technologies are available for the mass in vitro propagation of F1 hybrid Pelargonium through both organogenesis and somatic embryogenesis. The somatic embryogenesis model system has allowed researchers to identify critical factors controlling plant morphogenesis in vitro such as regulation of regeneration by growth regulators, choice of explant and characterization of induction and expression phases of morphogenesis in Pelargonium. Also, optimization of technologies for genetic transformation of Pelargonium opened up the possibilities for developing genotypes with novel characters, including resistance to some of the major diseases. Finally, the development of regeneration systems for Pelargonium spp. has facilitated conventional crop improvement programs, thereby providing a valuable resource to the horticultural industry.  相似文献   

3.
Shoot organogenesis is one of the in vitro plant regeneration pathways. It has been widely employed in plant biotechnology for in vitro micropropagation and genetic transformation, as well as in study of plant development. Morphological and physiological aspects of in vitro shoot organogenesis have already been extensively studied in plant tissue culture for more than 50 years. Within the last ten years, given the research progress in plant genetics and molecular biology, our understanding of in vivo plant shoot meristem development, plant cell cycle, and cytokinin signal transduction has advanced significantly. These research advances have provided useful molecular tools and resources for the recent studies on the genetic and molecular aspects of in vitro shoot organogenesis. A few key molecular markers, genes, and probable pathways have been identified from these studies that are shown to be critically involved in in vitro shoot organogenesis. Furthermore, these studies have also indicated that in vitro shoot organogenesis, just as in in vivo shoot development, is a complex, well-coordinated developmental process, and induction of a single molecular event may not be sufficient to induce the occurrence of the entire process. Further study is needed to identify the early molecular event(s) that triggers dedifferentiation of somatic cells and serves as the developmental switch for de novo shoot development.  相似文献   

4.
Summary Somatic embryo (bipolar) or shoot (monopolar) morphogenesis in mesophyll cells of Euphorbia nivulia Buch.-Ham in vitro was dependent on the type of auxin supplementing Murashige and Skoog (MS) medium containing benzyladenine. Direct in vitro morphogenesis, i.e., organogenesis, and somatic embryogenesis were significantly influenced by seasonal growth of the donor plant, explant position (proximal, mid, and distal), and light. Explants collected in march/April were superior to July/August material. Proximal explants underwent morphogenesis more readily than mid- and tip-derived explants. Incubation in the light favored morphogenesis while darkness was inhibitory. Kinetin (Kn) was also inhibitory to morphogenesis. MS medium enriched with different levels of N6-benzyladenine (BA) alone, or in combination with α-naphthaleneacetic acid (NAA) or indole-3-acetic acid (IAA), induced adventitious shoots directly. Explants collected in March/April cultured on medium with 13.3 μM BA and 2.69 μM NAA developed the highest number of shoots, a mean of 15.2 shoots per proximal explant. Developed shoots rooted the best on half-strength MS medium with 2.46 μM indole-3-butyric acid, which developed a mean of 5.2 roots per shoot. Rooted healthy shoots could be transplanted to small pots, with an 80% survival rate. Addition of 2,4-dichlorophenoxyacetic acid (2.4-D) to BA-supplemented medium was obligatory to develop somatic embryos. MS medium containing 2.26 μM 2,4-D and 4.44 μM BA induced a mean of 44.8 somatic embryos per proximal explant. The embryos passed through distinct stages of embryogenesis, namely globular, heart, torpedo, and early cotyledonary. The embryos (88%) underwent maturation on half-strength MS medium with 2.89 μM gibberellic acid (GA3), and its subsequent transfer on half-strength MS basal medium in light conditions facilitated 80% conversion of embryos to plantlets. Direct shoots or embryos were originated from the mesophyll cells. Somatic embryo development was concurrent with the independent origin of vasculature in the bulbous basal portion. The survival rate of embryo-derived plants was 90%.  相似文献   

5.
Shoot organogenesis, one of the in vitro plant regeneration processes that occur during in vitro micropropagation, is used in the study of plant development. Morphological, physiological, and molecular aspects of in vitro shoot organogenesis have been extensively studied for over 50 years. Because of the research progress in plant genetics and molecular biology, our understanding of in planta and in vitro shoot meristem development, the cell cycle and cytokinin signal transduction has advanced significantly. These research advances provide useful information as well as molecular tools to study further the genetic and molecular aspects of shoot organogenesis. A number of key molecular markers, genes, and pathways have been shown to play a critical role in the process of in vitro shoot organogenesis. Furthermore, these studies reveal that in vitro shoot organogenesis, as with in planta shoot development, is a complex, well-coordinated developmental process, given that the induction of a single molecular event is likely to be insufficient to induce the entire process. Continued study is required to identify additional molecular events that trigger dedifferentiation and act as developmental switches for de novo shoot development.  相似文献   

6.
A high frequency shoot organogenesis and plant establishment protocol has been developed for Coleus forskohlii from leaf derived callus. Optimal callus was developed from mature leaves on Murashige and Skoog (MS) medium supplemented with 2.4 μM kinetin alone. Shoots were regenerated from the callus on MS medium supplemented with 4.6 μM kinetin and 0.54 μM 1-naphthalene acetic acid. The highest rate of shoot multiplication was achieved at the sixth subculture and more than 150 shoots were produced per callus clump. Regenerated shootlets were rooted spontaneously on half-strength MS medium devoid of growth regulators. The in vitro raised plants were established successfully in soil. The amount of forskolin in in vitroraised plants and wild plants was estimated and found that they produce comparable quantity of forskolin. This in vitro propagation protocol should be useful for conservation as well as mass propagation of this plant. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Regulation of morphogenesis in plant tissue culture by ethylene   总被引:5,自引:0,他引:5  
Summary The gaseous phytohormone ethylene regulates many aspects of plant morphogenesis. Growth and development of cells culturedin vitro are largely dependent on the presence of phytohormones, including ethylene in the culture environment. Hence, modification of phytohormone composition and interaction in the nutrient medium has been the primary strategy to manipulate morphogenesisin vitro. Such studies have shown the importance of ethylene, as well as the inhibition of its synthesis or action, in growth and organized developmentin vitro, including xylogenesis, organogenesis, somatic embryogenesis, and androgenesis. More recently, mutants and transgenic plants have been used to elucidate the role of ethylene in various cellular and developmental processes. In this review, we concentrate on the more recent advances in the study of ethylene in plant morphogenesisin vitro. We also include information about the various chemical modulators of ethylene biosynthesis and action employed in plant tissue culture.  相似文献   

8.
Book reviews     

SELENIUM IN THE ENVIRONMENT. Edited by W T Frankenberger Jr and Sally Benson. Marcel Dekker Incorporated, 1994; 472 pp; US $165; ISBN: 0–8247 8993–8

AGROCHEMICALS FROM NATURAL PRODUCTS. Edited by C R A Godfrey. Marcel Dekker Incorporated, 1995; 472 pp; US $165; ISBN 0–8247–9553–9

NITROGEN FERTILIZATION IN THE ENVIRONMENT. Edited by P E Bacon. Marcel Dekker Incorporated, 1995; 608 pp; US $185; ISBN: 0–8247–8994–6  相似文献   

9.
Mineral nutrition and plant morphogenesis   总被引:9,自引:0,他引:9  
Summary Plant morphogenesis in vitro can be achieved via two pathways, somatic embryogenesis or organogenesis. Relationships between the culture medium and explant leading to morphogenesis are complex and, despite extensive study, remain poorly understood. Primarily the composition and ratio of plant growth regulators are manipulated to optimize the quality and numbers of embryos or organs initiated. However, many species and varieties do not respond to this classical approach and require further optimization by the variation of other chemical or physical factors. Mineral nutrients form a significant component of culture media but are often overlooked as possible morphogenic elicitors. The combination of minerals for a particular plant species and developmental pathway are usually determined by the empirical manipulation of one or a combination of existing published formulations. Often only one medium type is used for the duration of culture even though this formulation may not be optimal for the different stages of explant growth and development. Furthermore, mineral studies have often focused on growth rather than morphogenesis with very little known of the relationships between mineral uptake and morphogenesis. This article examines the present knowledge of the main effects that mineral nutrients have on plant morphogenesis in vitro. In particular, the dynamics of nitrogen, phosphorus, and calcium supply during development are discussed.  相似文献   

10.
Shoot organogenesis and plant establishment has been achieved for Phellodendron amurense Rupr. from excised leaf explants. Young leaf explants were collected from in vitro established shoot cultures and used for the induction of direct shoot regeneration, callus and subsequent differentiation into shoots on MS medium. Direct shoot regeneration was achieved by culturing 1 cm2 sections of about 10-day-old leaves on MS medium enriched with 4.4 M BAP and 1.0 M NAA after 4 weeks of culture. The leaf explants produced callus from their cut margins within 3 weeks of incubation on medium supplemented with 2.0 M TDZ and 4.0 M 2,4-D or 4.0 M NAA. The maximum number of adventitious shoots was regenerated from the leaf-derived callus within 4 weeks of culture on MS medium containing 1.5 M BAP and 1.0 M NAA. The highest rate of shoot multiplication was achieved at the third subculture, and more than 65 shoots were produced per callus clump. For rooting, the in vitro proliferated and elongated shoots were excised into 2–4 cm long microcuttings, which were planted individually on a root-induction MS medium containing 2.0 M IBA. Within 3 weeks of transfer to the rooting medium, all the cultured microcuttings produced 2–6 roots. The in vitro regenerated plantlets were transferred to Kanuma soil, and the survival rate ex vitro was 90%.  相似文献   

11.
Summary The types of auxin in Murashige and Skoog (MS) medium containing N 6-benzyladenine (BA) determined indirect morphogenesis, i.e. development to bipolar somatic embryos or monopolar shoots in Euphorbia nivulia Buch.-Ham. Indirect in vitro morphogenesis depended on growth regulators, explant excision period, and light. Calli induced from explants collected in March–April were superior in the induction of indirect morphogenesis to those collected in July–August. Light enforced in vitro morphogenesis, while darkness was inhibitory. The presence of kinetin in the medium also inhibited morphogenesis. Calli developed on explants collected in March–April grown on MS medium fortified with α-naphthaleneacetic acid (NAA) and BA facilitated indirect organogenesis, while those developed on medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) and BA underwent somatic embryogenesis. MS medium with 13.3 μM BA and 2.69 μM NAA was the best for induction of shoots from callus, which developed a mean of 15.7 shoots. Shoots were best rooted on half-strength MS medium enriched with 2.46 μM indole-3-butyric acid with a mean of 5.1 roots per shoot. MS medium supplemented with 2.26 μM 2,4-D and 4.44 μM BA induced the highest number (mean of 13.4) of somatic embryos. Of the embryos transferred on half-strength MS medium containing 2.89 μM gibberellic acid, 78% of embryos developed to the cotyledonary stage. Most cotyledonary embryos (80%) underwent conversion to plantlets upon being transferred to half-strength MS basal medium in light. The survival rate of organogenesis and embryo-derived plants was 80 and 90%, respectively. Calli transformed with Agrobacterium tumefaciens showed expression of the gusA transgene and resistance to kanamycin, but did not undergo morphogenesis.  相似文献   

12.
Sternbergia fischeriana is an endangered geophyte and therefore in vitro micropropagation of this plant will have great importance for germplasm conservation and commercial production. Bulb scale and immature embryo explants of S. fischeriana were cultured on different nutrient media supplemented with various concentrations of plant growth regulators. Immature embryos produced higher number of bulblets than bulb scales. Large numbers of bulblets were regenerated (over 80 bulblets/explants) from immature embryos on Murashige and Skoog (MS) medium supplemented with 4 mg l–1 6-benzylaminopurine (BA) and 0.25 mg l–1 -naphthaleneacetic (NAA) or 2 mg l–12,4-dichlorophenoxyacetic acid (2,4-D) after 14 months of culture initiation. Regenerated bulblets were kept at 5 °C for 5 weeks and then transplanted to a potting mixture.  相似文献   

13.
14.
Summary The in vitro plant regeneration potential of vegetatively propagated geraniums (Pelargonium x hortorum) has been investigated. Using various combinations of growth regulators and a choice of different explants, a regeneration protocol has been developed to raise in vitro plantlets from young petiole and leaf explants from three different cultivars of geraniums. In all three cultivars, very young petiole explants exhibited a higher regeneration potential as compared with leaf explants. Regeneration efficiencies were found to be highly dependent on the cultivar, with cv. Samba showing the highest regeneration potential, followed by cvs. Yours Truly and then Sincerity. Samba also showed the highest number of shoots from both the petiole [57 shoot buds per petiole explant in the presence of 3 μM zeatin and 1 μM indole-3-acetic acid (IAA) and leaf explants (43 shoots per leaf explant with 10 μM zeatin and 2 μM IAA). Shoot buds transferred to Murashige and Skoog (MS) medium supplemented with 0.44 μM N6-benzyladenine and 0.11 μM IAA grew vigorously and attained 1–2 cm in length in 3–4 wk. These shoots rooted with 100% efficiency on MS basal medium, and plants developed that showed normal growth and flowering under greenhouse conditions.  相似文献   

15.
16.
17.
Summary St John’s wort (Hypericum perforatum) is a valuable plant used as a herbal remedy or in phytopharmaceutical drugs to treat a variety of physical ailments. Much research has been performed to study the biochemical production of secondary metabolites of in vitro cultured plants or organs. However, all of these studies have looked at the regeneration of plants from explants in only one genotype. In addition, no study has revealed the mechanism of plant regeneration in H. perforatum, i.e. organogenesis or somatic embryogenesis. We found that different genotypes Helos, Topas, Elixir, and Numi responded similarly to regeneration medium. The regeneration responses (i.e. callus, root, or shool production) of identical explants from different genotypes were similar. However, the source of explant material (leaves, hypocotyls, and roots) from the same genotype had significant effects on the response to media and plant regeneration frequency. Using scanning electron microscopy and light microscopy, the progress of organogenesis and embryogenesis under similar culture conditions was recorded. Root segments were the most responsive explants, producing the maximum number of shoots per explant of all the genotypes.  相似文献   

18.
Plant branching development plays an important role in plant morphogenesis (aboveground plant type), the number and angle of branches are important agronomic characters that determine crop plant type. Effective branches determine the number of panicles or pods of crops and then control the yield of crops. With the rapid development of plant genomics and molecular genetics, great progress has been made in the study of branching development. In recent years, a series of important branching-related genes have been validated from Arabidopsis thaliana, rice, pea, tomato and maize mutants. It is reviewed that plant branching development is controlled by genetic elements and plant hormones, such as auxin, cytokinin and lactones (or lactone derivatives), as well as by environment and genetic elements. Meanwhile, shoot architecture in crop breeding was discussed in order to provide theoretical basis for the study of crop branching regulation.  相似文献   

19.
This review compares the activity of the plant transposable elements Ac, Tam3, En/Spm and Mu in heterologous plant species and in their original host. Mutational analysis of the autonomous transposable elements and two-element systems have supplied data that revealed some fundamental properties of the transposition mechanism. Functional parts of Ac and En/Spm were detected by in vitro binding studies of purified transposase protein and have been tested for their importance in the function of these transposable elements in heterologous plant species. Experiments that have been carried out to regulate the activity of the Ac transposable element are in progress and preliminary results have been compiled. Perspectives for manipulated transposable elements in transposon tagging strategies within heterologous plant species are discussed.  相似文献   

20.
Summary Chili pepper is an important horticultural crop that can surely benefit from plant biotechnology. However, although it is a Solanaceous member, developments in plant cell, tissue, and organ culture, as well as on plant genetic transformation, have lagged far behind those achieved for other members of the same family, such as tobacco (Nicotiana tabacum), tomato (Lycopersicon esculentum), and potato (Solanum tuberosum), species frequently used as model systems because of their facility to regenerate organs and eventually whole plants in vitro, and also for their ability to be genetically engineered by the currently available transformation methods. Capsicum members have been shown to be recalcitrant to differentiation and plant regeneration under in vitro conditions, which in turn makes it very difficult or inefficient to apply recombinant DNA technologies via genetic transformation aimed at genetic improvement against pests and diseases. Some approaches, however, have made possible the regeneration of chili pepper plants from in vitro-cultured cells, tissues, and organs through organogenesis or embryogenesis. Anther culture has been successfully applied to obtain haploid and doubledhaploid plants. Organogenic systems have been used for in vitro micropropagation as well as for genetic transformation. Application of both tissue culture and genetic transformation techniques have led to the development of chili pepper plants more resistant to at least one type of virus. Cell and tissue cultures have been applied successfully to the selection of variant cells exhibiting increased resistance to abiotic stresses, but no plants exhibiting the selected traits have been regenerated. Production of capsaicinoids, the hot principle of chili pepper fruits, by cells and callus tissues has been another area of intense research. The advances, limitations, and applications of chili pepper biotechnology are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号