首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Pyrococcus furiosus fbpA gene was cloned and expressed in Escherichia coli, and the fructose-1,6-bisphosphatase produced was subsequently purified and characterized. The dimeric enzyme showed a preference for fructose-1,6-bisphosphate, with a K(m) of 0.32 mM and a V(max) of 12.2 U/mg. The P. furiosus fructose-1,6-bisphosphatase was strongly inhibited by Li(+) (50% inhibitory concentration, 1 mM). Based on the presence of conserved sequence motifs and the substrate specificity of the P. furiosus fructose-1,6-bisphosphatase, we propose that this enzyme belongs to a new family, class IV fructose-1,6-bisphosphatase.  相似文献   

2.
d-Fructose-1,6-bisphosphatase (EC 3.1.3.11) activity in crude extracts of the blue-green alga Synechococcus leopoliensis (Anacystis nidulans) has been investigated using high resolving electrophoretic and chromatographic separation techniques. Two catalytically active enzyme forms which exhibited isoelectric points of 4.7–4.8 (designated from A) and 4.5–4.6 (designated form B) were resolved by isoelectric focusing. Both enzyme forms acted specifically on fluctose-1,6-bisphosphate. No interconversion between the A and B forms of fructose bisphosphatase activity was detected after refocusing. The apparent molecular weight of the two enzyme forms was determined by non denaturing polyacrylamide gradient electrophoresis; the values were 67,000–70,000 and 60,000–65,000 for A and B, respectively. Both enzyme forms were separated by preparative scale chromatofocusing. Kinetic measurements performed with the separated and partially purified fructose bisphosphatase forms indicated that both enzyme forms differ in their AMP sensitivity. The two enzymes were completely inactivated by the addition of cysteamine and reactivated by dithiols but the reactivation kinetics were different.Abbreviations DTT dl-Dithiothreithol - MTT 3(4,5-dimethylthiazolyl-2)-2,5-diphenyl tetrazolium bromide - PMS phenazine methosulfate - TCA trichloroacetic acid - Tris tris(hydroxymethyl)-aminomethane  相似文献   

3.
Chloroplast fructose-1,6-bisphosphatase hysteresis in response to modifiers was uncovered by carrying out the enzyme assays in two consecutive steps. The activity of chloroplast fructose-1,6-bisphosphatase, assayed at low concentrations of both fructose-1,6-bisphosphatase and Mg2+, was enhanced by preincubating the enzyme with dithiothreitol, thioredoxin f, fructose 1,6-bisphosphate, and Ca2+. In the time-dependent activation process, fructose 1,6-bisphosphate and Ca2+ could be replaced by other sugar biphosphates and Mn2+, respectively. Once activated, chloroplast fructose-1,6-bisphosphatase hydrolyzed fructose 1,6-bisphosphate and sedoheptulose 1,7-bisphosphate in the presence of Mg2+, Mn2+, or Fe2+. The A0.5 for fructose 1,6-bisphosphate (activator) was lowered by reduced thioredoxin f and remained unchanged when Mg2+ was varied during the assay of activity. On the contrary, the S0.5 for fructose 1,6-bisphosphate (substrate) was unaffected by reduced thioredoxin f and depended on the concentration of Mg2+. Ca2+ played a dual role on the activity of chloroplast fructose-1,6-bisphosphatase; it was a component of the concerted activation and an inhibitor in the catalytic step. Provided dithiothreitol was present, the activating effectors were not required to maintain the enzyme in the active form. Considered together these results strongly suggest that the regulation of fructose-1,6-bisphosphatase in chloroplast occurs at two different levels, the activation of the enzyme and the catalysis.  相似文献   

4.
Fructose-1,6-bisphosphatase was precipitated with purified rabbit antiserum from extracts of 32P-orthophosphate labelled yeast cells, submitted to SDS polyacrylamide gel electrophoresis, extracted from the gels and counted for radioactivity due to 32P incorporation. Fructose-1,6-bisphosphatase from glucose starved yeast cells contained a very low 32P label. During 3 min treatment of the glucose starved cells with glucose the 32P-label increased drastically. Subsequent incubation of the cells in an acetate containing, glucose-free medium led to a label which was again low. Analysis for phosphorylated amino acids in the immunpprecipitated fructose-1,6-bisphosphatase protein from the 3 min glucose-inactivated cells exhibited phospho-serine as the only labelled phosphoamino acid. These data demonstrate a phosphorylation of a serine residue of fructose-1,6-bisphosphatase during this 3 min glucose treatment of glucose starved cells. A concomitant about 60 % inactivation of the enzyme had been shown to occur. The data in addition show a release of the esterified phosphate from the enzyme upon incubation of cells in a glucose-free medium, a treatment which leads to peactivation of enzyme activity. A protein kinase and a protein phosphatase catalysing this metabolic interconversion of fructose-1,6-bisphosphatase are postulated. It is assumed that metabolites accumulating after the addition of glucose exert a positive effect on the kinase activity and/or have a negative effect on the phosphatase activity. A role of the enzymic phosphorylation of fructose-1,6-bisphosphatase in the initiation of complete proteolysis of the enzyme during “catabolite inactivation” is discussed.  相似文献   

5.
Limited tryptic digestion of pig kidney fructose-1,6-bisphosphatase in the presence of magnesium ions results in the formation of an active enzyme derivative which is no longer inhibited by the allosteric effector AMP. The presence of AMP during incubation of fructose-1,6-bisphosphatase with trypsin protects against the loss of AMP inhibition. By contrast, the presence of the nonhydrolyzable substrate analog fructose 2,6-bisphosphate accelerates the rate of formation of that form of fructose-1,6-bisphosphatase which is insensitive to AMP inhibition. Sodium dodecyl sulfate-polyacrylamide electrophoresis of samples taken during trypsin treatment shows that the loss of AMP inhibition parallels the conversion of the native 36,500 molecular weight fructose-1,6-bisphosphatase subunit into a 34,000 molecular weight species. Automated Edman degradation of trypsin-treated fructose-1,6-bisphosphatase following gel filtration shows a single sequence beginning at Gly-26 in the original enzyme, but no changes in the COOH-terminal region of fructose-1,6-bisphosphatase. Thus, the proteolytic product has been characterized as "des-1-25-fructose-1,6-bisphosphatase." A comparison of the kinetic properties of control enzyme and des-1-25-fructose-1,6-bisphosphatase reveals some differences in properties (pH optimum, Ka for Mg2+, K+ activation, inhibition by fructose 2,6-bisphosphate) between the two enzymes, but none is so striking as the complete loss of AMP sensitivity shown by des-1-25-fructose-1,6-bisphosphatase. The loss of AMP inhibition is due to the loss of AMP-binding capacity, but it is not known at this stage whether residues of the AMP site are present in the 25-amino acid NH2-terminal region or the removal of this region leads to a conformational change that abolishes the function of an AMP site located elsewhere in the molecule.  相似文献   

6.
R T Proffitt  L Sankaran 《Biochemistry》1976,15(13):2918-2925
Optimal conditions necessary for the reversible inactivation of crystalline rabbit muscle phosphofructokinase by homogeneous rabbit liver fructose-1,6-bisphosphatase have been studied. At higher enzyme levels (to 530 mug/ml of phosphofructokinase) the two proteins were mixed and incubated in a pH 7.5 buffer composed of 50 mM Tris-HC1, 2 mM potassium phosphate, and 0.2 mM dithiothreitol. Aliquots were removed at various times and assayed for enzyme activity. A time dependent inactivation of phosphofructokinase caused by 1-2.3 times its weight of fructose-1,6-bisphosphatase was observed at 30, 23, and 0 degree C. This inactivation did not require the presence of adenosine 5'-triphosphate or Mg2+ in the incubation mixture, but an adenosine 5'-triphosphate concentration of 2.7 mM or greater was required in the assay to keep phosphofructokinase in an inactive form. A mixture of activators (inorganic phosphate, (NH4)2SO4, and adenosine 5'-monophosphate), when added to the assay cuvette, restored nearly all of the expected enzyme activity. Incubations with other proteins, including aldolase, at concentrations equal to or greater than the effective quantity of fructose-1,6-bisphosphatase had no inhibitory effect on phosphofructokinase activity. Removal of tightly bound fructose 1,6-bisphosphate from phosphofructokinase could not explain this inactivation, since several analyses of crystalline phosphofructokinase averaged less than 0.1 mol of fructose 1,6-bisphosphate/320 000 g of enzyme. Furthermore, the inactivation occurred in the absence of Mg2+ where the complete lack of fructose-1-6-bisphosphatase activity was confirmed directly. At lower phosphofructokinase concentrations (0.2-2 mug/ml) the inactivation was studied directly in the assay cuvette. Higher ratios of fructose-1,6-bisphosphatase to phosphofructokinase were necessary in these cases, but oleate and 3-phosphoglycerate acted synergistically with lower amounts of fructose-1,6-bisphosphatase to cause inactivation. The inactivation did not occur when high concentrations of fructose 6-phosphate were present in the assay, or when the level of adenosine 5'-triphosphate was decreased. However, the inactivation was found at pH 8, where the effects of allosteric regulators on phosphofructokinase are greatly reduced. Experiments with rat liver phosphofructokinase showed that this enzyme was also subject to inhibition by rabbit liver fructose 1,6-bisphosphatase under conditions similar to those used in the muscle enzyme studies. Attempts to demonstrate direct interaction between phosphofructokinase and fructose-1,6-bisphosphate by physical methods were unsuccessful. Nevertheless, our results suggest that, under conditions which approximate the physiological state, the presence of fructose-1,6bisphosphatase can cause phosphofructokinase to assume an inactive conformation. This interaction may have a significant role in vivo in controlling the interrelationship between glycolysis and gluconeogenesis.  相似文献   

7.
Fructose-1,6-bisphosphatase is one of the regulatory enzymes of gluconeogenesis in kidney cortex. The effect of ribose 1,5-bisphosphate on fructose-1,6-bisphosphatase purified from rat kidney cortex was studied. Rat kidney cortex, fructose-1,6-bisphosphatase exhibited hyperbolic kinetics with regard to its substrate, but the activity was inhibited by ribose 1,5-bisphosphate at nanomolar concentrations. The inhibitory effect of ribose 1,5-bisphosphate on the fructose-1,6-bisphosphatase was enhanced in the presence of AMP, one of the inhibitors of fructose-1,6-bisphosphatase. Fructose-2,6-bisphosphate, which is an inhibitor of fructose-1,6-bisphosphatase, inhibited rat kidney cortex fructose-1,6-bisphosphatase activities at a low concentration of fructose-1,6-bisphosphate but a high concentration of fructose-1,6-bisphosphate relieved fructose-1,6-bisphosphatase from fructose-2,6-bisphosphate-dependent inhibition. On the contrary, fructose-1,6-bisphosphate was not effective for the recovery of fructose-1,6-bisphosphatase from ribose 1,5-bisphosphate-dependent inhibition. These results suggest that ribose 1,5-bisphosphate is a potent inhibitor and is involved in the regulation of fructose-1,6-bisphosphatase in rat kidney cortex.  相似文献   

8.
Immunoblotting was used to study whether proteolytic degradation of fructose-1,6-bisphosphatase (EC 3.1.3.11) in yeast cells during catabolite inactivation occurs intra- or extravacuolarly. The 40-kDa subunits of both the phosphorylated and the non-phosphorylated fructose-1,6-bisphosphatase are rapidly degraded by an extract from isolated vacuoles to a 32-kDa intermediate which accumulates and is then slowly further degraded. However, in intact cells, neither the 32-kDa nor any other intermediate reacting with the fructose-1,6-bisphosphatase antibodies is observed following glucose-induced degradation of the enzyme. These observations are discussed as evidence against intravacuolar degradation of fructose-1,6-bisphosphatase during proteolytic catabolite inactivation.  相似文献   

9.
Yeast fructose-1,6-bisphosphatase (EC 3.1.3.11) immunoprecipitated from glucose-derepressed wild-type cells and subjected to isoelectric focusing, appears as a unique peak, essentially homogeneous and devoid of incorporated phosphate. However, after cell incubation with glucose, two phosphorylated forms are detectable. The isoelectric point of one is higher and of the other is lower than that of the native form. In contrast, in the mutant ABYS1 which is deficient in several vacuolar proteinases (Achstetter, T., Emter, O., Ehmann, C. and Wolf, D.H. (1984) J. Biol. Chem. 259, 13334-13343), only the more acidic phospho form appears after cell incubation with glucose. However, sequence data rule out the possibility that limited proteolysis is the event responsible for the appearance of the more basic form of the phosphoenzyme. Nevertheless, time courses of glucose-induced inactivation of fructose-1,6-bisphosphatase show that the enzyme undergoes a substantially slower inactivation in the ABYS1 mutant as compared to the wild-type. These findings point to a degradative mechanism involving, besides the well-known phosphorylation, an additional as yet unknown modification which probably sensitizes the enzyme to proteolytic attack; furthermore, the enzyme responsible for such a modification seems to require one or more of the vacuolar proteinases missing in the mutant for its maturation.  相似文献   

10.
Chloroplast fructose-1,6-bisphosphatase is an essential enzyme in the photosynthetic pathway of carbon dioxide fixation into sugars and the properties of this enzyme are clearly distinct from cytosolic gluconeogenic fructose-1,6-bisphosphatase. Light-dependent activation via a ferredoxin/thioredoxin system and insensitivity to inhibition by AMP are unique characteristics of the chloroplast enzyme. In the present study, purified spinach chloroplast fructose-1,6-bisphosphatase was reduced, S-carboxymethylated with iodoacetic acid, and cleaved with either cyanogen bromide or trypsin. The resulting peptides were purified by reversed-phase high performance liquid chromatography. Automated Edman degradation of some of the purified peptides showed amino acid sequences highly homologous to residues 72-86, 180-199, and 277-319 of pig kidney fructose-1,6-bisphosphatase. These findings suggest a common evolutionary origin for mammalian gluconeogenic and chloroplast fructose-1,6-bisphosphatase, enzymes catalyzing the same reaction but having different functions and modes of regulation.  相似文献   

11.
Limited treatment of native pig kidney fructose-1,6-bisphosphatase (50 microM enzyme subunit) with [14C]N-ethylmaleimide (100 microM) at 30 degrees C, pH 7.5, in the presence of AMP (200 microM) results in the modification of 1 reactive cysteine residue/enzyme subunit. The N-ethylmaleimide-modified fructose-1,6-bisphosphatase has a functional catalytic site but is no longer inhibited by fructose 2,6-bisphosphate. The enzyme derivative also exhibits decreased affinity toward Mg2+. The presence of fructose 2,6-bisphosphate during the modification protects the enzyme against the loss of fructose 2,6-bisphosphate inhibition. Moreover, the modified enzyme is inhibited by monovalent cations, as previously reported (Reyes, A., Hubert, E., and Slebe, J.C. (1985) Biochem. Biophys. Res. Commun. 127, 373-379), and does not show inhibition by high substrate concentrations. A comparison of the kinetic properties of native and N-ethylmaleimide-modified fructose-1,6-bisphosphatase reveals differences in some properties but none is so striking as the complete loss of fructose 2,6-bisphosphate sensitivity. The results demonstrate that fructose 2,6-bisphosphate interacts with a specific allosteric site on fructose-1,6-bisphosphatase, and they also indicate that high levels of fructose 1,6-bisphosphate inhibit the enzyme by binding to this fructose 2,6-bisphosphate allosteric site.  相似文献   

12.
K N Ekdahl  P Ekman 《FEBS letters》1984,167(2):203-209
Rat liver fructose-1,6-bisphosphatase was partially phosphorylated in vitro and separated into unphosphorylated and fully phosphorylated enzyme. The effects of fructose 2,6-bisphosphate and AMP on these two enzyme forms were examined. Unphosphorylated fructose-1,6-bisphosphatase was more easily inhibited by both effectors. Fructose 2,6-bisphosphate affected both K0.5 and Vmax, while the main effect of AMP was to lower Vmax. Fructose 2,6-bisphosphate and AMP together acted synergistically to decrease the activity of fructose-1,6-bisphosphatase, and since unphosphorylated and phosphorylated enzyme forms are affected differently, this might be a way to amplify the effect of phosphorylation.  相似文献   

13.
A purification procedure for rat hepatic fructose-1,6-bisphosphatase, described earlier, has been improved, resulting in an enzyme preparation with a neutral pH optimum and with both phosphorylatable serine residues present. The subunit Mr was 40,000. Phosphorylation in vitro with cyclic AMP-dependent protein kinase resulted in the incorporation of 1.4 mol of phosphate/mol of subunit and led to an almost 2-fold decrease in apparent Km for fructose-1,6-bisphosphate. In contrast to yeast fructose-1,6-bisphosphatase, fructose-2,6-bisphosphate had no effect on the rate of phosphorylation or dephosphorylation of the intact enzyme. The effects of the composition of the assay medium, with regard to buffering substance and Mg2+ concentration, on the apparent Km values of phosphorylated and unphosphorylated enzyme were investigated. The kinetics of phosphorylated and unphosphorylated fructose-1,6-bisphosphatase were studied with special reference to the inhibitory effects of adenine nucleotides and fructose-2,6-bisphosphate. Unphosphorylated fructose-1,6-bisphosphatase was more susceptible to inhibition by both AMP and fructose 2,6-bisphosphate than phosphorylated enzyme, at high and low substrate concentrations. Both ATP and ADP had a similar effect on the two enzyme forms, ADP being the more potent inhibitor. Finally, the combined effect of several inhibitors at physiological concentrations was studied. Under conditions resembling the gluconeogenic state, phosphorylated fructose-1,6-bisphosphatase was found to have twice the activity of the unphosphorylated enzyme.  相似文献   

14.
Reduction of purothionin by the wheat seed thioredoxin system   总被引:1,自引:1,他引:0       下载免费PDF全文
Thioredoxin h, the thioredoxin characteristic of heterotrophic plant tissues, was purified to homogeneity from wheat endosperm (flour) and found to resemble its counterpart from carrot cell cultures. In the presence of NADPH, homogeneous thioredoxin h and partially purified wheat endosperm thioredoxin reductase (NADPH), (EC 1.6.4.5), purothionin promoted the activation of chloroplast fructose-1,6-bisphosphatase (EC 3.1.3.11). Under these conditions, NADPH provided the reducing equivalents for a series of thiol reactions in which (a) thioredoxin reductase reduced thioredoxin h thereby converting it from disulfide (S-S) to sulfhydryl (SH) form; (b) the sulfhydryl form of thioredoxin h reduced the disulfide form of purothionin—a 5 kilodalton seed storage protein with 4 S-S bridges; and (c) the sulfhydryl form of purothionin reductively activated fructose-1,6-bisphosphatase. The results show that, since thioredoxin h does not react effectively with fructose-1,6-bisphosphatase, the thioredoxin system can activate an enzyme through purothionin by secondary thiol redox control. In a related type reaction, purothionin, inhibited the activity of either Escherichia coli or calf thymus ribonucleotide reductase with reduced thioredoxin as hydrogen donor. The results suggest that purothionin competes with ribonucleotide reductase for reducing equivalents from thioredoxin. Thus, inhibition of deoxyribonucleotide synthesis should be considered a possible mechanism when examining the toxic effects of purothionin on mammalian cells in S-phase.  相似文献   

15.
16.
17.
18.
The effects of cyclic AMP-dependent phosphorylation on the structural properties of rat liver fructose-1,6-bisphosphatase were investigated by uv difference spectroscopy and circular dichroism. The incorporation of 4 mol of phosphate per mole of fructose-1,6-bisphosphatase induces a significant increase in the alpha-helix content of the enzyme without affecting its spectrophotometric properties. The addition of fructose 1,6-bisphosphate or fructose 2,6-bisphosphate also affects the conformation of the enzyme. However, both the phosphorylated and the nonphosphorylated forms exhibit similar ligand-induced conformational changes. These results show that cyclic AMP-dependent phosphorylation of fructose-1,6-bisphosphatase induces a specific conformational change. They also suggest that this modification does not alter the interaction of the enzyme protein with fructose 1,6-bisphosphate and fructose 2,6-bisphosphate.  相似文献   

19.
Inositol monophosphatase is an enzyme in the biosynthesis of myo-inostiol, a crucial substrate for the synthesis of phosphatidylinositol, which has been demonstrated to be an essential component of mycobacteria. In this study, the Rv2131c gene from Mycobacterium tuberculosis H37Rv was cloned into the pET28a vector and the recombinant plasmid was transformed into Escherichia coli BL21 (DE3) strain, allowing the expression of the enzyme in fusion with a histidine-rich peptide on the N-terminal. The fusion protein was purified from the soluble fraction of the lysed cells under native conditions by immobilized metal affinity chromatography (IMAC). The purified Rv2131c gene product showed inositol monophosphatase activity but with substrate specificity that was broader than those of several bacterial and eukaryotic inositol monophosphatases, and it also acted as fructose-1,6-bisphosphatase. The dimeric enzyme exhibited dual activities of IMPase and FBPase, with K(m) of 0.22+/-0.03mM for inositol-1-phosphate and K(m) of 0.45+/-0.05mM for fructose-1,6-bisphosphatase. To better understand the relationship between the function and structure of the Rv2131c enzyme, we constructed D40N, L71A, and D94N mutants and purified these corresponding proteins. Mutations of D40N and D94N caused the proteins to almost completely lose both the inositol monophosphatase and fructose-1,6-bisphosphatase activities. However, L71A mutant did not cause loss either of the activities, but the activity toward the inositol was 12-fold more resistant to inhibition by lithium (IC(50) approximately 60mM). Based on the substrate specificity and presence of conserved sequence motifs of the M. tuberculosis Rv2131c, we proposed that the enzyme belonged to class IV fructose-1,6-bisphosphatase (FBPase IV).  相似文献   

20.
Two kinetically and thermodynamically distinct thiol/disulfide redox changes are observed during the reversible thioredoxin fb-catalyzed reduction and oxidation of spinach chloroplast fructose-1,6-bisphosphatase by dithiothreitol. The two processes, which occur at different rates and with different equilibrium constants, can be observed independently in either the reduction (activation) or oxidation (inactivation) direction by assaying the enzyme activity at different magnesium and fructose-1,6-bisphosphate concentrations. The two processes, in both the reduction and oxidation directions, are kinetically zero-order in dithiothreitol concentration and first-order in thioredoxin fb concentration. The rate-limiting step in both directions is the reaction of fructose-1,6-bisphosphatase with thioredoxin. The more kinetically and thermodynamically favored reduction of fructose-1,6-bisphosphatase lowers the apparent Km for fructose-1,6-bisphosphate while the less favorable process lowers the Km for magnesium. Both of the thiol/disulfide redox changes reach equilibrium in redox buffers consisting of different ratios of reduced to oxidized dithiothreitol (Ered + DTTox in equilibrium Eox + DTTred). The equilibrium constants (Kox) are 0.12 +/- 0.02 and 0.39 +/- 0.08 for the fast and slow reduction processes at pH 8.0. The equilibrium constants for oxidation of the enzyme by glutathione disulfide (Ered + GSSG in equilibrium Eox + 2 GSH) can be estimated to be approximately 2400 and 7800 M, respectively. Thermodynamically the fructose-1,6-bisphosphatase/thioredoxin fb system is extremely sensitive to oxidation, comparable to disulfide bond formation in extracellular proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号