首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Sepsis results in hepatic "growth hormone (GH) resistance" with reductions in plasma IGF-I despite a two- to fourfold increase in circulating GH. In this study, we examine the effects of IL-1 on GH receptor (GHR) expression, GH signaling (via the JAK/STAT and MAPK pathways), and the induction of gene expression [IGF-I mRNA and serine protease inhibitor (Spi) 2.1] by GH in CWSV-1 hepatocytes. Incubation of cells with IL-1beta (10 ng/ml, 24 h) had no effect on the relative abundance of GHR or signaling proteins JAK2, STAT5b, and ERK1/2 in cell lysates. Baseline phosphorylation of GHR, JAK2, STAT5b, and ERK1/2 was minimal. After GH stimulation, tyrosine phosphorylation of GHR, JAK2, STAT5b, and ERK1/2 increased 2- to 10-fold. However, neither the time course nor the magnitude of GHR, JAK2, and ERK1/2 phosphorylation by GH were significantly altered by IL-1. The GH-induced translocation of STAT5b to the nucleus was not prevented by IL-1. Although phosphorylated STAT5 in nuclear extracts from GH + IL-1 cells was decreased by 24% (vs. controls) 15 min after GH stimulation, this did not result in reduced STAT5-DNA binding activity. Pretreatment with IL-1 did not significantly decrease IGF-I mRNA stability. We conclude that IL-1 only minimally affects the time course of JAK2/STAT5 and MAPK signaling by GH. Therefore, an inhibitory effect of IL-1 on IGF-I and Spi 2.1 mRNA synthesis by GH represents the most likely mechanism for IL-1-mediated GH resistance.  相似文献   

4.
Plasma triglyceride (TG) levels are altered during the acute phase response (APR). Plasma levels of the recently discovered apolipoprotein A-V (apoA-V) are inversely associated with plasma TG. The aim of this study was to investigate the change of apoA-V plasma levels and hepatic apoA-V expression during the APR in relation to plasma TG. During human APR plasma apoA-V was decreased as were plasma TG (each P<0.01). Also early in the course of the murine APR plasma apoA-V levels and hepatic apoA-V expression were decreased and changed in the same direction as plasma TG. Treatment of HepG2 cells with TNF-alpha and IL-1beta decreased apoA-V mRNA levels early by 42% and 55%, respectively (each P<0.001). However, in promoter/reporter assays the human apoA-V promoter was unresponsive to proinflammatory cytokines. Instead, we demonstrate that a significant decrease in apoA-V mRNA stability in response to treatment with TNF-alpha and IL-1beta is the underlying basis of decreased apoA-V expression during the APR (P<0.05). These data demonstrate that (i) apoA-V expression decreases early during the APR due to changes in mRNA stability, and (ii) during the APR apoA-V is not inversely related to plasma TG levels in mice and humans, thereby identifying a relevant pathophysiological setting, in which the previously reported close inverse association between these parameters does not hold true.  相似文献   

5.
6.
K W Kang  Y M Pak  N D Kim 《Nitric oxide》1999,3(3):265-271
Diethylmaleate (DEM) and buthionine sulfoximine (BSO), glutathione (GSH)-depleting agents, reduced the metabolic activity and the protein level of iNOS in both macrophages and hepatocytes activated by lipopolysaccharide (LPS). In this study, we examined the effects of DEM and BSO on iNOS expression in LPS-treated mice under the assumption that the level of GSH may alter the expression of nitric oxide synthase. Serum levels of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) were also determined. DEM markedly decreased the levels of hepatic GSH in response to LPS. Treatment of mice with DEM significantly reduced serum nitrite/nitrate levels and hepatic iNOS protein and mRNA induction by LPS. Although BSO inhibited the level of hepatic GSH in LPS-treated mice, the agent did not alter serum nitrite/nitrate levels and hepatic iNOS expression. DEM completely inhibited an increase of serum IL-1beta level by LPS, whereas BSO failed to inhibit it. Neither DEM nor BSO significantly affected the induction of serum TNF-alpha level by LPS. These results showed that DEM and BSO differentially affect the expression of iNOS in endotoxemic mice, suggesting the possibility that suppression of iNOS expression by DEM may be associated with the inhibition of IL-1beta but not of TNF-alpha.  相似文献   

7.
8.
In humans and sheep, endotoxin (LPS) administration results in increased growth hormone (GH) concentrations. To determine the role of cytokines in the effect of LPS on GH, sheep were challenged with IL-1beta or TNF-alpha. GH data were compared with results with LH, where the major effects of LPS are known to act via the hypothalamus. Intracerebroventricular (icv) administration of IL-1beta or TNF-alpha did not alter plasma concentrations of GH. Endotoxin was then administered intravenously (iv) in combination with icv injection of IL-1 receptor antagonist (IL-1RA), TNF antagonist (sTNF-R1), or saline. Administration of LPS increased GH (P < 0.0001), although coadministration of IL-1ra or sTNF-R1 icv did not alter GH response to LPS. In contrast, plasma concentrations of LH were profoundly inhibited by icv administration of either cytokine (P < 0.03), but the LH response to LPS was not altered by cytokine antagonists. Intravenous administration of either IL-1beta or TNF-alpha increased plasma concentrations of GH (P < 0.0001). Administration of IL-1RA and sTNF-R1 iv prevented LPS-induced increases in GH. Although LH was suppressed by high iv doses of IL-1beta (P = 0.0063), the antagonists did not alter the LH response to LPS. To determine whether LPS might directly activate GH release, confocal microscopy revealed colocalization of CD14, the LPS receptor, with GH and, to a lesser extent, LH and some prolactin (PRL)-containing cells, but not ACTH or TSH. These data are consistent with the effects of LPS on GH secretion originating through peripheral cytokine presentation to the pituitary, as well as a potential to act directly on selective populations of pituitary cells via CD14.  相似文献   

9.
10.
11.
The acute-phase response (APR) is regulated by TNF-alpha, IL-1beta, and IL-6 acting alone, in combination, or in concert with hormones. The anaphylotoxin C5a, generated during complement activation, induces in vitro the synthesis of these cytokines by leukocytes and of acute-phase proteins by HepG2 cells. However, there is no clear evidence for a role of C5a or any other complement activation product in regulation of the APR in vivo. In this study, using human C-reactive protein (CRP) transgenic mice deficient in C3 or C5, we investigated whether complement activation contributes to induction of the acute-phase proteins CRP and serum amyloid P-component (SAP). Absence of C3 or C5 resulted in decreased LPS-induced up-regulation of the CRP transgene and the mouse SAP gene. Also, LPS induced both the IL-1beta and IL-6 genes in normocomplementemic mice, but in complement-deficient mice it significantly induced only IL-6. Like LPS injection, activation of complement by cobra venom factor led to significant elevation of serum CRP and SAP in normocomplementemic mice but not in complement-deficient mice. Injection of recombinant human C5a into human CRP transgenic mice induced the IL-1beta gene and caused significant elevation of both serum CRP and SAP. However, in human CRP transgenic IL-6-deficient mice, recombinant human C5a did not induce the CRP nor the SAP gene. Based on these data, we conclude that during the APR, C5a generated as a consequence of complement activation acts in concert with IL-6 and/or IL-1beta to promote up-regulation of the CRP and SAP genes.  相似文献   

12.
13.
14.
15.
Endotoxin is implicated in the pathology of acute liver failure. The mechanisms of its actions on quiescent hepatic stellate cells (qHSCs) and their implications in hepatocyte injury are incompletely understood. We investigated effects of endotoxin (bacterial lipopolysaccharide; LPS) on qHSCs and subsequently on hepatocytes. After overnight culture following their isolation, qHSCs were incubated with or without endotoxin for 24 h. The cells and the culture supernatant were analyzed for cytokines and nitric oxide (NO) synthesis. The effects of qHSC-conditioned media on hepatocytes were then determined. LPS increased inducible NO synthase expression, stimulated NO synthesis, and inhibited DNA synthesis in qHSCs. qHSC-conditioned medium inhibited DNA synthesis in hepatocytes without affecting NO synthesis, while LPS (1-1,000 ng/ml)-conditioned qHSC medium stimulated NO synthesis and caused further inhibition of DNA synthesis and apoptosis. These effects of LPS were more pronounced when qHSCs were incubated with serum, but not with LPS-binding protein (LBP) although CD14 (a receptor for LPS-LBP complex) was found in qHSCs. LPS stimulated the synthesis of TNF-alpha, interleukin (IL)-6, and IL-1beta but not of TGF-beta in qHSCs. Individually or together, L-N(G)-monomethylarginine and antibodies to IL-1beta, IL-6, and TNF-alpha only partly reversed qHSC + LPS-conditioned medium-induced inhibition of DNA synthesis in hepatocytes. These results suggest that the effects of LPS on qHSCs are novel, occurring without the aid of LBP/CD14. They also indicate that other factors, in addition to NO, TGF-beta, TNF-alpha, IL-1beta, and IL-6 are involved in the mechanisms of the growth inhibitory effects of qHSCs on hepatocytes.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号