首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Candida antarctica-B (CAL-B) lipase-catalysed alcoholysis of a set of 3′,5′-di-O-acetyl-2′-deoxynucleosides (1a–e) gave the corresponding 3′-O-acetyl-2′-deoxy-nucleosides (2a–e) in yields ranging from 50 to 96%. The alcohol employed in the biotransformation affected the rate of the enzymatic reaction and the yield of the 3′-O-acetylated product, but in all cases only this regioisomer was formed. The obtained results are in agreement with the regioselectivity displayed by CAL-B lipase in previously reported biotransformations of nucleosides. CAL-B catalysed alcoholysis of 2′,3′,5′-tri-O-acetyl-cytidine and 4-N-acetyl-2′,3′,5′-tri-O-acetylcytidine was also studied, affording with the same regioselectivity the corresponding free 5′-hydroxyl nucleosides.  相似文献   

2.
A semi-rigid 5-hydroxytryptamine (5-HT) analogue, RU28253 [5-methoxy-3-(1′,2′,5′,6′-tetrahydropyridin-3′-yl) indole], is a potent 5-HT1 and 5-HT2 agonist. It is isomeric to RU24969 [5-methoxy-3-(1′,2′,5′,6′-tetrahydropyridin-4′-yl) indole], a conformationally restricted 5-HT homologue, which has been extensively used in the study and classification of 5-HT receptors. A series of RU28253 derivatives with diverse substituents on indole 5-position were synthesized and their dissociation constants determined at the 5-HT1 and 5-HT2 receptors.  相似文献   

3.
1′-O-Mesyl-6,6′-di-O-tritylsucrose and the corresponding 1′-O-tosyl derivative were prepared from 6,6′-di-O-tritylsucrose by selective sulphonylation. Both sulphonates underwent intramolecular cyclisation reactions, to give 2,1′-anhydrosucrose in high yields rather than the isomeric 1′,4′-anhydride. Sequential benzoylation, detritylation, and mesylation of the 2,1′-anhydride afforded 2,1′-anhydro-6,6′-di-O-mesylsucrose tetrabenzoate which, in the presence of base, gave 2,1′:3,6:3′,6′-trianhydrosucrose that was not identical with the product previously claimed to have this structure. Several derivatives of 2,1′-anhydrosucrose were prepared possessing different functional groups at either the 6,6′- or 4,6′-positions. Dimolar mesitylene-sulphonylation of 3,3′,4′6′-tetra-O-acetylsucrose gave the 6,1′-disulphonate, which, in the presence of alkali, gave 2,1′:3,6-dianhydrosucrose, which was transformed into the 2,1′:3,6:3′,6′-trianhydride by sequential bromination at C-6′ (carbon tetrabromide-triphenylphosphine) and base-catalysed cyclisation. Treatment of 3,3′,4′,6′-tetra-O-benzoylsucrose with sulphuryl chloride furnished the 4,6,1′-trichloro derivative, which, on alkaline hydrolysis, was converted into 2,1′:3,6-dianhydro-4-chloro-4-deoxy-galacto-sucrose.  相似文献   

4.
The chemistry and SAR of a new series of imidazo[2′,3′:6,5]dipyrido[3,2-b:2′,3′-e]-1,4-diazepines is described. These compounds show improved affinity for HIV-1 RTase and antiviral activity over nevirapine, which has undergone clinical trials.  相似文献   

5.
Several carbocyclic phosphonate analogs of 2′,3′-dideoxyadenosine-5′-monophosphate (ddAMP) were pyrophosphorylated by E. coli 5-phosphoribosyl-1-pyrophosphate (PRPP) synthetase in the presence of PRPP. Structure-activity relationships are discussed.  相似文献   

6.
Stereoselective synthesis of 3′-C-methylene- and 2′-methyl-3′-C-methylene-3′-deoxythymidine is described, the key reaction being the formation of 3-C-methylene function by catalytic isomerization of a chiral epoxyalcohol, prepared from commercially available 3-methyl-2-butenal and 3-methyl-2-pentenal.  相似文献   

7.
Addition of iodine and methanol to N6,N6-dibenzoyl-9(2,3-O-carbonyl-5-deoxy-β-d-erythro-pent-4-enofuranosyl)adenine (4) selectively gives N6,N6-dibenzoyl-2′,3′-O-carbonyl-5′-deoxy-5′-iodo-4′-methoxyadenosine (5). Compound 5 can be converted into 4′-methoxyadenosine via hydrolysis of the carbonate followed by benzoylation, displacement of the 5′-iodo function by benzoate ion, and hydrolysis with ammonia. Configurational assignments are based upon comparisons of 1H- and 13C-n.m.r. spectra with those of previously characterised analogues in the uracil series and by borate electrophoresis. Intermediates in the above scheme have also been converted into 5′-amino-5′-deoxy-4′-methoxyadenosine, 4′-methoxy-5′-O-sulfamoyladenosine, and ethyl 4′-methoxyadenosine-5′-carboxylate, each of which is a 4′-methoxy analogue of biologically active derivatives of adenosine.  相似文献   

8.
The effect of various adenine and guanine nucleotides and nucleosides on DNA synthesis was studied in various types of mouse lymphoid cells. Two out of the ten compounds tested, namely guanosine-5′-diphosphate (GDP) and cyclic guanosine-3′,5′-monophosphate (cGMP) increased the thymidine incorporation into the DNA of the spleen cells and counteracted completely or partially the inhibitory action of cyclic adenosine-3′,5′-monophosphate (cAMP) on spleen cells stimulated by various B or T cell mitogens. GDP seems to act preferentially on thymus cells while cGMP acts better on bone marrow cells. The possible significance of the results for the mechanism of the mitogenic signal is discussed.  相似文献   

9.
The first chemical synthesis of 3-methyl-ψ-uridine (5) and its 2′-deoxy analogue (9) has been achieved. ψ-Uridine was trimethylsilylated and the crude product was treated with acetyl chloride, to give the 1-acetyl derivative (3). Crude 3 was methylated with dimethoxymethyldimethylamine and then saponified, to give crystalline 5 in 82% overall yield. Treatment of 5 with 1,3-dichloro-1,1,3,3-tetraiso-propyldisiloxane afforded the 3′,5′-protected product, which was converted into the 2′-O-[(imidazol-1-yl)thiocarbonyl] derivative 7. Reduction of 7 with tributyltin hydride followed by deblocking of the product gave crystalline 2′-deoxy-3-methyl-ψ-uridine (9) in 35% yield from 5.  相似文献   

10.
Polychlorinated biphenyls (PCBs) are widespread, persistent environmental contaminants of which some congeners can act as endocrine disrupters. Previous work has shown that 3,4,3′,4′-tetrachlorobiphenyl (PCB77) can act as an oestrogen with actions mediated through the oestrogen receptor. Here, oestrogenic actions have been assessed for two further tetrachlorobiphenyl isomers. Assays of oestrogenic action have involved (1) ligand regulation of oestrogen-sensitive gene expression; (2) ligand regulation of cell growth in oestrogen-dependent human breast cancer cell lines MCF7 McGrath and ZR-75-1; and (3) ligand activity in the immature mouse uterine weight bioassay in vivo. These results demonstrate that 3,5,3′,5′-tetrachlorobiphenyl (PCB 80) can be considered to be a weak oestrogen agonist, but the 2,5,2′,5′-congener (PCB 52) revealed no oestrogenic properties in any of these assays. Implications of these results are discussed in relation to structure-activity predictions for environmental oestogens.  相似文献   

11.
3′-Fluoro-3′-deoxy-uridine, -cytidine, -adenosine and -guanosine have been synthesized by glycosylation of the corresponding silylated bases with 1-O-acetyl-2,5-di-O-benzoyl-3-fluoro-3-deoxy-D-ribofuranose in the presence of Friedel-Crafts catalysts and were converted to the 5′- triphosphates, NTP(3′-F). It was shown that NTP(3′-F) are terminators of RNA synthesis catalyzed by DNA-dependent RNA polymerase from E. coli and may thus serve as tools for DNA sequencing.  相似文献   

12.
4′,5′-Dehydro-5′-fluoro analogs of aristeromycin were synthesized and shown to be potent inhibitors of recombinant rat liver AdoHcy hydrolase.  相似文献   

13.
The unique ligands of [Ru(bipy)2(bpda)](PF6)2 (1, BPDA=1,1′-biphenyl-2,2′-diamine) and [Ru(bipy)2(dabipy)](PF6)2 (2, DABIPY=3,3′-diamino-2,2′-bipyridine) are atropisomeric (exhibit hindered rotation about the sigma bonds that connect the two aromatic groups), so the complexes are diasteromeric with conformation isomers possible for the atropisomeric ligands and configurational isomers possible at the metal centers. Only one diastereomer is observed in the solid-state in both cases. The seven- (1) and five-membered (2) chelate ring of dabipy and bpda (the ligand is bound through its pyridyl groups) ligands are δ when the configuration at the metal is Δ. No evidence for atropisomerization is found in solution. For 1, we conclude bpda binds stereospecifically; however, the atropisomerization barrier of dabipy may be sufficiently low for 2 to preclude the observation of diastereomers by low-temperature NMR spectroscopy.  相似文献   

14.
Treatment of 3,5,6-tri-O-benzoyl-- -glucofuranose 1,2-sulfite with an excess of bis(trimethylsil) uracil, in fusion processes without any catalyst, afforded an excellent yield of 1-(3,5,6-tri-O-benzoyl-2-O-trimethylsilyl-β- -glucofuranosyl)uracil, which was readily hydrolyzed in slightly acid conditions to give in almost quantitative yield 1-(3,5,6-tri-O-benzoyl-β- -glucofuranosyl)uracil. This new synthetic method for nucleosides unprotected at O-2′ was also tested in other sugar series. In some cases, only the 1′,2′-trans-nucleosides were obtained, but in others, small yields (3–10%) of 1′,2′-cis-nucleosides were detected. The -to-β ratio seems to be dependent on the reaction temperature. 2,4-Dimethoxypyrimidine also reacted with sugar 1,2-sulfites and 4-O-methyl-1-(3,5,6-tri-O-benzyl-β- -glucopyranosyl)-2-pyrimidinone was prepared in 85% yield from 3,5,6-tri-O-benzyl-- -glucopyranose 1,2-sulfite.  相似文献   

15.
The location of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in human erythrocyte membranes was determined. This was accomplished by comparing the enzyme's accessibility with that of glyceraldehyde-3-phosphate dehydrogenase (cytoplasmic surface marker) and acetylcholinesterase (external marker) in sealed and unsealed ghosts and normal and inverted membrane vesicles. The results showed that 2′,3′-cyclic nucleotide 3′-phosphodiesterase, like glyceraldehyde-3-phosphate dehydrogenase, meets several criteria for an inner (cytoplasmic) membrane location: (1) the enzyme was accessible to substrate in unsealed ghosts and inside-out vesicles but not in sealed or right-side-out vesicles, (2) latent activity in sealed ghosts could be exposed with detergent (Triton X-100), (3) activity in unsealed ghosts was gradually sequestered during resealing and could be re-exposed with detergent, and (4) the enzyme was susceptible to trypsin proteolysis only in unsealed ghosts. These results demonstrate that the active site of 2′,3′-cyclic nucleotide 3′-phosphodiesterase faces the cytoplasm of erythrocytes and that the enzyme may not span the lipid bilayer of the membrane. The localization of the phosphodiesterase on the inner membrane surface of erythrocytes suggests that the similar enzyme of myelin may be embedded within the major dense line of the compact lamellae.  相似文献   

16.
The structural elucidation of 1′,2′-dideacetylboronolide, 5,6-dihydro-6-(3′-acetoxy-1′,2′-dihydroxyheptyl)2-pyrone, a new α-pyrone isolated from the leaves of Iboza riparia has been performed. Additionally, three sterols, sitosterol, stigmasterol and campesterol, have been identified in this species.  相似文献   

17.
2′,3′-Dideoxy-3′-aminonucleoside 5′-triphosphates have been shown to be inhibitors of replicative DNA synthesis in isolated nuclei of sea urchin embryo. These compounds inhibit the Okazaki fragment synthesis. The effect of 2′,3′-dideoxy-3′-aminothymidine 5′-triphosphate and arabinothymidine 5′-triphosphate is reversible when adding the corresponding substrate for DNA synthesis, 2′-deoxythymidine 5′-triphosphate.  相似文献   

18.
The chiral carbocyclic nucleosides 2 and 3 were prepared from aristeromycin. The 4′-hydroxy compound 2 displays good antiviral activity against HSV-1 and HSV-2 with low toxicity.  相似文献   

19.
Two novel 3′-substituted carboxycylopropylglycines, (2S,1′S,2′S,3′R)-2-(3′-xanthenylmethyl-2′-carboxycyclopropyl)glycine (8a) and (2S,1′S,2′S,3′R)-2-(3′-xanthenylethyl-2′-carboxycyclopropyl)glycine (8b), were synthesized and evaluated as mGluR ligands. Compound 8b showed to be a potent group II antagonist with submicromolar activity.  相似文献   

20.
2′,3′-Dideoxy-3′-aminonucleoside 5′-triphosphates are shown to be strong inhibitors of repair DNA synthesis in γ-irradiated rat liver chromatin. The activity of these compounds is comparable with that of the most effective inhibitor of the DNA polymerase β-catalyzed repair DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号