首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of interactions between receptor activation in the musculoskeletal system and stimulation of the spinal cord in the regulation of locomotor behavior was studied in healthy subjects. Afferent stimulation was tested for effect on the patterns of stepping movements induced by percutaneous stimulation of the spinal cord. A combination of percutaneous spinal cord stimulation and vibratory stimulation was shown to increase the amplitude of leg movements. It was demonstrated that vibratory stimulation of limb muscles at a frequency of less than 30 Hz can be used to control involuntary movements elicited by noninvasive stimulation of the spinal cord.  相似文献   

2.
The intermediate laminae of the lumbosacral spinal cord are suggested to contain a small number of specialized neuronal circuits that form the basic elements of movement construction ("movement primitives"). Our aim was to study the properties and state dependence of these hypothesized circuits in comparison with movements elicited by direct nerve or muscle stimulation. Microwires for intraspinal microstimulation (ISMS) were implanted in intermediate laminae throughout the lumbosacral enlargement. Movement vectors evoked by ISMS were compared with those evoked by stimulation through muscle and nerve electrodes in cats that were anesthetized, then decerebrated, and finally spinalized. Similar movements could be evoked under anesthesia by ISMS and nerve and muscle stimulation, and these covered the full work space of the limb. ISMS-evoked movements were associated with the actions of nearby motoneuron pools. However, after decerebration and spinalization, ISMS-evoked movements were dominated by flexion, with few extensor movements. This indicates that the outputs of neuronal networks in the intermediate laminae depend significantly on descending input and on the state of the spinal cord. Frequently, the outputs also depended on stimulus intensity. These experiments suggest that interneuronal circuits in the intermediate and ventral regions of the spinal cord overlap and their function may be to process reflex and descending activity in a flexible manner for the activation of nearby motoneuron pools.  相似文献   

3.
We examined the terminations of sensory afferents in the brainstem and spinal cord of squirrel monkeys and prosimian galagos 4-8 years after a therapeutic forelimb or hindlimb amputation within 2 months of birth. In each animal, the distributions of labeled sensory afferent terminations from remaining body parts proximal to the limb stump were much more extensive than in normal animals. These sprouted afferents extended into the portions of the dorsal horn of the spinal cord as well as the cuneate and external cuneate nuclei of the brainstem (forelimb amputees) or spinal Clarke's column (hindlimb amputee) related to the amputated limb. Such reorganization in sensory afferents along with reorganization of the motor efferents to muscles (Wu and Kaas, J Neurosci 19: 7679-7697, 1999, Neuron 28: 967-978, 2000) may provide a basis for mislocated phantom sensations of missing forelimb movements accompanying actual shoulder movements during cortical stimulation or movement imagery in patients with amputations.  相似文献   

4.
We examined the terminations of sensory afferents in the brainstem and spinal cord of squirrel monkeys and prosimian galagos 4-8 years after a therapeutic forelimb or hindlimb amputation within 2 months of birth. In each animal, the distributions of labeled sensory afferent terminations from remaining body parts proximal to the limb stump were much more extensive than in normal animals. These sprouted afferents extended into the portions of the dorsal horn of the spinal cord as well as the cuneate and external cuneate nuclei of the brainstem (forelimb amputees) or spinal Clarke's column (hindlimb amputee) related to the amputated limb. Such reorganization in sensory afferents along with reorganization of the motor efferents to muscles (Wu and Kaas, J Neurosci 19 : 7679-7697, 1999, Neuron 28 : 967-978, 2000) may provide a basis for mislocated phantom sensations of missing forelimb movements accompanying actual shoulder movements during cortical stimulation or movement imagery in patients with amputations.  相似文献   

5.
The functional status of brachially innervated hindlimbs, produced by transplanting hindlimb buds of chick embryos in place of forelimb buds, was quantified by analyzing the number and temporal distribution of spontaneous limb movements. Brachially innervated hindlimbs exhibited normal motility until E10 but thereafter became significantly less active than normal limbs and the limb movements were more randomly distributed. Contrary to the findings with axolotls and frogs, functional interaction between brachial motoneurons and hindlimb muscles cannot be sustained in the chick embryo. Dysfunction is first detectable at E10 and progresses to near total immobility by E20 and is associated with joint ankylosis and muscular atrophy. Although brachially innervated hindlimbs were virtually immobile by the time of hatching (E21), they produced strong movements in response to electrical stimulation of their spinal nerves, suggesting a central rather than peripheral defect in the motor system. The extent of motoneuron death in the brachial spinal cord was not significantly altered by the substitution of the forelimb bud with the hindlimb bud, but the timing of motoneuron loss was appropriate for the lumbar rather than brachial spinal cord, indicating that the rate of motoneuron death was dictated by the limb. Measurements of nuclear area indicated that motoneuron size was normal during the motoneuron death period (E6-E10) but the nuclei of motoneurons innervating grafted hindlimbs subsequently became significantly larger than those of normal brachial motoneurons. Although the muscle mass of the grafted hindlimb at E18 was significantly less than that of the normal hindlimb (and similar to that of a normal forelimb), electronmicroscopic examination of the grafted hindlimbs and brachial spinal cords of E20 embryos revealed normal myofiber and neuromuscular junction ultrastructure and a small increase in the number of axosomatic synapses on cross-sections of motoneurons innervating grafted hindlimbs compared to motoneurons innervating normal forelimbs. The anatomical data indicate that, rather than being associated with degenerative changes, the motor system of the brachial hindlimb of late-stage embryos is intact, but inactive. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
Spinal neural circuits can recruit muscles to produce organized patterns of activity early in embryonic development. In a previous study, using multichannel electromyographic (EMG) recordings, we characterized burst parameters for these patterns in the legs of chick embryos during spontaneous motility in ovo at embryonic days (E) 9 and E10 (Bradley and Bekoff, 1990). Results of the study suggested both neural and biomechanical factors play an important role in the development of coordinated limb movements. In this study, to explore the contribution of descending neural inputs to the control of leg movements during motility, we applied similar methods to characterize motor patterns produced by the spinal cord in the absence of descending inputs. Thoracic spinal gap transections were performed at E2 and EMG patterns were recorded at E10. Several EMG features for chronic spinal embryos were similar to those for normal embryos and demonstrate that lumbar spinal circuits can be correctly assembled to control limb movements in the absence of connectivity with more rostral neural structures during early differentiation processes. However, certain aspects of the EMG patterns in chronic spinal embryos were different from patterns in normal embryos and provide support for conclusions drawn earlier by Oppenheim (1975). Specifically, our data support the view that propriospinal and/or supraspinal inputs function to regulate the timing of cyclic limb movements controlled by spinal neural circuits. Finally, we consider the possible long-term effects of chronic spinal gap transections as compared to acute spinal transections on the development of motility.  相似文献   

7.
Spinal neural circuits can recruit muscles to produce organized patterns of activity early in embryonic development. In a previous study, using multichannel electromyographic (EMG) recordings, we characterized burst parameters for these patterns in the legs of chick embryos during spontaneous motility in ovo at embryonic days (E) 9 and E10 (Bradley and Bekoff, 1990). Results of the study suggested both neural and biomechanical factors play an important role in the development of coordinated limb movements. In this study, to explore the contribution of descending neural inputs to the control of leg movements during motility, we applied similar methods to characterize motor patterns produced by the spinal cord in the absence of descending inputs. Thoracic spinal gap transections were performed at E2 and EMG patterns were recorded at E10. Several EMG features for chronic spinal embryos were similar to those for normal embryos and demonstrate that lumbar spinal circuits can be correctly assembled to control limb movements in the absence of connectivity with more rostral neural structures during early differentiation processes. However, certain aspects of the EMG patterns in chronic spinal embryos were different from patterns in normal embryos and provide support for conclusions drawn earlier by Oppenheim (1975). Specifically, our data support the view that propriospinal and/or supraspinal inputs function to regulate the timing of cyclic limb movements controlled by spinal neural circuits. Finally, we consider the possible long-term effects of chronic spinal gap transections as compared to acute spinal transections on the development of motility. © 1992 John Wiley & Sons, Inc.  相似文献   

8.
A new tool for locomotor circuitry activation in the non-injured human by transcutaneous electrical spinal cord stimulation (tSCS) has been described. We show that continuous tSCS over T11-T12 vertebrae at 5-40 Hz induced involuntary locomotor-like stepping movements in subjects with their legs in a gravity-independent position. The increase of frequency of tSCS from 5 to 30 Hz augmented the amplitude of evoked stepping movements. The duration of cycle period did not depend on frequency of tSCS. During tSCS the hip, knee and ankle joints were involved in the stepping performance. It has been suggested that tSCS activates the locomotor circuitry through the dorsal roots. It appears that tSCS can be used as a non-invasive method in rehabilitation of spinal pathology.  相似文献   

9.
The present experiments were designed to gain additionally insight into how the spinal networks process direct spinal stimulation and peripheral sensory inputs to control posture and locomotor movements. We have developed a plantar pressure stimulation system that can deliver naturalistic postural and gait-related patterns of pressure to the soles of the feet to simulate standing and walking, thereby activating and/or modulating the automated spinal circuitry responsible for standing and locomotion. In the present study we compare the patterns of activation among selected motor pools and the kinematic consequences of these activation patterns in response to patterned heel-to-toe mechanical stimulation of the soles of the feet, and/or transcutaneous electrical spinal stimulation, for postural and locomotion regulation. The studies were performed in healthy individuals (n = 12) as well as in subjects (n = 2) with motor complete spinal cord injury. We found that plantar pressure stimulation and/or spinal stimulation can effectively facilitate locomotor output in the subjects placed with their legs in gravity neutral position. We have shown synergistic effects of combining sensory and spinal cord stimulation, suggesting that the two networks are different, but complementary. Also we provide evidence that plantar stimulation could serve as a novel neuro-rehabilitation tool alone or as part of a multi-modal approach to restoring motor function after complete paralysis due to SCI.  相似文献   

10.
The spinal cord can generate motor patterns underlying several kinds of limb movements. Many spinal interneurons are multifunctional, contributing to multiple limb movements, but others are specialized. It is unclear whether anatomical distributions of activated neurons differ for different limb movements. We examined distributions of activated neurons for locomotion and scratching using an activity-dependent dye. Adult turtles were stimulated to generate repeatedly forward swimming, rostral scratching, pocket scratching, or caudal scratching motor patterns, while sulforhodamine 101 was applied to the spinal cord. Sulforhodamine-labeled neurons were widely distributed rostrocaudally, dorsoventrally, and mediolaterally after each motor pattern, concentrated bilaterally in the deep dorsal horn, the lateral intermediate zone, and the dorsal to middle ventral horn. Labeled neurons were common in all hindlimb enlargement segments and the pre-enlargement segment following swimming and scratching, but a significantly higher percentage were in the rostral segments following swimming than rostral scratching. These findings suggest that largely the same spinal regions are activated during swimming and scratching, but there are some differences that may indicate locations of behaviorally specialized neurons. Finally, the substantial inter-animal variability following a single kind of motor pattern may indicate that essentially the same motor output is generated by anatomically variable networks.  相似文献   

11.
A series of observations have provided important insight into properties of the spinal as well as supraspinal circuitries that control posture and movement. We have demonstrated that spinal rats can regain full weight-bearing standing and stepping over a range of speeds and directions with the aid of electrically enabling motor control (eEmc), pharmacological modulation (fEmc), and training [1, 2]. Also, we have reported that voluntary control movements of individual joints and limbs can be regained after complete paralysis in humans [3, 4]. However, the ability to generate significant levels of voluntary weight-bearing stepping with or without epidural spinal cord stimulation remains limited. Herein we introduce a novel method of painless transcutaneous electrical enabling motor control (pcEmc) and sensory enabling motor control (sEmc) strategy to neuromodulate the physiological state of the spinal cord. We have found that a combination of a novel non-invasive transcutaneous spinal cord stimulation and sensory-motor stimulation of leg mechanoreceptors can modulate the spinal locomotor circuitry to state that enables voluntary rhythmic locomotor movements.  相似文献   

12.
Spinalized frogs were microstimulated in the intermediate grey layers of the lumbar spinal cord; the forces evoked in the hindlimb were measured at several limb positions. The data were expressed as force fields. After the collection of many force fields, the dorsal roots were cut with the stimulating electrode in place, and the position-dependent stimulation-evoked forces were again measured repeatedly. We found that the position-dependent pattern of evoked forces—the force fields—did not change after the dorsal roots were cut. In other words, the postcut evoked forces pointed in the same direction as the precut evoked forces. This result was predicted and confirmed by the muscle activations (EMGs): Before and after the dorsal roots were cut, the same muscles were activated in the same proportions. In all limb positions, the rank ordering of the muscle activations remained fixed. The stimulation needed to evoke forces was increased by deafferentation, and there were subtle changes in the force magnitudes that were consistent with a linearization of the muscle stiffness by the afferents. We conclude that the microstimulation activated specific muscle synergies that resulted in limb forces pointing toward a particular posture. The patterns of evoked forces were predominantly attributable to feedforward activation of these muscle synergies.  相似文献   

13.
Parameters of the reflex discharges evoked by spinal dorsal root stimulation were measured in rats with the sciatic nerve and spinal cord (at low thorasic level) transected five days earlier. Monosynaptic discharges in the ventral roots were found to increase after the operation; the degree of increase was significantly higher as compared with that observed after isolated transections of the spinal cord or the nerve. The combined lesion of the nerve and spinal cord could result in the appearance of high-amplitude reflex discharge components, probably of a polysynaptic nature. We concluded, from the comparison of modifications of reflex discharges, that the mechanisms underlying spinal hyperreflexia after nerve or spinal cord lesions differ considerably from each other.Neirofiziologiya/Neurophysiology, Vol. 26, No. 3, pp. 197–202, May–June, 1994.  相似文献   

14.
Synopsis The innervation of the clasper has been studied in the round stingray,Urolophus halleri. Several large myelinated nerves (diameters approx. 0.7 mm; # 60–64 counting from the vagus) innervate the clasper muscles and skin. Low level electrical stimulation (<100A) of the nerves evokes clasper movements including: elevation, medial and lateral extension, rotation and opening. Stimulation of the spinal cord in the area of the roots of the clasper nerves also evoked the movements (<100A). Retrograde labeling of the clasper nerves using either cobalt-lysine or horseradish peroxidase (HRP) confirmed that motor neurons and sensory components of the nerves are at the levels indicated by stimulation. The motor neurons have large multipolar cell bodies (50–70) and occupy a discrete segment of the spinal cord.  相似文献   

15.
The dynamic of the parameters of lung ventilation and gas exchange have been studied in 10 young male subjects during involuntary stepping movements induced by transcutaneous spinal cord electrical stimulation applied in the projection of T 11T 12 vertebrae and during voluntary stepping movements. It has been found that the transcutaneous spinal cord stimulation inducing stepping movements leads to an increase in breathing frequency and a reduction in tidal volume. These effects may be mediated by some neurogenic factors associated with muscular activity during stepping movements, the activation of abdominal expiratory muscles, and the interaction between the stepping pattern and breathing generators.  相似文献   

16.
Previous studies have described the presence of alternating activity induced in left and right ventral roots of the neonate rat in vitro brainstem-spinal cord preparation, following application of certain neuroactive substances to the bathing solution. The present findings show the presence of chemically induced, adult-like coordinated airstepping demonstrated by electromyographic recordings in the hindlimb-attached in vitro brainstem-spinal cord preparation. Analysis of muscular activity demonstrated alternation between antagonists of one limb and between agonists of different limbs, as well as a proximodistal delay in agonists active at different joints of the same limb. Neuroactive agents were applied independently to either the brainstem or spinal cord bath. The substances surveyed in the present studies included some of those used previously, as well as additional compounds: bicuculline and picrotoxin (gamma-aminobutyric acid-ergic antagonists), N-methyl-D-aspartic acid (excitatory amino acid agonist), substance P, acetylcholine, carbachol (cholinergic agonist), and serotonin. Application of these substances to the brainstem bath produced rhythmic airstepping. Application of dopamine, aspartate, glutamate, and N-methyl-D-aspartic acid to the spinal cord bath also produced rhythmic airstepping, while application of acetylcholine produced tonic, long-lasting co-contractions. These findings reveal the presence of several neurochemical systems in the central nervous system that can be activated at birth to induce coordinated airstepping in the neonate rat in vitro brainstem-spinal cord preparation.  相似文献   

17.
The effect of electrostimulation of the mesencephalic grey matter and of the dorsal nucleus raphe on physiological pain produced by nociceptive stimulation (compression of the tail or the skin on the limb by a clamp) and on pathological pain (the pain syndrome of spinal origin) were studied in experiments on albino rats. Pathological pain was induced by creating a generator of pathologically enhanced excitation in the dorsal horn of the spinal cord by local disturbance of the inhibitory mechanisms with the aid of tetanus toxin. It was shown that electrostimulation of the indicated areas abolished both physiological and pathological pain. A conclusion was drawn that analgesia produced by electrostimulation of certain structure of the brain was connected not only with augmentation of the descending inhibition in the spinal cord as in the case of physiological pain caused by peripheral nociceptive stimulation (as shown by several authors), but also with the block of excitation at the supraspinal level. This mechanism should play a decisive role in analgesia realization in the pain syndrome of central origin, both under experimental and natural conditions.  相似文献   

18.
A new method for the activation of spinal locomotor networks (SLN) in humans by transcutaneous electrical spinal cord stimulation (tESCS) has been described. The tESCS applied in the region of the T11-T12 vertebrae with a frequency of 5?C40 Hz elicited involuntary step-like movements in healthy subjects with their legs suspended in a gravity-neutral position. The amplitude of evoked step-like movements increased with increasing tESCS frequency. The frequency of evoked step-like movements did not depend on the frequency of tESCS. It was shown that the hip, knee, and ankle joints were involved in the evoked movements. It has been suggested that tESCS activates the SPG (SLN) through in part, via the dorsal roots that enter the spinal cord. tESCS can be used as a noninvasive method in rehabilitation of spinal pathology.  相似文献   

19.
Previous studies have described the presence of alternating activity induced in left and right ventral roots of the neonate rat in vitro brainstem-spinal cord preparation, following application of certain neuroactive substances to the bathing solution. The present findings show the presence of chemically induced, adult-like coordinated airstepping demonstrated by electromyographic recordings in the hindlimb-attached in vitro brainstem-spinal cord preparation. Analysis of muscular activity demonstrated alternation between antagonists of one limb and between agonists of different limbs, as well as a proximodistal delay in agonists active at different joints of the same limb. Neuroactive agents were applied independently to either the brainstem or spinal cord bath. The substances surveyed in the present studies included some of those used previously, as well as additional compounds: bicuculline and picrotoxin (γ-aminobutyric acid-ergic antagonists), N-methyl-D-aspartic acid (excitatory amino acid agonist), substance P, acetylcholine, carbachol (cholinergic agonist), and serotonin. Application of these substances to the brainstem bath produced rhythmic airstepping. Application of dopamine, aspartate, glutamate, and N-methyl-D-aspartic acid to the spinal cord bath also produced rhythmic airstepping, while application of acetylcholine produced tonic, long-lasting co-contractions. These findings reveal the presence of several neurochemical systems in the central nervous system that can be activated at birth to induce coordinated airstepping in the neonate rat in vitro brainstem-spinal cord preparation.  相似文献   

20.
强电针穴位对背角神经元镇痛效应广泛性的中枢机制   总被引:18,自引:0,他引:18  
何晓玲  刘乡 《生理学报》1995,47(6):605-609
实验用雄性大鼠,玻璃微电极细胞外记录T12-L1脊髓背角会聚神经元对后爪伤害性刺激的反应,观察到低强度(2V)电针作用于与痛源接近的“足三里”穴对背角神经元的伤害性反应有明显的抑制作用,而远隔穴位“下关”穴则无效。而当采用超过C类纤维阈值18V电针时,则远隔穴位“下关”也有明显的镇痛作用。表现为强电针穴位镇痛作用的广泛性。而损毁NRM后,强电针(18V)远节段“下关”穴的镇痛作用消失,而近节段“足  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号