首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structures formed by the two major membrane lipids of the extreme halophile, Halobacterium cutirubrum, namely diphytanyl ether analogues of phosphatidylglycerol phosphate and glycolipid sulphate, dispersed in either water, 1 M NaCl or 5 M NaCl were examined by freeze-fracture electron microscopy. In water, both lipids formed lamellar phases which were highly hydrated. Dispersion in 1 M NaCl caused the bilayers to stack more tightly. The presence of 5 M NaCl, mixed phases were observed at 20°C consisting of both lamellar and non-lamellar structures. Studies of binary mixtures of the two lipids in 5 M NaCl in mole ratios of 1:2, 2:1 and 3.5:1 indicated that phase separation takes place and that glycolipid sulphate tended to form bilayers at the growth temperature whereas phosphatidylglycerol phosphate preferentially formed a non-bilayer arrangement in the presence of salt. Total polar lipid extracts H. cutirubrum formed mixed phase systems that reflected the proportions of the major lipid components. Thermotropic studies performed by thermally quenching dispersions at temperatures ranging from −30°C to 70°C indicated that bilayers were formed at lower temperatures in both pure lipids and mixtures of lipids whereas there was a preference for what gave the appearance of inverted cubic phases at high temperatures. These observations are consistent with the notion that non-bilayer lipids are required to package the intrinsic membrane proteins into a lipid bilayer matrix.  相似文献   

2.
Lipid polymorphism and the roles of lipids in membranes   总被引:7,自引:0,他引:7  
The reasons for lipid diversity in membranes are not understood. Here we review evidence supporting the proposal that factors related to the polymorphic capabilities of lipids provide a rationale for lipid diversity. In particular, the ability of lipids to adopt different polymorphic phases appears to be related to a generalized shape property, where lipids with a cylindrical geometry preferentially adopt the bilayer phase whereas ‘cone’ shaped lipids adopt the hexagonal HII phase. Lipid diversity may then be considered to satisfy three demands. The first is obviously a need for bilayer forming lipids to provide the basic permeability barrier, whereas the second concerns a need for non-bilayer lipids and associated structures for fusion and related membrane contact phenomena to proceed. A third, and less obvious demand satisfied by non-bilayer lipids concerns the ability of lipids of different shapes to modulate the order in the hydrocarbon region when constrained to a bilayer organization. These possibilities are summarized in a metamorphic mosaic model of membranes.  相似文献   

3.
The association of ethanol with unilamellar dimyristoyl phosphatidylcholine (DMPC) liposomes of varying cholesterol content has been investigated by isothermal titration calorimetry over a wide temperature range (8-45 degrees C). The calorimetric data show that the interaction of ethanol with the lipid membranes is endothermic and strongly dependent on the phase behavior of the mixed lipid bilayer, specifically whether the lipid bilayer is in the solid ordered (so), liquid disordered (ld), or liquid ordered (lo) phase. In the low concentration regime (<10 mol%), cholesterol enhances the affinity of ethanol for the lipid bilayer compared to pure DMPC bilayers, whereas higher levels of cholesterol (>10 mol%) reduce affinity of ethanol for the lipid bilayer. Moreover, the experimental data reveal that the affinity of ethanol for the DMPC bilayers containing small amounts of cholesterol is enhanced in the region around the main phase transition. The results suggest the existence of a close relationship between the physical structure of the lipid bilayer and the association of ethanol with the bilayer. In particular, the existence of dynamically coexisting domains of gel and fluid lipids in the transition temperature region may play an important role for association of ethanol with the lipid bilayers. Finally, the relation between cholesterol content and the affinity of ethanol for the lipid bilayer provides some support for the in vivo observation that cholesterol acts as a natural antagonist against alcohol intoxication.  相似文献   

4.
(1) Dipalmitoyl- and dioleoylthionphosphatidylcholine, which are phosphatidylcholine analogues in which the double bonded oxygen of the phosphate group is replaced by a sulfur atom, have been synthesized in 50–60% yields by condensation of diacylglycerol with phosphorus thionchloride in the presence of choline toluene-sulfonate. Dioleoylthionphosphatidylethanolamine has been prepared by the phospholipase D-catalyzed base exchange reaction. (2) Freeze-fracturing of aqueous dispersions of the thionphospholipids reveals that the thionphosphatidylcholines are organized in extended bilayers whereas dioleoylthionphosphatidylethanolamine above 0°C forms the hexagonal HII phase similar to dioleoylphosphatidylethanolamine. The gel → liquid crystalline phase transition of the dipalmitoylthionphosphatidylcholine occurs at 44°C which is only slightly higher than the transition temperature of dipalmitoylphosphatidylcholine which together with other data demonstrates that the thionphospholipids closely resemble the natural phospholipids in physicochemical behaviour. (3) Proton decoupled 31P-NMR spectra of aqueous dispersions of thionphosphatidylcholines have the characteristic asymmetrical line-shape with a low-field shoulder and a high-field peak typical of phospholipids organized in extended bilayers in which the phosphate group can undergo fast axial rotation. The 31P-NMR spectrum of the thionphosphatidylethanolamine in the hexagonal HII phase has a line-shape with a reversed asymmetry and an effective chemical shift anisotropy half of that of thionphospholipids organized in bilayers which is caused by fast lateral diffusion of the lipids around the cylinders of the hexagonal HII phase as has been observed for the corresponding phosphatidylethanolamines. (4) Since the 31P-NMR resonance of the thionphospholipids is completely separated from that of natural phospholipids, these lipids can be used to study by 31P-NMR the motional and structural properties of individual lipids in mixed systems. This is demonstrated for various lipid mixtures in which non-bilayer lipid structures have been induced by variations in composition, temperature and presence of divalent cations. It is shown that bilayer → non-bilayer transitions can be modulated by gel → liquid crystalline phase transitions and that typical bilayer forming lipids can be incorporated into non-bilayer structures such as the hexagonal HII phase.  相似文献   

5.
Non-bilayer lipids account for about half of the total lipid content in chloroplast thylakoid membranes. This lends high propensity of the thylakoid lipid mixture to participate in different phases which might be functionally required. It is for instance known that the chloroplast enzyme violaxanthin de-epoxidase (VDE) requires a non-bilayer phase for proper functioning in vitro but direct evidence for the presence of non-bilayer lipid structures in thylakoid membranes under physiological conditions is still missing. In this work, we used phosphatidylglycerol (PG) as an intrinsic bulk lipid label for 31P-NMR studies to monitor lipid phases of thylakoid membranes. We show that in intact thylakoid membranes the characteristic lamellar signal is observed only below 20 degrees C. But at the same time an isotropic phase is present, which becomes even dominant between 14 and 28 degrees C despite the presence of fully functional large membrane sheets that are capable of generating and maintaining a transmembrane electric field. Tris-washed membranes show a similar behavior but the lamellar phase is present up to higher temperatures. Thus, our data show that the location of the phospholipids is not restricted to the bilayer phase and that the lamellar phase co-exists with a non-bilayer isotropic phase.  相似文献   

6.
Planar lipid bilayer membranes are formed from mixtures of pure lipids in the absence of non-biological solvents. The solventless bilayers are characterized by a large specific capacitance (586-957 nF/cm2) comparable to that of cell membranes but considerably greater than that of conventional lipid/decane bilayers. Hydrocarbon solvents, such as n-alkanes or squalene, thicken the bilayer. Membrane dielectric thickness is used as an indicator of bilayer lipid composition. For membranes made from pure monoglyceride/triglyceride mixtures the thickness of the solventless lipid bilayer is independent of both the chain length (11-22 carbons) and mol fraction (0.1-0.9) of triglyceride in the bulk mixture. In contrast, the thickness of the bilayer (2.0-3.3 nm) depends strongly upon the length (16-24 carbons) of the monoglyceride component. Molecular volume considerations lead to the conclusion that the bulk lipid mixture disproportionates to yield bilayer membranes composed of nearly pure monoglyceride. The dielectric thickness of the monoglyceride bilayer is consistent with the notion that the lipid fatty acyl chains are fluid.  相似文献   

7.
Non-bilayer lipids account for about half of the total lipid content in chloroplast thylakoid membranes. This lends high propensity of the thylakoid lipid mixture to participate in different phases which might be functionally required. It is for instance known that the chloroplast enzyme violaxanthin de-epoxidase (VDE) requires a non-bilayer phase for proper functioning in vitro but direct evidence for the presence of non-bilayer lipid structures in thylakoid membranes under physiological conditions is still missing.In this work, we used phosphatidylglycerol (PG) as an intrinsic bulk lipid label for 31P-NMR studies to monitor lipid phases of thylakoid membranes. We show that in intact thylakoid membranes the characteristic lamellar signal is observed only below 20 °C. But at the same time an isotropic phase is present, which becomes even dominant between 14 and 28 °C despite the presence of fully functional large membrane sheets that are capable of generating and maintaining a transmembrane electric field. Tris-washed membranes show a similar behavior but the lamellar phase is present up to higher temperatures. Thus, our data show that the location of the phospholipids is not restricted to the bilayer phase and that the lamellar phase co-exists with a non-bilayer isotropic phase.  相似文献   

8.
The membrane lipids of a thermophilic bacterium, Thermus SPS11, isolated from thermal springs in S?o Pedro do Sul, Portugal, were fractionated by chromatography on silica gel. The total lipid extract was found to contain one major phospholipid (PL), which accounts for about 90% of the total lipid phosphorous, and one major glycolipid (GL), which accounts for about 95% of the total carbohydrate in the non-phospholipid fraction. The membranes also contain about 11% by weight of a complex mixture of carotenoids (CA). Multilamellar liposomes, in excess water, formed from PL and mixtures of PL with GL and CA in proportions found in the natural membrane were investigated by proton-decoupled 31P-nuclear magnetic resonance (NMR) spectroscopy and X-ray diffraction. All mixtures examined were found to be in a lamellar phase with disordered hydrophobic chains with no evidence for "non-bilayer structures" between 23 degrees and 85 degrees C. Compared to bilayers formed from pure PL or mixtures of PL and CA, significantly larger values for the chemical shift anisotropy of the 31P-NMR powder patterns were obtained from bilayers formed from mixtures of PL and GL, at temperatures above 75 degrees C, and mixtures of PL, GL and CA at all temperatures examined. These differences are interpreted in terms of changes in the order of the bilayer and/or changes in the orientation of the phosphate moiety of PL. The significance of these results to the thermophily of the bacterium is discussed.  相似文献   

9.
Farnesol interacts with membranes in a wide variety of biological contexts, yet our understanding of how it affects lipid bilayers is not yet complete. This study investigates how the 15-carbon isoprenoid, farnesol, influences the phase behaviour, lateral organization, and mechanical stability of dimyristol phosphatidylcholine (DMPC) model membranes. Differential scanning calorimetry (DSC) of multilamellar DMPC-farnesol mixtures (up to 26 mol% farnesol) demonstrates how this isoprenoid lowers and broadens the gel-fluid phase transition. A gel-fluid coexistence region becomes progressively more dominant with increasing farnesol concentration and at concentrations of and greater than 10.8 mol%, an upper transition emerges at about 35 °C. Atomic force microscopy images of supported farnesol-DMPC bilayers containing 10 and 20 mol% farnesol provide structural evidence of gel-fluid coexistence around the main transition. Above this coexistence region, membranes exhibit homogeneous lateral organization but at temperatures below the main gel-fluid coexistence region, another form of phase coexistence is observed. The solid nature of the gel phase is confirmed using micropipette aspiration. The combined thermodynamic, structural, and mechanical data allow us to construct a phase diagram. Our results show that farnesol preferentially partitions into the fluid phase and induces phase coexistence in membranes below the main transition of the pure lipid.  相似文献   

10.
Farnesol interacts with membranes in a wide variety of biological contexts, yet our understanding of how it affects lipid bilayers is not yet complete. This study investigates how the 15-carbon isoprenoid, farnesol, influences the phase behaviour, lateral organization, and mechanical stability of dimyristol phosphatidylcholine (DMPC) model membranes. Differential scanning calorimetry (DSC) of multilamellar DMPC-farnesol mixtures (up to 26 mol% farnesol) demonstrates how this isoprenoid lowers and broadens the gel-fluid phase transition. A gel-fluid coexistence region becomes progressively more dominant with increasing farnesol concentration and at concentrations of and greater than 10.8 mol%, an upper transition emerges at about 35 degrees C. Atomic force microscopy images of supported farnesol-DMPC bilayers containing 10 and 20 mol% farnesol provide structural evidence of gel-fluid coexistence around the main transition. Above this coexistence region, membranes exhibit homogeneous lateral organization but at temperatures below the main gel-fluid coexistence region, another form of phase coexistence is observed. The solid nature of the gel phase is confirmed using micropipette aspiration. The combined thermodynamic, structural, and mechanical data allow us to construct a phase diagram. Our results show that farnesol preferentially partitions into the fluid phase and induces phase coexistence in membranes below the main transition of the pure lipid.  相似文献   

11.
Cultured chick fibroblasts supplemented with stearic acid in the absence of serum at 37 degrees C degenerate and die in contrast to cells grown at 41 degrees C which appear normal in comparison with controls. These degenerative effects at 37 degrees C are alleviated by addition to stearate-containing media of fatty acids known to fluidize bilayers. These observations suggest that cell degeneration at 37 degrees C may involve alterations in the physical state of the membrane. Fatty acid analysis of plasma membrane obtained from stearate-supplemented cells clearly demonstrates the enrichment of this fatty acid species into bilayer phospholipids. Moreover, the extent of enrichment is similar in cells grown at both 37 and 41 degrees C. Stearate enrichment at either temperature does not appear to alter significantly membrane cholesterol or polar lipid content. Fluorescence anisotropy measurements for perylene and diphenylhexatriene incorporated into stearate-enriched membranes reveals changes suggestive of decreased bilayer fluidity. Moreover, analysis of temperature dependence of probe anisotropy indicates that a similarity in bilayer fluidity exists between stearate-enriched membranes at 41 degrees C and control membranes at 37 degrees C. Calorimetric data from liposomes prepared from polar lipids isolated from these membranes show similar melting profiles, consistent with the above lipid and fluorescence analyses. Arrhenius plot of stearate-enriched membrane glucose transporter function reveals breaks which coincide with the main endotherm of the pure phospholipid phase transition, indicating the sensitivity of the transporter to this transition which is undetectable in these native bilayers. These data suggest the existence of regions of bilayer lipid microheterogeneity which affect integral enzyme function, cell homeostasis and viability.  相似文献   

12.
《Biophysical journal》2022,121(13):2550-2556
The (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) moiety tethered to the headgroup of phosphatidylcholine (PC) lipid is employed in spin labeling electron paramagnetic resonance spectroscopy to probe the water dynamics near lipid bilayer interfaces. Due to its amphiphilic character, however, TEMPO spin label could partition between aqueous and lipid phases, and may even be stabilized in the lipid phase. Accurate assessment of the TEMPO-PC configuration in bilayer membranes is essential for correctly interpreting the data from measurements. Here, we carry out all-atom molecular dynamics (MD) simulations of TEMPO-PC probe in single-component lipid bilayers at varying temperatures, using two standard MD force fields. We find that, for a dipalmitoylphosphatidylcholine (DPPC) membrane whose gel-to-fluid lipid phase transition occurs at 314 K, while the TEMPO spin label is stabilized above the bilayer interface in the gel phase, there is a preferential location of TEMPO below the membrane interface in the fluid phase. For bilayers made of unsaturated lipids, 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), which adopt the fluid phase at ambient temperature, TEMPO is unequivocally stabilized inside the bilayers. Our finding of membrane phase-dependent positioning of the TEMPO moiety highlights the importance of assessing the packing order and fluidity of lipids under a given measurement condition.  相似文献   

13.
Interactions between lipid and cholesterol molecules in membranes play an important role in the structural and functional properties of cell membranes. Although structural properties of lipid-cholesterol mixtures have been extensively studied, an understanding of the role of cholesterol in the lateral organization of bilayers has been elusive. In this article, we propose a simple yet powerful model, based on self-consistent mean-field theory and molecular dynamics simulations, for lipid bilayers containing cholesterol. Properties predicted by our model are shown to be in excellent agreement with experimental data. Our model predicts that cholesterol induces structural changes in the bilayer through the formation of regions of ordered lipids surrounding each cholesterol molecule. We find that the "smooth" and "rough" sides of cholesterol play crucial roles in formation and distribution of the ordered regions. Our model is predictive in that input parameters are obtained from independent atomistic molecular dynamics simulations. The model and method are general enough to describe other heterogeneous lipid bilayers, including lipid rafts.  相似文献   

14.
A variety of lipids that differ by their chains and headgroups are found in biomembranes. In addition to studying the overall membrane phase, determination of the structure, dynamics, and headgroup conformation of individual lipids in the mixture would be of great interest. We have thus developed, to our knowledge, a new approach using solid-state 31P NMR, magic-angle spinning, and chemical-shift anisotropy (CSA) recoupling, using an altered version of the recoupling of chemical shift anisotropy (ROCSA) pulse sequence, here penned PROCSA. The resulting two-dimensional spectra allowed the simultaneous measurement of the isotropic chemical shift and CSA of each lipid headgroup, thus providing a valuable measure of its dynamics and structure. PROCSA was applied to mixtures of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) in various relative proportions, to mimic bacterial membranes and assess the respective roles of lipids in shaping these bilayers. The results were interpreted in terms of membrane topology, lipid propensity to adopt various phases or conformations, and lipid-lipid miscibility. Our results showed that PG dictates the lipid behavior when present in a proportion of 20 mol % or more. A small proportion of PG is thus able to impose a bilayer structure to the hexagonal phase forming PE. We discuss the requirement for lipids, such as PE, to be able to adopt non-bilayer phases in a membrane.  相似文献   

15.
Phosphorus NMR spectroscopy was used to characterize the importance of electrostatic interactions in the lytic activity of melittin, a cationic peptide. The micellization induced by melittin has been characterized for several lipid mixtures composed of saturated phosphatidylcholine (PC) and a limited amount of charged lipid. For these systems, the thermal polymorphism is similar to the one observed for pure PC: small comicelles are stable in the gel phase and extended bilayers are formed in the liquid crystalline phase. Vesicle surface charge density influences strongly the micellization. Our results show that the presence of negatively charged lipids (phospholipid or unprotonated fatty acid) reduces the proportion of lysed vesicles. Conversely, the presence of positively charged lipids leads to a promotion of the lytic activity of the peptide. The modulation of the lytic effect is proposed to originate from the electrostatic interactions between the peptide and the bilayer surface. Attractive interactions anchor the peptide at the surface and, as a consequence, inhibit its lytic activity. Conversely, repulsive interactions favor the redistribution of melittin into the bilayer, causing enhanced lysis. A quantitative analysis of the interaction between melittin and negatively charged bilayers suggests that electroneutrality is reached at the surface, before micellization. The surface charge density of the lipid layer appears to be a determining factor for the lipid/peptide stoichiometry of the comicelles; a decrease in the lipid/peptide stoichiometry in the presence of negatively charged lipids appears to be a general consequence of the higher affinity of melittin for these membranes.  相似文献   

16.
J Bentz  H Ellens  F C Szoka 《Biochemistry》1987,26(8):2105-2116
We have measured the temperature of the L alpha-HII phase transition, TH, for several types of phosphatidylethanolamine (PE), their binary mixtures, and several PE/cholesteryl hemisuccinate (CHEMS) mixtures. We have shown for liposomes composed of pure PE and in mixtures with CHEMS that there is an aggregation-mediated destabilization which is greatly enhanced at and above TH. We now ask the question: How well can a dioleoylphosphatidylethanolamine/CHEMS liposome, for example, destabilize TPE (transesterified from egg phosphatidylcholine)/CHEMS liposome and vice versa? We use Ca2+ and H+ to induce aggregation and to provide different values of TH: the TH of the PE/CHEMS mixture is much lower at low pH than with Ca2+. We find that if the temperature is above the TH of one lipid mixture, e.g., A, and below the TH of the other lipid mixture, e.g., B, then the destabilization sequence [measured by the fluorescent 1-aminonaphthalene-3,6,8-trisulfonic acid/p-xylylenebis(pyridinium bromide) leakage assay] is AA greater than AB much greater than BB. That is, the bilayer of the lipid A (which on its own would end up in the HII phase) destabilizes itself better than it destabilizes the bilayer of lipid B (which on its own would remain in the L alpha phase). The BB contact is the least unstable. From these experiments, we conclude that the enhanced destabilization of membranes provided by the polymorphism accessible to these lipids above TH is effective even if only one of the apposed outer monolayers is HII phase competent. The surprising result is that if the temperature is above the TH of both lipid mixtures, then the destabilization sequence is AB greater than AA, BB. That is, the mixed bilayers are destabilized more by contact than either of the pure pairs. We believe that this is due to specific differences in the kinetics of aggregation or close approach of the membranes. Similar results were obtained with pure PE liposomes induced to aggregate by Ca2+ at pH 9.5. We also found that the kinetics of low-pH-induced leakage from PE/CHEMS liposomes were initially faster when the CHEMS on both sides of the bilayer is fully protonated. However, in a citrate buffer, which cannot cross intact membranes, the leakage was eventually faster. Flip-flop of the protonated CHEMS to the inner monolayer can explain this observation.  相似文献   

17.
Quinn PJ 《The FEBS journal》2011,278(18):3518-3527
Specific lipid-lipid interactions are believed to be responsible for lateral domain formation in the lipid bilayer matrix of cell membranes. The miscibility of glucocerebroside and sphingomyelin extracted from biological tissues has been examined by synchrotron X-ray powder diffraction methods. Fully hydrated binary mixtures of egg-sphingomyelin codispersed with glucosylceramide rich in saturated C22 and C24 N-acyl fatty acids were subjected to heating scans between 20 and 90 °C at 2 °C·min(-1). X-ray scattering intensity profiles were recorded at 1 °C intervals simultaneously in both small-angle and wide-angle scattering regions. A gel phase characterized by a single symmetric peak in the wide-angle scattering region was transformed in all mixtures examined to a fluid phase at about 40 °C, similar to dispersions of pure egg-sphingomyelin. A coexisting lamellar structure was identified at temperatures up to about 75 °C which was characterized by a broad Bragg reflection. The scattering intensity of this structure increased relative to the structure assigned as bilayers of pure sphingomyelin with increasing proportions of glucosylceramide in the mixture. The relationship between the scattering intensities of the two peaks and the relative mass fractions of the two lipids showed that the bilayers assigned to a glucosylceramide-rich structure were composed of sphingomyelin and glucosylceramide in molar ratios of 1 : 1 and 2 : 1, respectively, at temperatures below and above the order-disorder phase transition temperature of the sphingomyelin (40 °C).  相似文献   

18.
The designed antimicrobial peptide KIGAKIKIGAKIKIGAKI possesses enhanced membrane selectivity for bacterial lipids, such as phosphatidylethanolamine and phosphatidylglycerol. The perturbation of the bilayer by the peptide was first monitored using oriented bilayer samples on glass plates. The alignment of POPE/POPG model membranes with respect to the bilayer normal was severely altered at 4 mol% KIGAKI while the alignment of POPC bilayers was retained. The interaction mechanism between the peptide and POPE/POPG bilayers was investigated by carefully comparing three bilayer MLV samples (POPE bilayers, POPG bilayers, and POPE/POPG 4/1 bilayers). KIGAKI induces the formation of an isotropic phase for POPE/POPG bilayers, but only a slight change in the (31)P NMR CSA line shape for both POPE and POPG bilayers, indicating the synergistic roles of POPE and POPG lipids in the disruption of the membrane structure by KIGAKI. (2)H NMR powder spectra show no reduction of the lipid chain order for both POPG and POPE/POPG bilayers upon peptide incorporation, supporting the evidence that the peptide acts as a surface peptide. (31)P longitudinal relaxation studies confirmed that different dynamic changes occurred upon interaction of the peptide with the three different lipid bilayers, indicating that the strong electrostatic interaction between the cationic peptide KIGAKI and anionic POPG lipids is not the only factor in determining the antimicrobial activity. Furthermore, (31)P and (2)H NMR powder spectra demonstrated a change in membrane characteristics upon mixing of POPE and POPG lipids. The interaction between different lipids, such as POPE and POPG, in the mixed bilayers may provide the molecular basis for the KIGAKI carpet mechanism in the permeation of the membrane.  相似文献   

19.
Pressure is found to destabilize the non-bilayer phase with respect to the bilayer in a model lipid system. The lamellar to inverted hexagonal (H11) phase transition of aqueous egg phosphatidylethanolamine is shifted to higher temperatures by hydrostatic pressure. The slope of the increase in transition temperature is constant to beyond 300 bar, and is greater than that seen for other lipid phase transitions. This behavior is consistent with the hypothesis that increasing chain disorder drives the conversion from the bilayer into the hexagonal phase. If this non-bilayer lipid phase is an intermediate in membrane fusion, then pressure should inhibit the process. This may explain the inhibition of chemical transmission at neural synapses by pressure.  相似文献   

20.
The polypeptide gramicidin A in a dimeric form is considered to form a helical structure which spans the hydrocarbon region of lipid bilayers. In the present investigation it is used as a model for the interactions of the polypeptide segments of transmembrane proteins within the hydrocarbon region of the lipid bilayers of biomembrane structures. A variety of physical techniques (X-ray diffraction, differential scanning calorimetry, optical and electron microscopy, Raman and electron spin resonance spectroscopy) are applied to a study of the interactions of this polypeptide within the phospholipid bilayers of dimyristoyl and dipalmitoyl lecithins in water, at temperatures both above and below the main endothermic phase transition of the pure lipids.Above the transition temperature of the lipid, the Raman studies show that the polypeptide perturbs the fluid lipid environment and causes a marked decrease in the number of gauche isomers of the lipid hydrocarbon chains, even at quite low relative molar concentrations of the polypeptide to lipid (1:150). At concentrations of phospholipid to polypeptide of less than 5:1, the electron spin resonance studies show the existence of two lipid regions within the bilayer. One region corresponds to the relatively fluid lipid region normally observed at these temperatures and the other to a relatively rigid lipid region. The latter is considered to arise from clusters of the polypeptide in which some of the lipid is entrapped.Below the lipid phase transition temperature, the pretransition endotherm observed with pure lipid-water systems is removed by small molar concentrations of the polypeptide (1:50) and the rippled appearance observed in freeze-fracture electron micrographs with pure dimyristoyl lecithin-water dispersions is replaced by a smooth appearance.The main lipid phase transition becomes broadened by the presence of increasing amounts of the polypeptide within the lipid bilayer as indicated by calorimetry, and electron spin resonance spectroscopy. The enthalpy of the lipid transition decreases linearly with increasing amounts of the polypeptide until, with dipalmitoyl lecithin, a concentration of approximately 20 lipids per polypeptide is reached. This is considered to correspond to the onset of an aggregation process which produces localised polypeptide-lipid clusters within the plane of the membrane.At concentrations of polypeptide less than five lipids per polypeptide, freezefracture electron microscopy shows the presence of liposomes with smooth fracture faces. At higher polypeptide concentrations, sheet-like structures are observed with smooth fracture faces.When a mixed lipid-water system (dilauroyl and dipalmitoyl lecithin) containing low concentrations of the polypeptide is slowly cooled, the calorimetric evidence shows that the polypeptide moves preferentially into the lower melting region of the bilayer, whereas at higher polypcptide eoncentrations a mixing of the two lipids takes place.The various results are discussed to provide insight pertinent to the organisation, interactions, aggregation properties, boundary layer and packing arrangements of helical polypeptides and proteins in reconstituted systems and natural biomembranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号