共查询到20条相似文献,搜索用时 0 毫秒
1.
J. M. Leenhouts P. W. J. van den Wijngaard A. I. P. M. de Kroon B. de Kruijff 《FEBS letters》1995,370(3):189-192
The effect of anionic lipids on the membrane insertion of a carboxyl group on a specially designed palmitoylated peptide was studied, using tryptophan fluorescence. It is demonstrated that the negatively charged membrane surface of mixed phosphatidylcholine/phosphatidylglycerol small unilamellar vesicles enhances the protonation of the C-terminal carboxyl group, and the subsequent insertion of that part of the peptide. 相似文献
2.
Polysialic acid directs tumor cell growth by controlling heterophilic neural cell adhesion molecule interactions 总被引:6,自引:0,他引:6
下载免费PDF全文

Seidenfaden R Krauter A Schertzinger F Gerardy-Schahn R Hildebrandt H 《Molecular and cellular biology》2003,23(16):5908-5918
Polysialic acid (PSA), a carbohydrate polymer attached to the neural cell adhesion molecule (NCAM), promotes neural plasticity and tumor malignancy, but its mode of action is controversial. Here we establish that PSA controls tumor cell growth and differentiation by interfering with NCAM signaling at cell-cell contacts. Interactions between cells with different PSA and NCAM expression profiles were initiated by enzymatic removal of PSA and by ectopic expression of NCAM or PSA-NCAM. Removal of PSA from the cell surface led to reduced proliferation and activated extracellular signal-regulated kinase (ERK), inducing enhanced survival and neuronal differentiation of neuroblastoma cells. Blocking with an NCAM-specific peptide prevented these effects. Combinatorial transinteraction studies with cells and membranes with different PSA and NCAM phenotypes revealed that heterophilic NCAM binding mimics the cellular responses to PSA removal. In conclusion, our data demonstrate that PSA masks heterophilic NCAM signals, having a direct impact on tumor cell growth. This provides a mechanism for how PSA may promote the genesis and progression of highly aggressive PSA-NCAM-positive tumors. 相似文献
3.
Polysialic acid facilitates tumor invasion by glioma cells 总被引:2,自引:0,他引:2
Suzuki M Suzuki M Nakayama J Suzuki A Angata K Chen S Sakai K Hagihara K Yamaguchi Y Fukuda M 《Glycobiology》2005,15(9):887-894
Polysialic acid (PSA) is thought to attenuate neural cell adhesion molecule (NCAM) adhesion, thereby facilitating neural cell migration and regeneration. Although the expression of PSA has been shown to correlate with the progression of certain tumors such as small cell lung carcinoma, there have been no studies to determine the roles of PSA in gliomas, the most common type of primary brain tumor in humans. In this study, we first revealed that among patients with glioma, PSA was detected more frequently in diffuse astrocytoma cells, which spread extensively. To determine directly the role of PSA in glioma cell invasion, we transfected C6 glioma cells with polysialyltransferases to express PSA. In those transfected cells, PSA is attached mainly to NCAM-140, whereas the mock-transfected C6 cells express equivalent amounts of PSA-free NCAM-140. Both PSA negative and positive C6 cell lines exhibited almost identical growth rates measured in vitro. However, PSA positive C6 cells exhibited increased invasion to the corpus callosum, where the mock-transfected C6 glioma cells rarely invaded when inoculated into the brain. By contrast, the invasion to the corpus callosum by both the mock-transfected and PSA positive C6 cells was observed in NCAM-deficient mice. These results combined indicate that PSA facilitates tumor invasion of glioma in the brain, and that NCAM-NCAM interaction is likely attenuated in the PSA-mediated tumor invasion. 相似文献
4.
Spermine as a modulator of membrane fusion: interactions with acidic phospholipids 总被引:11,自引:0,他引:11
The interaction of spermine with acidic phospholipids was investigated for its possible relevance to membrane fusion. Equilibrium dialysis was used to measure the binding of spermine and calcium to large unilamellar vesicles (liposomes) of phosphatidate (PA) or phosphatidylserine (PS). Spermine bound to isolated PA and PS liposomes with intrinsic association constants of approximately 2 and 0.2 M-1, respectively. Above the aggregation threshold of the liposomes, the binding of spermine increased dramatically, especially for PA. The increased binding upon aggregation of PA liposomes was interpreted as evidence for the formation of a new binding complex after aggregation. Spermine enhanced calcium binding to PA, while it inhibited calcium binding to PS, under the same conditions. This difference explained the small effect of spermine on the overall rate of calcium-induced fusion of PS liposomes as opposed to the large effect on PA liposomes. The rate increase could be modeled by a spermine-induced increase in the liposome aggregation rate. The preference for binding of spermine to PA over PS suggested a preference for accessible monoesterified phosphate groups by spermine. This preference was confirmed by the large effects of spermine on aggregation and overall fusion rates of liposomes containing phosphatidylinositol 4,5-diphosphate. The large spermine effects on these liposomes compared with phosphatidate- or phosphatidylinositol-containing liposomes suggested that spermine has a strong specific interaction with phosphatidylinositol 4,5-diphosphate. Clearly, phosphorylation of phosphatidylinositol can lead to a large change in the spermine sensitivity of membrane fusion. 相似文献
5.
The influence of polysialic acid (PSA) on the neural cell adhesion molecule on motoneuron outgrowth and pathway formation was investigated by determining its temporal and spatial pattern of expression and by the effect that its removal had on motoneuron projection patterns. Motoneurons first expressed PSA as their growth cones began to segregate into motoneuron pool-specific groups in the plexus region; furthermore, PSA levels differed between motoneurons projecting to different targets. When PSA was removed during the period of axonal segregation in the plexus region projection errors were common. However, later removal during the process of muscle nerve formation did not result in projection errors. These results suggest that PSA modulates interactions between motoneuron axons and guidance molecules in the plexus region during axonal pathfinding. 相似文献
6.
The inherent promiscuity of the polysialic acid (PSA) biosynthetic pathway has been exploited by the use of exogenous unnatural sialic acid precursor molecules to introduce unnatural modifications into cellular PSA, and has found applications in nervous system development and tumor vaccine studies. The sialic acid precursor molecules N-propionyl- and N-butanoyl-mannosamine (ManPr, ManBu) have been variably reported to affect PSA biosynthesis ranging from complete inhibition to de novo production of modified PSA, thus illustrating the need for further investigation into their effects. In this study, we have used a monoclonal antibody (mAb) 13D9, specific to both N-propionyl-PSA and N-butanoyl-PSA (NPrPSA and NBuPSA), together with flow cytometry, to study precursor-treated tumor cells and NT2 neurons at different stages of their maturation. We report that both ManPr and ManBu sialic acid precursors are metabolized and the resultant unnatural sialic acids are incorporated into de novo surface sialylglycoconjugates in murine and human tumor cells and, for the first time, in human NT2 neurons. Furthermore, neither precursor treatment deleteriously affected endogenous PSA expression; however, with NT2 cells, PSA levels were naturally downregulated as a function of their maturation into polarized neurons independent of sialic acid precursor treatment. 相似文献
7.
Mary E. Elliott Theodore L. Goodfriend 《Biochimica et Biophysica Acta (BBA)/General Subjects》1979,586(2):357-373
Reversible interactions were demonstrated between some phospholipids and some polypeptides related to angiotensin and bradykinin. The extent of the interaction was dependent on the structures of the lipid and peptide. The naturally occurring compounds that interacted most avidly were cardiolipin and (des-Asp1)-angiotensins. The apparent dissociation constant of this complex in chloroform was 10?5 M. The complex contained more than one cardiolipin molecule/molecule of peptide. Kinins interacted most strongly with lecithin. The phospholipids altered the chromatographic behavior of radioiodinated derivatives of the polypeptides, and solubilized radioactive and unlabeled polypeptides in chloroform. In aqueous media, cardiolipin suspensions preferentially bound (des-Asp1)-angiotensin II, and inhibited its binding by antibody. The interactions were sensitive to pH and cations in the aqueous phase, and were reversed by some reagents added to the organic phase. These interactions have direct implications for binding reactions of peptides in vitro, and may bear upon the actions of the hormones in vivo. 相似文献
8.
Choline acetyltransferase (ChAT), the enzyme synthesizing acetylcholine, is known to be activated by brain derived neurotrophic factor (BDNF). We found that the specific removal of the carbohydrate polysialic acid (PSA) significantly increased BDNF-induced ChAT-activity in embryonic septal neurons. Using a p75 neurotrophin receptor (p75(NTR)) function-blocking antibody and K252a, a-pan tropomyosin related kinase (Trk) inhibitor, we demonstrate that BDNF-induced ChAT activity requires the stimulation of p75(NTR) and TrkB. PSA removal drastically increased radioactive iodinated ([(125)I])BDNF's maximal binding capacity (Bmax), derived from concentrations of [(125)I]BDNF ranging from 1 pM to 3.2 nM. In the presence of unlabeled nerve growth factor to prevent the binding of [(125)I]BDNF to p75(NTR) sites, the impact of PSA removal on the binding capacity of [(125)I]BDNF was greatly reduced. In conclusion, PSA limits BDNF-induced ChAT activity and BDNF-receptor interactions. BDNF-induced ChAT activity is TrkB and p75(NTR) dependent, and upon PSA removal the additional binding of BDNF to its receptors, especially p75(NTR), likely contributes to the maximal ChAT activity observed. In vivo, the ontogenetic loss of PSA in the postnatal period may allow more interactions between BDNF and its receptors to increase ChAT activity and assure the proper development of the cholinergic septal neurons. 相似文献
9.
Khairallah RJ Kim J O'Shea KM O'Connell KA Brown BH Galvao T Daneault C Des Rosiers C Polster BM Hoppel CL Stanley WC 《PloS one》2012,7(3):e34402
Mitochondria can depolarize and trigger cell death through the opening of the mitochondrial permeability transition pore (MPTP). We recently showed that an increase in the long chain n3 polyunsaturated fatty acids (PUFA) docosahexaenoic acid (DHA; 22:6n3) and depletion of the n6 PUFA arachidonic acid (ARA; 20:4n6) in mitochondrial membranes is associated with a greater Ca(2+) load required to induce MPTP opening. Here we manipulated mitochondrial phospholipid composition by supplementing the diet with DHA, ARA or combined DHA+ARA in rats for 10 weeks. There were no effects on cardiac function, or respiration of isolated mitochondria. Analysis of mitochondrial phospholipids showed DHA supplementation increased DHA and displaced ARA in mitochondrial membranes, while supplementation with ARA or DHA+ARA increased ARA and depleted linoleic acid (18:2n6). Phospholipid analysis revealed a similar pattern, particularly in cardiolipin. Tetralinoleoyl cardiolipin was depleted by 80% with ARA or DHA+ARA supplementation, with linoleic acid side chains replaced by ARA. Both the DHA and ARA groups had delayed Ca(2+)-induced MPTP opening, but the DHA+ARA group was similar to the control diet. In conclusion, alterations in mitochondria membrane phospholipid fatty acid composition caused by dietary DHA or ARA was associated with a greater cumulative Ca(2+) load required to induced MPTP opening. Further, high levels of tetralinoleoyl cardiolipin were not essential for normal mitochondrial function if replaced with very-long chain n3 or n6 PUFAs. 相似文献
10.
Reversible interactions were demonstrated between some phospholipids and some polypeptides related to angiotensin and bradykinin. The extent of the interaction was dependent on the structures of the lipid and peptide. The naturally occurring compounds that interacted most avidly were cardiolipin and (des-Asp1)-angiotensins. The apparent dissociation constant of this complex in chloroform was 10(-5) M. The complex contained more than one cardiolipin molecule/molecule of peptide. Kinins interacted most strongly with lecithin. The phospholipids altered the chromatographic behavior of radioiodinated derivatives of the polypeptides, and solubilized radioactive and unlabeled polypeptides in chloroform. In aqueous media, cardiolipin suspensions preferentially bound (des-Asp1)-angiotensin II, and inhibited its binding by antibody. The interactions were sensitive to pH and cations in the aqueous phase, and were reversed by some reagents added to the organic phase. These interactions have direct implications for binding reactions of peptides in vitro, and may bear upon the actions of the hormones in vivo. 相似文献
11.
Adding cholesterol to monolayers of certain phospholipids drives the separation of liquid-ordered from liquid-disordered domains. The ordered phases appear to contain stoichiometric complexes of cholesterol and phospholipid. Furthermore, it has been suggested that the cholesterol in these complexes has a low chemical activity compared to that of the free sterol; i.e., that in excess of the phospholipid binding capacity. We have now tested the hypothesis that the membrane intercalator 1-hexadecanol (HD) similarly associates with phospholipids and thereby displaces the complexed cholesterol. HD introduced into monolayers of pure dimyristoylphosphatidylcholine generated highly condensed (stable and solid) domains. In contrast, the phase behavior of mixed monolayers of the phospholipid, sterol, and alcohol suggested that HD could substitute for cholesterol mole for mole in promoting liquid-ordered domains. We also found that the transfer of cholesterol from mixed monolayers to aqueous cyclodextrin was greatly stimulated by the presence of HD, but only at levels sufficient to competitively displace the sterol from the phospholipid. This enhanced efflux was interpreted to reflect an increase in uncomplexed cholesterol. We conclude that HD forms complexes with dimyristoylphosphatidylcholine that are surprisingly similar to those of cholesterol. HD competitively displaces cholesterol from the phospholipid and thereby increases its chemical activity. 相似文献
12.
Interactions of annexins with membrane phospholipids. 总被引:2,自引:0,他引:2
The annexins are proteins that bind to membranes and can aggregate vesicles and modulate fusion rates in a Ca2(+)-dependent manner. In this study, experiments are presented that utilize a pyrene derivative of phosphatidylcholine to examine the Ca2(+)-dependent membrane binding of soluble human annexin V and other annexins. When annexin V and other annexins were bound to liposomes containing 5 mol % acyl chain labeled 3-palmitoyl-2-(1-pyrenedecanoyl)-L-alpha-phosphatidylcholine, a decrease in the excimer-to-monomer fluorescence ratio was observed, indicating that annexin binding may decrease the lateral mobility of membrane phospholipids without inducing phase separation. The observed increases of monomer fluorescence occurred only with annexins and not with other proteins such as parvalbumin or bovine serum albumin. The extent of the increase of monomer fluorescence was dependent on the protein concentration and was completely and rapidly reversible by EDTA. Annexin V binding to phosphatidylserine liposomes was consistent with a binding surface area of 59 phospholipid molecules per protein. Binding required Ca2+ concentrations ranging between approximately 10 and 100 microM, where there was no significant aggregation or fusion of liposomes on the time scale of the experiments. The polycation spermine also displaced bound annexins, suggesting that binding is largely ionic in nature under these conditions. 相似文献
13.
14.
Physical association of calcineurin with phosphatidylserine (PS) or phosphatidylglycerol (PG) was observed by molecular exclusion chromatography; the enzyme did not associate with phosphatidylethanolamine or phosphatidylcholine. The interactions with PS and PG were enhanced by Ca2+ which implicates a regulatory role for the Ca2+-binding subunit in this process. Addition of PG or PS to standard calcineurin assays elicited profound changes in enzymatic activity; phosphatidylcholine and phosphatidylethanolamine were without effect. Up to 23-fold stimulation of the calmodulin-independent activity was observed with phosphorylated histone H1 or synapsin I as the substrates. In contrast, the activity toward p-nitrophenyl phosphate and tyrosine phosphate was found to be inhibited. A characterization and comparison of the two opposite responses showed that: the phospholipids had insignificant effects on the Km for substrates, the phospholipid specificity for activation and inhibition was nearly indistinguishable, half-maximal activation and inhibition were obtained at similar concentrations of PG (K0.5 = 0.21 and 0.14 mg/ml, respectively), and calmodulin enhanced the responses to PG (K0.5 = 0.064 and 0.033 mg/ml for activation and inhibition, respectively) to similar extents. Together, these observations demonstrate that the two substrate-dependent responses of calcineurin are due to the association of the phosphatase with phospholipids and not a result of substrate-phospholipid interactions. This suggests that Ca2+- and calmodulin-stimulated interactions of calcineurin with acidic phospholipids may play a role in regulating the substrate specificity of this multifunctional phosphatase. 相似文献
15.
Lymphosarcoma cells isolated from the spleens of tumor-bearing mice were used to study the effect of a low dose of X-rays (5 Gy) on the incorporation of [3H]palmitate and [14C]arachidonate into the lipids of the tumor cells. Palmitate and arachidonate were rapidly incorporated especially into the phospholipids of the cells. Between one and three hours after the start of the incubation with radiactive palmitate 80–90% of the label of the total lipids was found in the phospholipid fraction. Already after a few minutes of incubation with radioactive arachidonate, about 95% of the label was incorporated in the phospholipids. Irradiation caused a small but significant increase in the rate of fatty acid incorporation for both fatty acids. Concomitantly, a significantly increased amount of fatty acid was removed from the medium by the cells as a result of the irradiation, and the specific radioactivity of the free fatty acids in the cells was found to be enhanced. The radiation effect on the tumor cells could be mimicked by a hypotonic treatment. The magnitude of the radiation-induced stimulation of the fatty acid incorporation was similar to that of the hypotonically induced effect. Cells which had received a hypotonic treatment before the irradiation, did not show an additional radiation-induced enhancement of fatty acid incorporation into the cellular lipids. When the cells were incubated with serum albumin loaded with a relatively large (non-physiological) amount of complexed fatty acids (fatty acid: albumin molar ratio, ), no radiation effect on the fatty acid incorporation could be detected. It is concluded that hypotonic treatment, irradiation, and increased supply of exogenous fatty acids all lead to an enhanced flux of fatty acids into the cells. These results confirm our previous suggestion that the uptake of fatty acids through the plasma membrane is the rate-limiting step in the fatty acid incorporation into the phospholipids and that ionizing radiation is one of the means to enhance fatty acid uptake through the plasma membrane leading to an increased incorporation into the phospholipids. 相似文献
16.
Cation pumps and lipid flippases of the P-type ATPase family maintain electrochemical gradients and asymmetric lipid distributions across membranes, and offer significant insight of protein:membrane interactions. The sarcoplasmic reticulum Ca(2+)-ATPase features flexible and adaptive interactions with the surrounding membrane, while the Na(+),K(+)-ATPase complex is modulated by membrane components and a role for the γ-subunit as a stabilizer of a specific lipid interaction with the α-subunit has been proposed. The first crystal structure of a heavy-metal transporting ATPase shows a markedly amphipathic helix at the cytoplasmic membrane surface, highlighting this structure as a general motif of all P-type ATPases although with specialization to different membranes. Residues of central importance for the lipid flippase activity of the P4-type ATPase subfamily have been pinpointed by mutational studies, but the transport pathway and mechanism remain unknown. 相似文献
17.
18.
We tested the hypothesis that certain membrane-intercalating agents increase the chemical activity of cholesterol by displacing it from its low activity association with phospholipids. Octanol, 1,2-dioctanoyl-sn-glycerol (a diglyceride), and N-hexanoyl-D-erythrosphingosine (a ceramide) were shown to increase both the rate of transfer and the extent of equilibrium partition of human red blood cell cholesterol to methyl-beta-cyclodextrin. These agents also promoted the interaction of the sterol with two cholesterol-specific probes, cholesterol oxidase and saponin. Expanding the pool of bilayer phospholipids with lysophosphatides countered these effects. The three intercalators also protected the red cells against lysis by cholesterol depletion as if substituting for the extracted sterol. As is the case for excess plasma membrane cholesterol, treating human fibroblasts with octanol, diglyceride, or ceramide stimulated the rapid inactivation of their hydroxymethylglutaryl-CoA reductase, presumably through an increase in the pool of endoplasmic reticulum cholesterol. These data supported the stated hypothesis and point to competition between cholesterol and endogenous and exogenous intercalators for association with membrane phospholipids. We also describe simple screens using red cells in a microtiter well format to identify intercalating agents that increase or decrease the activity of membrane cholesterol. 相似文献
19.
Argueso CT Ferreira FJ Epple P To JP Hutchison CE Schaller GE Dangl JL Kieber JJ 《PLoS genetics》2012,8(1):e1002448
Recent studies have revealed an important role for hormones in plant immunity. We are now beginning to understand the contribution of crosstalk among different hormone signaling networks to the outcome of plant-pathogen interactions. Cytokinins are plant hormones that regulate development and responses to the environment. Cytokinin signaling involves a phosphorelay circuitry similar to two-component systems used by bacteria and fungi to perceive and react to various environmental stimuli. In this study, we asked whether cytokinin and components of cytokinin signaling contribute to plant immunity. We demonstrate that cytokinin levels in Arabidopsis are important in determining the amplitude of immune responses, ultimately influencing the outcome of plant-pathogen interactions. We show that high concentrations of cytokinin lead to increased defense responses to a virulent oomycete pathogen, through a process that is dependent on salicylic acid (SA) accumulation and activation of defense gene expression. Surprisingly, treatment with lower concentrations of cytokinin results in increased susceptibility. These functions for cytokinin in plant immunity require a host phosphorelay system and are mediated in part by type-A response regulators, which act as negative regulators of basal and pathogen-induced SA-dependent gene expression. Our results support a model in which cytokinin up-regulates plant immunity via an elevation of SA-dependent defense responses and in which SA in turn feedback-inhibits cytokinin signaling. The crosstalk between cytokinin and SA signaling networks may help plants fine-tune defense responses against pathogens. 相似文献
20.
The synthesis and thermotropic properties of 1,2-di-(9Z)-9-tetracosenoylphosphatidylcholine [delta 9-PC(24:1,24:1), 1], 1,2-di-(5Z)-5-tetracosenoylphosphatidylcholine [delta 5-PC(24:1,24:1), 2], and 1,2-di-(15Z)-15- tetracosenoylphosphatidylcholine [delta 15-PC(24:1,24:1), 3] are reported. Liposomes prepared from these phospholipids differ from those of the natural sponge phospholipids, 1,2-di-(5Z,9Z)-5,9-hexacosadienoylphosphatidylcholine (4a) and the corresponding ethanolamine (4b), both of which virtually exclude cholesterol from their bilayers. The behavior of 1 and 2 is similar to that of 1,2-di-(6Z,9Z)-6,9-hexacosadienoylphosphatidylcholine (5), which exhibits a partial molecular interaction with cholesterol. In the case of 3, cholesterol appears to interact with the saturated acyl chain regions of this phospholipid in a manner similar to that of its interaction with DPPC acyl chains. This study delineates the effect of the double-bond location in long fatty acyl chains of phospholipids on their interactions with cholesterol. 相似文献