首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Soluble oligomers of Aβ42 peptide are believed to play a major role in the pathogenesis of Alzheimer disease (AD). It was recently found that at least some of the neurotoxic effects of these oligomers may be mediated by specific binding to the prion protein, PrPC, on the cell surface (Laurén, J., Gimbel, D. A., Nygaard, H. B., Gilbert, J. W., and Strittmatter, S. M. (2009) Nature 457, 1128–1132). Here we characterized the interaction between synthetic Aβ42 oligomers and the recombinant human prion protein (PrP) using two biophysical techniques: site-directed spin labeling and surface plasmon resonance. Our data indicate that this binding is highly specific for a particular conformation adopted by the peptide in soluble oligomeric species. The binding appears to be essentially identical for the Met129 and Val129 polymorphic forms of human PrP, suggesting that the role of PrP codon 129 polymorphism as a risk factor in AD is due to factors unrelated to the interaction with Aβ oligomers. It was also found that in addition to the previously identified ∼95–110 segment, the second region of critical importance for the interaction with Aβ42 oligomers is a cluster of basic residues at the extreme N terminus of PrP (residues 23–27). The deletion of any of these segments results in a major loss of the binding function, indicating that these two regions likely act in concert to provide a high affinity binding site for Aβ42 oligomers. This insight may help explain the interplay between the postulated protective and pathogenic roles of PrP in AD and may contribute to the development of novel therapeutic strategies as well.  相似文献   

2.
The prion protein (PrP) has been implicated both in prion diseases such as Creutzfeldt-Jakob disease, where its monomeric cellular isoform (PrPC) is recruited into pathogenic self-propagating polymers of misfolded protein, and in Alzheimer disease, where PrPC may act as a receptor for synaptotoxic oligomeric forms of amyloid-β (Aβ). There has been considerable interest in identification of compounds that bind to PrPC, stabilizing its native fold and thereby acting as pharmacological chaperones to block prion propagation and pathogenesis. However, compounds binding PrPC could also inhibit the binding of toxic Aβ species and may have a role in treating Alzheimer disease, a highly prevalent dementia for which there are currently no disease-modifying treatments. However, the absence of a unitary, readily measurable, physiological function of PrP makes screening for ligands challenging, and the highly heterogeneous nature of Aβ oligomer preparations makes conventional competition binding assays difficult to interpret. We have therefore developed a high-throughput screen that utilizes site-specifically fluorescently labeled protein to identify compounds that bind to PrP and inhibit both Aβ binding and prion propagation. Following a screen of 1,200 approved drugs, we identified Chicago Sky Blue 6B as the first small molecule PrP ligand capable of inhibiting Aβ binding, demonstrating the feasibility of development of drugs to block this interaction. The interaction of Chicago Sky Blue 6B was characterized by isothermal titration calorimetry, and its ability to inhibit Aβ binding and reduce prion levels was established in cell-based assays.  相似文献   

3.
The soluble cellular prion protein (PrPC) is best known for its association with prion disease (PrD) through its conversion to a pathogenic insoluble isoform (PrPSc). However, its deleterious effects independent of PrPSc have recently been observed not only in PrD but also in Alzheimer disease (AD), two diseases which mainly affect cognition. At the same time, PrPC itself seems to have broad physiologic functions including involvement in cognitive processes. The PrPC that is believed to be soluble and monomeric has so far been the only PrP conformer observed in the uninfected brain. In 2006, we identified an insoluble PrPC conformer (termed iPrPC) in uninfected human and animal brains. Remarkably, the PrPSc-like iPrPC shares the immunoreactivity behavior and fragmentation with a newly-identified PrPSc species in a novel human PrD termed variably protease-sensitive prionopathy. Moreover, iPrPC has been observed as the major PrP species that interacts with amyloid β (Aβ) in AD. This article highlights evidence of PrP involvement in two putatively beneficial and deleterious PrP-implicated pathways in cognition and hypothesizes first, that beneficial and deleterious effects of PrPC are attributable to the chameleon-like conformation of the protein and second, that the iPrPC conformer is associated with PrD and AD.Key words: prion protein, prion disease, cognition, cognitive deficit, insoluble prion protein, Alzheimer disease, variably protease-sensitive prionopathy, dementia, memory  相似文献   

4.
Alzheimer disease (AD) is characterized by amyloid-β accumulation, with soluble oligomers (Aβo) being the most synaptotoxic. However, the multivalent and unstable nature of Aβo limits molecular characterization and hinders research reproducibility. Here, we characterized multiple Aβo forms throughout the life span of various AD mice and in post-mortem human brain. Aβo exists in several populations, where prion protein (PrPC)-interacting Aβo is a high molecular weight Aβ assembly present in multiple mice and humans with AD. Levels of PrPC-interacting Aβo match closely with mouse memory and are equal or superior to other Aβ measures in predicting behavioral impairment. However, Aβo metrics vary considerably between mouse strains. Deleting PrPC expression in mice with relatively low PrPC-interacting Aβo (Tg2576) results in partial rescue of cognitive performance as opposed to complete recovery in animals with a high percentage of PrPC-interacting Aβo (APP/PSEN1). These findings highlight the relative contributions and interplay of Aβo forms in AD.  相似文献   

5.
Soluble oligomeric amyloid-β (Aβ) has been suggested to impair synaptic and neuronal function, leading to neurodegeneration that is clinically observed as the memory and cognitive dysfunction characteristic of Alzheimer disease, while the precise mechanism(s) whereby oligomeric Aβ causes neurotoxicity remains unknown. Recently, the cellular prion protein (PrPC) was reported to be an essential co-factor in mediating the neurotoxic effect of oligomeric Aβ. Our recent study showed that Prnp−/− mice are resistant to the neurotoxic effect of oligomeric Aβ in vivo and in vitro. Furthermore, application of an anti-PrPC antibody or PrPC peptide was able to block oligomeric Aβ-induced neurotoxicity. These findings demonstrate that PrPC may be involved in neuropathologic conditions other than conventional prion diseases, i.e., Creutzfeldt-Jakob disease.  相似文献   

6.
The pathogenesis of Alzheimer disease appears to be strongly linked to the aggregation of amyloid-β (Aβ) peptide and, especially, formation of soluble Aβ1–42 oligomers. It was recently demonstrated that the cellular prion protein, PrPC, binds with high affinity to these oligomers, acting as a putative receptor that mediates at least some of their neurotoxic effects. Here we show that the soluble (i.e. glycophosphatidylinositol anchor-free) prion protein and its N-terminal fragment have a strong effect on the aggregation pathway of Aβ1–42, inhibiting its assembly into amyloid fibrils. Furthermore, the prion protein prevents formation of spherical oligomers that normally occur during Aβ fibrillogenesis, acting as a potent inhibitor of Aβ1–42 toxicity as assessed in experiments with neuronal cell culture. These findings may provide a molecular level foundation to explain the reported protective action of the physiologically released N-terminal N1 fragment of PrPC against Aβ neurotoxicity. They also suggest a novel approach to pharmacological intervention in Alzheimer disease.  相似文献   

7.
Prion disease research has opened up the “black-box” of neurodegeneration, defining a key role for protein misfolding wherein a predominantly alpha-helical precursor protein, PrPC, is converted to a disease-associated, β-sheet enriched isoform called PrPSc. In Alzheimer disease (AD) the Aβ peptide derived from the β-amyloid precuror protein APP folds in β-sheet amyloid. Early thoughts along the lines of overlap may have been on target,1 but were eclipsed by a simultaneous (but now anachronistic) controversy over the role of PrPSc in prion diseases.2,3 Nonetheless, as prion diseases such as Creutzfeldt-Jakob Disease (CJD) are themselves rare and can include an overt infectious mode of transmission, and as familial prion diseases and familial AD involve different genes, an observer might reasonably have concluded that prion research could occasionally catalyze ideas in AD, but could never provide concrete overlaps at the mechanistic level. Surprisingly, albeit a decade or three down the road, several prion/AD commonalities can be found within the contemporary literature. One important prion/AD overlap concerns seeded spread of Aβ aggregates by intracerebral inoculation much like prions,4 and, with a neuron-to-neuron ‘spreading’ also reported for pathologic forms of other misfolded proteins, Tau5,6 and α-synuclein in the case of Parkinson Disease.7,8 The concept of seeded spread has been discussed extensively elsewhere, sometimes under the rubric of “prionoids”9, and lies outside the scope of this particular review where we will focus upon PrPC. From this point the story can now be subdivided into four strands of investigation: (1) pathologic effects of Aβ can be mediated by binding to PrPC,10 (2) the positioning of endoproteolytic processing events of APP by pathologic (β-cleavage + γ-cleavage) and non-pathologic (α-cleavage + γ-cleavage) secretase pathways is paralleled by seemingly analogous α- and β-like cleavage of PrPC (Fig. 1) (3) similar lipid raft environments for PrPC and APP processing machinery,11-13 and perhaps in consequence, overlaps in repertoire of the PrPC and APP protein interactors (“interactomes”),14,15 and (4) rare kindreds with mixed AD and prion pathologies.16 Here we discuss confounds, consensus and conflict associated with parameters that apply to these experimental settings.  相似文献   

8.
Alzheimer and prion diseases are neurodegenerative disorders characterised by the abnormal processing of amyloid-β (Aβ) peptide and prion protein (PrPC), respectively. Recent evidence indicates that PrPC may play a critical role in the pathogenesis of Alzheimer disease. PrPC interacts with and inhibits the β-secretase BACE1, the rate-limiting enzyme in the production of Aβ. More recently PrPC was identified as a receptor for Aβ oligomers and the expression of PrPC appears to be controlled by the amyloid intracellular domain (AICD). Here we review these observations and propose a feedback loop in the normal brain where PrPC exerts an inhibitory effect on BACE1 to decrease both Aβ and AICD production. In turn, the AICD upregulates PrPC expression, thus maintaining the inhibitory effect of PrPC on BACE1. In Alzheimer disease, this feedback loop is disrupted, and the increased level of Aβ oligomers bind to PrPC and prevent it from regulating BACE1 activity.Key words: alzheimer disease, amyloid-β, Aβ oligomers, amyloid intracellular domain, BACE1, presenilin, prion protein  相似文献   

9.
The heat shock response (HSR) is an evolutionarily conserved pathway designed to maintain proteostasis and to ameliorate toxic effects of aberrant protein folding. We have studied the modulation of the HSR by the scrapie prion protein (PrPSc) and amyloid β peptide (Aβ) and investigated whether an activated HSR or the ectopic expression of individual chaperones can interfere with PrPSc- or Aβ-induced toxicity. First, we observed different effects on the HSR under acute or chronic exposure of cells to PrPSc or Aβ. In chronically exposed cells the threshold to mount a stress response was significantly increased, evidenced by a decreased expression of Hsp72 after stress, whereas an acute exposure lowered the threshold for stress-induced expression of Hsp72. Next, we employed models of PrPSc- and Aβ-induced toxicity to demonstrate that the induction of the HSR ameliorates the toxic effects of both PrPSc and Aβ. Similarly, the ectopic expression of cytosolic Hsp72 or the extracellular chaperone clusterin protected against PrPSc- or Aβ-induced toxicity. However, toxic signaling induced by a pathogenic PrP mutant located at the plasma membrane was prevented by an activated HSR or Hsp72 but not by clusterin, indicating a distinct mode of action of this extracellular chaperone. Our study supports the notion that different pathological protein conformers mediate toxic effects via similar cellular pathways and emphasizes the possibility to exploit the heat shock response therapeutically.  相似文献   

10.
The cellular prion protein (PrPC) has been implicated in the development of Alzheimer''s disease (AD). PrPC decreases amyloid-β (Aβ) production, which is involved in AD pathogenesis, by inhibiting β-secretase (BACE1) activity. Contactin 5 (CNTN5) has also been implicated in the development of AD by a genome-wide association study. Here we measured PrPC and CNTN5 in frontal cortex samples from 24 sporadic AD and 24 age-matched control brains and correlated the expression of these proteins with markers of AD. PrPC was decreased in sporadic AD compared to controls (by 49%, p = 0.014) but there was no difference in CNTN5 between sporadic AD and controls (p = 0.217). PrPC significantly inversely correlated with BACE1 activity (rs = −0.358, p = 0.006), Aβ load (rs = −0.456, p = 0.001), soluble Aβ (rs = −0.283, p = 0.026) and insoluble Aβ (rs = −0.353, p = 0.007) and PrPC also significantly inversely correlated with the stage of disease, as indicated by Braak tangle stage (rs = −0.377, p = 0.007). CNTN5 did not correlate with Aβ load (rs = 0.040, p = 0.393), soluble Aβ (rs = 0.113, p = 0.223) or insoluble Aβ (rs = 0.169, p = 0.125). PrPC was also measured in frontal cortex samples from 9 Down''s syndrome (DS) and 8 age-matched control brains. In contrast to sporadic AD, there was no difference in PrPC in the DS brains compared to controls (p = 0.625). These data are consistent with a role for PrPC in regulating Aβ production and indicate that brain PrPC level may be important in influencing the onset and progression of sporadic AD.  相似文献   

11.
Widely expressed in the adult central nervous system, the cellular prion protein (PrPC) is implicated in a variety of processes, including neuronal excitability. Dipeptidyl aminopeptidase-like protein 6 (DPP6) was first identified as a PrPC interactor using in vivo formaldehyde cross-linking of wild type (WT) mouse brain. This finding was confirmed in three cell lines and, because DPP6 directs the functional assembly of K+ channels, we assessed the impact of WT and mutant PrPC upon Kv4.2-based cell surface macromolecular complexes. Whereas a Gerstmann-Sträussler-Scheinker disease version of PrP with eight extra octarepeats was a loss of function both for complex formation and for modulation of Kv4.2 channels, WT PrPC, in a DPP6-dependent manner, modulated Kv4.2 channel properties, causing an increase in peak amplitude, a rightward shift of the voltage-dependent steady-state inactivation curve, a slower inactivation, and a faster recovery from steady-state inactivation. Thus, the net impact of wt PrPC was one of enhancement, which plays a critical role in the down-regulation of neuronal membrane excitability and is associated with a decreased susceptibility to seizures. Insofar as previous work has established a requirement for WT PrPC in the Aβ-dependent modulation of excitability in cholinergic basal forebrain neurons, our findings implicate PrPC regulation of Kv4.2 channels as a mechanism contributing to the effects of oligomeric Aβ upon neuronal excitability and viability.  相似文献   

12.
Structures of the infectious form of prion protein (e.g. PrPSc or PrP-Scrapie) remain poorly defined. The prevalent structural models of PrPSc retain most of the native α-helices of the normal, noninfectious prion protein, cellular prion protein (PrPC), but evidence is accumulating that these helices are absent in PrPSc amyloid. Moreover, recombinant PrPC can form amyloid fibrils in vitro that have parallel in-register intermolecular β-sheet architectures in the domains originally occupied by helices 2 and 3. Here, we provide solid-state NMR evidence that the latter is also true of initially prion-seeded recombinant PrP amyloids formed in the absence of denaturants. These results, in the context of a primarily β-sheet structure, led us to build detailed models of PrP amyloid based on parallel in-register architectures, fibrillar shapes and dimensions, and other available experimentally derived conformational constraints. Molecular dynamics simulations of PrP(90–231) octameric segments suggested that such linear fibrils, which are consistent with many features of PrPSc fibrils, can have stable parallel in-register β-sheet cores. These simulations revealed that the C-terminal residues ∼124–227 more readily adopt stable tightly packed structures than the N-terminal residues ∼90–123 in the absence of cofactors. Variations in the placement of turns and loops that link the β-sheets could give rise to distinct prion strains capable of faithful template-driven propagation. Moreover, our modeling suggests that single PrP monomers can comprise the entire cross-section of fibrils that have previously been assumed to be pairs of laterally associated protofilaments. Together, these insights provide a new basis for deciphering mammalian prion structures.  相似文献   

13.
Amyloid beta (Aβ) is a major causative agent of Alzheimer disease (AD). This neurotoxic peptide is generated as a result of the cleavage of the Amyloid-Precursor-Protein (APP) by the action of β-secretase and γ-secretase. The neurotoxicity was previously thought to be the result of aggregation. However, recent studies suggest that the interaction of Aβ with numerous cell surface receptors such as N-methyl-D-aspartate (NMDA), receptor for advanced glycosylation end products (RAGE), P75 neurotrophin receptor (P75NTR) as well as cell surface proteins such as the cellular prion protein (PrPc) and heparan sulfate proteoglycans (HSPG) strongly enhances Aβ induced apoptosis and thereby contributes to neurotoxicity. This review focuses on the molecular mechanism resulting in Aβ-shedding as well as Aβ-induced apoptotic processes, genetic risk factors for familial AD and interactions of Aβ with cell surface receptors and proteins, with particular emphasis on the cellular prion protein. Furthermore, comparisons are drawn between AD and prion disorders and the role of laminin, an extracellular matrix protein, glycosaminoglycans and the 37 kDa/67 kDa laminin receptor (LRP/LR) have been highlighted with regards to both neurodegenerative diseases.Key words: Alzheimer disease, amyloid β, apoptosis, 37 kDa/67 kDa laminin receptor, prion proteinsAlzheimer disease (AD), primarily defined by psychiatrist Alois Alzheimer in 1906, is a neurodegenerative disorder and currently exhibits a prevalence that “doubles approximately every five years from 0.5% at the common age of onset-65 years old.”1 This disease is the most common form of dementia afflicting the elderly and at present affects in excess of 37 million people globally2 and it is predicted that 100 million people will be living with the disease by 2050.3AD has received mounting scientific interest and has stimulated tireless research endeavours not only due to the complex mechanism by which it is caused; the multitude of contributing factors and contradictions which have arisen between hypotheses and acquired results, but also due to the rise in life expectancies4 owing to the advent of modern medicine, which has socio-economic implications particularly in terms of strain placed upon national health systems.  相似文献   

14.
Soluble oligomers of the amyloid-β (Aβ) peptide cause neurotoxicity, synaptic dysfunction, and memory impairments that underlie Alzheimer disease (AD). The cellular prion protein (PrPC) was recently identified as a high affinity neuronal receptor for Aβ oligomers. We report that fibrillar Aβ oligomers recognized by the OC antibody, which have been shown to correlate with the onset and severity of AD, bind preferentially to cells and neurons expressing PrPC. The binding of Aβ oligomers to cell surface PrPC, as well as their downstream activation of Fyn kinase, was dependent on the integrity of cholesterol-rich lipid rafts. In SH-SY5Y cells, fluorescence microscopy and co-localization with subcellular markers revealed that the Aβ oligomers co-internalized with PrPC, accumulated in endosomes, and subsequently trafficked to lysosomes. The cell surface binding, internalization, and downstream toxicity of Aβ oligomers was dependent on the transmembrane low density lipoprotein receptor-related protein-1 (LRP1). The binding of Aβ oligomers to cell surface PrPC impaired its ability to inhibit the activity of the β-secretase BACE1, which cleaves the amyloid precursor protein to produce Aβ. The green tea polyphenol (−)-epigallocatechin gallate and the red wine extract resveratrol both remodeled the fibrillar conformation of Aβ oligomers. The resulting nonfibrillar oligomers displayed significantly reduced binding to PrPC-expressing cells and were no longer cytotoxic. These data indicate that soluble, fibrillar Aβ oligomers bind to PrPC in a conformation-dependent manner and require the integrity of lipid rafts and the transmembrane LRP1 for their cytotoxicity, thus revealing potential targets to alleviate the neurotoxic properties of Aβ oligomers in AD.  相似文献   

15.
Converging evidence leaves little doubt that a change in the conformation of prion protein (PrPC) from a mainly α-helical to a β-sheet rich PrP-scrapie (PrPSc) form is the main event responsible for prion disease associated neurotoxicity. However, neither the mechanism of toxicity by PrPSc, nor the normal function of PrPC is entirely clear. Recent reports suggest that imbalance of iron homeostasis is a common feature of prion infected cells and mouse models, implicating redox-iron in prion disease pathogenesis. In this report, we provide evidence that PrPC mediates cellular iron uptake and transport, and mutant PrP forms alter cellular iron levels differentially. Using human neuroblastoma cells as models, we demonstrate that over-expression of PrPC increases intra-cellular iron relative to non-transfected controls as indicated by an increase in total cellular iron, the cellular labile iron pool (LIP), and iron content of ferritin. As a result, the levels of iron uptake proteins transferrin (Tf) and transferrin receptor (TfR) are decreased, and expression of iron storage protein ferritin is increased. The positive effect of PrPC on ferritin iron content is enhanced by stimulating PrPC endocytosis, and reversed by cross-linking PrPC on the plasma membrane. Expression of mutant PrP forms lacking the octapeptide-repeats, the membrane anchor, or carrying the pathogenic mutation PrP102L decreases ferritin iron content significantly relative to PrPC expressing cells, but the effect on cellular LIP and levels of Tf, TfR, and ferritin is complex, varying with the mutation. Neither PrPC nor the mutant PrP forms influence the rate or amount of iron released into the medium, suggesting a functional role for PrPC in cellular iron uptake and transport to ferritin, and dysfunction of PrPC as a significant contributing factor of brain iron imbalance in prion disorders.  相似文献   

16.
Prion diseases are fatal neurodegenerative disorders caused by an aberrant accumulation of the misfolded cellular prion protein (PrPC) conformer, denoted as infectious scrapie isoform or PrPSc. In inherited human prion diseases, mutations in the open reading frame of the PrP gene (PRNP) are hypothesized to favor spontaneous generation of PrPSc in specific brain regions leading to neuronal cell degeneration and death. Here, we describe the NMR solution structure of the truncated recombinant human PrP from residue 90 to 231 carrying the Q212P mutation, which is believed to cause Gerstmann-Sträussler-Scheinker (GSS) syndrome, a familial prion disease. The secondary structure of the Q212P mutant consists of a flexible disordered tail (residues 90–124) and a globular domain (residues 125–231). The substitution of a glutamine by a proline at the position 212 introduces novel structural differences in comparison to the known wild-type PrP structures. The most remarkable differences involve the C-terminal end of the protein and the β2–α2 loop region. This structure might provide new insights into the early events of conformational transition of PrPC into PrPSc. Indeed, the spontaneous formation of prions in familial cases might be due to the disruptions of the hydrophobic core consisting of β2–α2 loop and α3 helix.  相似文献   

17.
Creutzfeldt-Jakob disease (CJD) is a heterogenic neurodegenerative disorder associated with abnormal post-translational processing of cellular prion protein (PrPc). CJD displays distinctive clinical and pathological features which correlate with the genotype at the codon 129 (methionine or valine: M or V respectively) in the prion protein gene and with size of the protease-resistant core of the abnormal prion protein PrPsc (type 1: 20/21 kDa and type 2: 19 kDa). MM1 and VV2 are the most common sporadic CJD (sCJD) subtypes. PrP mRNA expression levels in the frontal cortex and cerebellum are reduced in sCJD in a form subtype-dependent. Total PrP protein levels and PrPsc levels in the frontal cortex and cerebellum accumulate differentially in sCJD MM1 and sCJD VV2 with no relation between PrPsc deposition and spongiform degeneration and neuron loss, but with microgliosis, and IL6 and TNF-α response. In the CSF, reduced PrPc, the only form present in this compartment, occurs in sCJD MM1 and VV2. PrP mRNA expression is also reduced in the frontal cortex in advanced stages of Alzheimer disease, Lewy body disease, progressive supranuclear palsy, and frontotemporal lobe degeneration, but PrPc levels in brain varies from one disease to another. Reduced PrPc levels in CSF correlate with PrP mRNA expression in brain, which in turn reflects severity of degeneration in sCJD.  相似文献   

18.
Aberrant self-assembly, induced by structural misfolding of the prion proteins, leads to a number of neurodegenerative disorders. In particular, misfolding of the mostly α-helical cellular prion protein (PrPC) into a β-sheet-rich disease-causing isoform (PrPSc) is the key molecular event in the formation of PrPSc aggregates. The molecular mechanisms underlying the PrPC-to-PrPSc conversion and subsequent aggregation remain to be elucidated. However, in persistently prion-infected cell-culture models, it was shown that treatment with monoclonal antibodies against defined regions of the prion protein (PrP) led to the clearing of PrPSc in cultured cells. To gain more insight into this process, we characterized PrP-antibody complexes in solution using a fast protein liquid chromatography coupled with small-angle x-ray scattering (FPLC-SAXS) procedure. High-quality SAXS data were collected for full-length recombinant mouse PrP [denoted recPrP(23–230)] and N-terminally truncated recPrP(89–230), as well as their complexes with each of two Fab fragments (HuM-P and HuM-R1), which recognize N- and C-terminal epitopes of PrP, respectively. In-line measurements by fast protein liquid chromatography coupled with SAXS minimized data artifacts caused by a non-monodispersed sample, allowing structural analysis of PrP alone and in complex with Fab antibodies. The resulting structural models suggest two mechanisms for how these Fabs may prevent the conversion of PrPC into PrPSc.  相似文献   

19.
The central event in the pathogenesis of prion diseases involves a conversion of the host-encoded cellular prion protein PrPC into its pathogenic isoform PrPSc 1. PrPC is detergent-soluble and sensitive to proteinase K (PK)-digestion, whereas PrPSc forms detergent-insoluble aggregates and is partially resistant to PK2-6. The conversion of PrPC to PrPSc is known to involve a conformational transition of α-helical to β-sheet structures of the protein. However, the in vivo pathway is still poorly understood. A tentative endogenous PrPSc, intermediate PrP* or "silent prion", has yet to be identified in the uninfected brain7.Using a combination of biophysical and biochemical approaches, we identified insoluble PrPC aggregates (designated iPrPC) from uninfected mammalian brains and cultured neuronal cells8, 9. Here, we describe detailed procedures of these methods, including ultracentrifugation in detergent buffer, sucrose step gradient sedimentation, size exclusion chromatography, iPrP enrichment by gene 5 protein (g5p) that specifically bind to structurally altered PrP forms10, and PK-treatment. The combination of these approaches isolates not only insoluble PrPSc and PrPC aggregates but also soluble PrPC oligomers from the normal human brain. Since the protocols described here have been used to isolate both PrPSc from infected brains and iPrPC from uninfected brains, they provide us with an opportunity to compare differences in physicochemical features, neurotoxicity, and infectivity between the two isoforms. Such a study will greatly improve our understanding of the infectious proteinaceous pathogens. The physiology and pathophysiology of iPrPC are unclear at present. Notably, in a newly-identified human prion disease termed variably protease-sensitive prionopathy, we found a new PrPSc that shares the immunoreactive behavior and fragmentation with iPrPC 11, 12. Moreover, we recently demonstrated that iPrPC is the main species that interacts with amyloid-β protein in Alzheimer disease13. In the same study, these methods were used to isolate Abeta aggregates and oligomers in Alzheimer''s disease13, suggesting their application to non-prion protein aggregates involved in other neurodegenerative disorders.  相似文献   

20.
Alzheimer disease (AD) is characterized by the amyloidogenic processing of the amyloid precursor protein (APP), culminating in the accumulation of amyloid-β peptides in the brain. The enzymatic action of the β-secretase, BACE1 is the rate-limiting step in this amyloidogenic processing of APP. BACE1 cleavage of wild-type APP (APPWT) is inhibited by the cellular prion protein (PrPC). Our recent study has revealed the molecular and cellular mechanisms behind this observation by showing that PrPC directly interacts with the pro-domain of BACE1 in the trans-Golgi network (TGN), decreasing the amount of BACE1 at the cell surface and in endosomes where it cleaves APPWT, while increasing BACE1 in the TGN where it preferentially cleaves APP with the Swedish mutation (APPSwe). PrPC deletion in transgenic mice expressing the Swedish and Indiana familial mutations (APPSwe,Ind) failed to affect amyloid-β accumulation, which is explained by the differential subcellular sites of action of BACE1 toward APPWT and APPSwe. This, together with our observation that PrPC is reduced in sporadic but not familial AD brain, suggests that PrPC plays a key protective role against sporadic AD. It also highlights the need for an APPWT transgenic mouse model to understand the molecular and cellular mechanisms underlying sporadic AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号