共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
Rett综合征(Rett syndrome, RTT)是一种X连锁的神经发育障碍性遗传病, 是导致女性严重智力障碍的主要原因之一。编码甲基化CpG结合蛋白2(Methyl-CpG-binding protein 2, MeCP2)基因突变是RTT主要的遗传病理学改变, MeCP2作为转录抑制因子调控基因表达。在RTT发病机制中, 由于缺乏MeCP2与甲基化DNA的正确结合, 阻碍了它对下游靶基因表达的正常调控, 最终导致脑功能障碍。目前, 对MeCP2在脑发育过程中的作用以及如何导致RTT的发生, 其机制尚不清楚。文章从MECP2基因和MeCP2蛋白两个方面, 对基因结构、蛋白质功能以及在分子水平上的调控机制进行了综述, 以期为RTT的发病机制研究提供新思路。 相似文献
3.
MeCP2(Methyl CpG binding protein 2)基因突变可导致Rett综合征(Rett syndrome, RTT)。目前已报道的MeCP2敲除小鼠表型与RTT病人症状存在显著差异。为探索MeCP2在脑发育中的作用及其导致RTT的机制,本研究利用CRISPR/Cas9技术构建了MeCP2基因敲除大鼠模型。通过构建靶向敲除MeCP2基因的载体,体外将Cas9 mRNA和sgRNA显微注射到SD大鼠受精卵中,在MeCP2基因exon2中造成移码突变,从而获得MeCP2基因敲除大鼠。利用测序和Western blotting方法鉴定MeCP2敲除大鼠,并对其表型和行为学特征进行分析,发现MeCP2敲除大鼠体重降低,存在焦虑倾向和认知缺陷。本研究成功构建了MeCP2基因敲除大鼠模型,其表型类似人类RTT患者的症状,为后续MeCP2功能研究提供了更好的动物模型。 相似文献
4.
5.
Atg11利用自身众多螺旋结构域作为支架蛋白,主要介导选择性自噬过程中自噬体的形成.选择性自噬可特异性清除损坏的生物大分子和细胞器,在真核生物的胞内物质周转及细胞器质量控制中起重要作用.本文首先介绍了Atg11的结构特点,其次重点介绍了Atg11在3种选择性自噬(细胞质到液泡靶向(Cvt)途径、过氧化物酶体自噬和线粒体自噬)中的作用,最后概括了Atg11的其他功能.本文系统总结了近几年关于Atg11的研究进展,以期为自噬体形成机制研究及Atg11在自噬体形成过程中的功能研究提供参考. 相似文献
6.
7.
8.
姜黄素是从姜黄中提取的一种多酚类物质,近年来对姜黄素的研究日趋广泛,已明确具有抗肿瘤,抗炎,抗氧化、降糖、降脂等多种药理作用,在临床上广泛应用于治疗肿瘤、肥胖、糖尿病等多种疾病.代谢综合征是一组以代谢紊乱为特征的症候群,包括中心性肥胖、糖脂代谢异常、高血压、非酒精性脂肪肝等,这些病理状态长期发展,可进一步导致心、脑血管患病率明显升高,研究发现姜黄素能够改善代谢综合征.现就近年来有关姜黄素治疗代谢综合征的研究进展综述如下. 相似文献
9.
10.
11.
Saywell V Viola A Confort-Gouny S Le Fur Y Villard L Cozzone PJ 《Biochemical and biophysical research communications》2006,340(3):776-783
Rett syndrome, a neurodevelopmental X-linked disorder, represents the most important genetic cause of severe mental retardation in the female population and results from a mutation in the gene encoding methyl-CpG-binding protein 2 (MECP2). We report here the first characterization of Mecp2-null mice, by in vivo magnetic resonance imaging and spectroscopy, delineating the cerebral phenotype associated with the lack of Mecp2. We performed a morphometric study that revealed a size reduction of the whole brain and of structures involved in cognitive and motor functions (cerebellum and motor cortex). Significant metabolic anomalies, including reduced N-acetylaspartate, myo-inositol, and glutamine plus glutamate, and increased choline levels were evidenced. These findings indicate that not only neuronal but also glial metabolism is affected in Mecp2-null mice. Furthermore, we uncovered an important reduction of brain ATP level, a hitherto undetected anomaly of energy metabolism that may reflect and contribute to cerebral injury and dysfunction. 相似文献
12.
Thomas N. Seyfried Karie A. Heinecke John G. Mantis Christine A. Denny 《Neurochemical research》2009,34(6):1057-1065
Rett syndrome (RS) is an X-linked neurodevelopmental disorder mostly involving mutations in the gene for methyl-CpG-binding
protein 2 (MECP2). Ganglioside abnormalities were previously found in cerebrum and cerebellum in RS patients. We evaluated total lipid distribution
in cerebrum/brainstem, hippocampus, and cerebellum in male mice carrying either the Mecp2
tm1.1Bird knockout mutation or the Mecp2
308/y deletion mutation. The concentration of the neuronal enriched ganglioside GD1a was significantly lower in the cerebrum/brainstem
of Mecp2
tm1.1Bird mice than in that of age matched controls, but was not reduced in the Mecp2
308/y mice. No other differences in brain lipid content, including myelin-enriched cerebrosides, were detected in mice with either
type of Mecp2 mutation. These findings indicate that the poor motor performance previously reported in the RS mutant mice is not associated
with major brain lipid abnormalities and that most previous brain lipid abnormalities observed in RS patients were not observed
in the Mecp2
tm1.1Bird or the Mecp2
308/y RS mice. 相似文献
13.
14.
15.
Rett syndrome (RTT) is an orphan progressive neurodevelopmental disease affecting almost exclusively females (frequency 1:10,000). RTT clinical expression is typically characterized by loss of purposeful hand movements, severe mental retardation and motor impairment, breathing disorders, ataxia and increased risk of sudden death. Although the main genetic cause, i.e. mutation in the methyl-CpG binding protein 2 gene (MECP2), has been already identified, the molecular and pathogenic mechanisms by which MECP2 deficiency drives pathology in RTT remains not fully understood. A wealth of evidence from our and other laboratories suggests a potential causal relationship between MECP2 dysfunction and systemic redox imbalance, a condition that has been widely found in association with RTT. In turn, a “short-circuit” of redox pathways may contribute to the systemic immune dysfunction expressed as cytokines/chemokines dysregulation, a feature clearly emerged from two recent studies on RTT patients. In this light, the purpose of this review is to describe and to stimulate a new discussion on the idea that systemic subclinical inflammation and oxidative stress are crucial players of a detrimental vicious circle, driving the pathogenesis and clinical course of RTT. 相似文献
16.
17.
Sheryl Anne D. Vermudez Rocco G. Gogliotti Bright Arthur Aditi Buch Clarissa Morales Yuta Moxley Hemangi Rajpal P. Jeffrey Conn Colleen M. Niswender 《Genes, Brain & Behavior》2022,21(1):e12752
De novo loss-of-function mutations in methyl-CpG-binding protein 2 (MeCP2) lead to the neurodevelopmental disorder Rett syndrome (RTT). Despite promising results from strategies aimed at increasing MeCP2 levels, additional studies exploring how hypomorphic MeCP2 mutations impact the therapeutic window are needed. Here, we investigated the consequences of genetically introducing a wild-type MECP2 transgene in the Mecp2 R133C mouse model of RTT. The MECP2 transgene reversed the majority of RTT-like phenotypes exhibited by male and female Mecp2 R133C mice. However, three core symptom domains were adversely affected in female Mecp2R133C/+ animals; these phenotypes resemble those observed in disease contexts of excess MeCP2. Parallel control experiments in Mecp2Null/+ mice linked these adverse effects to the hypomorphic R133C mutation. Collectively, these data provide evidence regarding the safety and efficacy of genetically overexpressing functional MeCP2 in Mecp2 R133C mice and suggest that personalized approaches may warrant consideration for the clinical assessment of MeCP2-targeted therapies. 相似文献
18.
Rett syndrome (RTT) is a pervasive neurodevelopmental disorder mainly caused by mutations in the X-linked MECP2 gene associated with severe intellectual disability, movement disorders, and autistic-like behaviors. Its pathogenesis remains mostly not understood and no effective therapy is available. High circulating levels of oxidative stress markers in patients and the occurrence of oxidative brain damage in MeCP2-deficient mouse models suggest the involvement of oxidative stress in RTT pathogenesis. However, the molecular mechanism and the origin of the oxidative stress have not been elucidated. Here we demonstrate that a redox imbalance arises from aberrant mitochondrial functionality in the brain of MeCP2-308 heterozygous female mice, a condition that more closely recapitulates that of RTT patients. The marked increase in the rate of hydrogen peroxide generation in the brain of RTT mice seems mainly produced by the dysfunctional complex II of the mitochondrial respiratory chain. In addition, both membrane potential generation and mitochondrial ATP synthesis are decreased in RTT mouse brains when succinate, the complex II respiratory substrate, is used as an energy source. Respiratory chain impairment is brain area specific, owing to a decrease in either cAMP-dependent phosphorylation or protein levels of specific complex subunits. Further, we investigated whether the treatment of RTT mice with the bacterial protein CNF1, previously reported to ameliorate the neurobehavioral phenotype and brain bioenergetic markers in an RTT mouse model, exerts specific effects on brain mitochondrial function and consequently on hydrogen peroxide production. In RTT brains treated with CNF1, we observed the reactivation of respiratory chain complexes, the rescue of mitochondrial functionality, and the prevention of brain hydrogen peroxide overproduction. These results provide definitive evidence of mitochondrial reactive oxygen species overproduction in RTT mouse brain and highlight CNF1 efficacy in counteracting RTT-related mitochondrial defects. 相似文献
19.
Xiaoying Chen Xu Han Bruno Blanchi Wuqiang Guan Weihong Ge Yong-Chun Yu Yi E.Sun 《蛋白质与细胞》2021,12(8):639-652
Rett syndrome (RTT) is a progressive neurodevelop-mental disorder,mainly caused by mutations in MeCP2 and currently with no cure.We report here that neurons from R106W MeCP2 RTT human iPSCs as well as human embryonic stem cells after MeCP2 knockdown exhibit consistent and long-lasting impairment in maturation as indicated by impaired action potentials and passive membrane properties as well as reduced soma size and spine density.Moreover,RTT-inherent defects in neu-ronal maturation could be pan-neuronal and occurred in neurons with both dorsal and ventral forebrain features.Knockdown of MeCP2 led to more severe neuronal deficits as compared to RTT iPSC-derived neurons,which appeared to retain partial function.Strikingly,consistent deficits in nuclear size,dendritic complexity and circuitry-dependent spontaneous postsynaptic currents could only be observed in MeCP2 knockdown neurons but not RTT iPSC-derived neurons.Both neu-ron-intrinsic and circuitry-dependent deficits of MeCP2-deficient neurons could be fully or partially rescued by re-expression of wild type or T158M MeCP2,strengthening the dosage dependency of MeCP2 on disease phenotypes and also the partial function of the mutant.Our findings thus reveal stable neuronal matu-ration deficits and unexpectedly,graded sensitivities of neuron-inherent and neural transmission phenotypes towards the extent of MeCP2 deficiency,which is infor-mative for future therapeutic development. 相似文献