首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
线粒体融合蛋白2(mitofusin 2,Mfn2)位于线粒体外膜上,是线粒体外膜融合的重要蛋白之一。研究发现,它不仅参与调控线粒体形态结构,还与细胞代谢、增殖、凋亡密切相关。近年来资料提示,Mfn2参与调控内质网应激、自噬、线粒体自噬等方面。由于Mfn2作用复杂,生理状态下细胞内必定存在精细的调控网络以使其保持在稳定水平。本文概括介绍了Mfn2结构、功能及其调控机制新进展。  相似文献   

2.
杨文旭  潘虹 《遗传》2014,36(7):625-630
Rett综合征(Rett syndrome, RTT)是一种X连锁的神经发育障碍性遗传病, 是导致女性严重智力障碍的主要原因之一。编码甲基化CpG结合蛋白2(Methyl-CpG-binding protein 2, MeCP2)基因突变是RTT主要的遗传病理学改变, MeCP2作为转录抑制因子调控基因表达。在RTT发病机制中, 由于缺乏MeCP2与甲基化DNA的正确结合, 阻碍了它对下游靶基因表达的正常调控, 最终导致脑功能障碍。目前, 对MeCP2在脑发育过程中的作用以及如何导致RTT的发生, 其机制尚不清楚。文章从MECP2基因和MeCP2蛋白两个方面, 对基因结构、蛋白质功能以及在分子水平上的调控机制进行了综述, 以期为RTT的发病机制研究提供新思路。  相似文献   

3.
MeCP2(Methyl CpG binding protein 2)基因突变可导致Rett综合征(Rett syndrome, RTT)。目前已报道的MeCP2敲除小鼠表型与RTT病人症状存在显著差异。为探索MeCP2在脑发育中的作用及其导致RTT的机制,本研究利用CRISPR/Cas9技术构建了MeCP2基因敲除大鼠模型。通过构建靶向敲除MeCP2基因的载体,体外将Cas9 mRNA和sgRNA显微注射到SD大鼠受精卵中,在MeCP2基因exon2中造成移码突变,从而获得MeCP2基因敲除大鼠。利用测序和Western blotting方法鉴定MeCP2敲除大鼠,并对其表型和行为学特征进行分析,发现MeCP2敲除大鼠体重降低,存在焦虑倾向和认知缺陷。本研究成功构建了MeCP2基因敲除大鼠模型,其表型类似人类RTT患者的症状,为后续MeCP2功能研究提供了更好的动物模型。  相似文献   

4.
MiRNA为小分子非编码RNA,通过与靶基因的相互作用调节靶基因的表达,参与调控细胞的多个生物学过程。本文综述了miRNA与线粒体生物合成、线粒体动力学、线粒体能量代谢、线粒体钙稳态、线粒体自噬间的关系及其调节机制,阐述了microRNA调节线粒体功能的研究进展。  相似文献   

5.
Atg11利用自身众多螺旋结构域作为支架蛋白,主要介导选择性自噬过程中自噬体的形成.选择性自噬可特异性清除损坏的生物大分子和细胞器,在真核生物的胞内物质周转及细胞器质量控制中起重要作用.本文首先介绍了Atg11的结构特点,其次重点介绍了Atg11在3种选择性自噬(细胞质到液泡靶向(Cvt)途径、过氧化物酶体自噬和线粒体自噬)中的作用,最后概括了Atg11的其他功能.本文系统总结了近几年关于Atg11的研究进展,以期为自噬体形成机制研究及Atg11在自噬体形成过程中的功能研究提供参考.  相似文献   

6.
目的:研究电针对快衰老小鼠(SAMP8)肝脏中自噬相关因子LC3-Ⅱ、Beclin1、Atg7、P62表达的影响,探讨电针改善衰老小鼠肝脏脂质代谢的机制.方法:30周龄雄性SAMP8小鼠随机分为模型组、药物组、电针组,每组7只,以同周龄抗快速老化SAMR1小鼠7只作为对照组.对照组和模型组动物常规饲养4周,不进行任何干...  相似文献   

7.
肝脏是机体脂质代谢的枢纽。自噬是真核生物体内高度保守的生物学过程,选择性地清除细胞内脂质的过程被称为脂质自噬,简称脂噬。越来越多的研究表明,脂噬在维持肝脏及全身脂质稳态中发挥重要的调控作用,脂噬功能障碍与肝脏的多种病理、生理过程密切相关。因此,靶向脂噬可能有利于开发新的治疗肝脂代谢紊乱的手段。本文综述了脂噬发生过程以及调节肝脏脂噬的最新进展,并对靶向脂噬治疗肝脂代谢紊乱的研究进行了总结,为理解脂噬的调控机制及其生物学意义提供参考。  相似文献   

8.
姜黄素是从姜黄中提取的一种多酚类物质,近年来对姜黄素的研究日趋广泛,已明确具有抗肿瘤,抗炎,抗氧化、降糖、降脂等多种药理作用,在临床上广泛应用于治疗肿瘤、肥胖、糖尿病等多种疾病.代谢综合征是一组以代谢紊乱为特征的症候群,包括中心性肥胖、糖脂代谢异常、高血压、非酒精性脂肪肝等,这些病理状态长期发展,可进一步导致心、脑血管患病率明显升高,研究发现姜黄素能够改善代谢综合征.现就近年来有关姜黄素治疗代谢综合征的研究进展综述如下.  相似文献   

9.
线粒体Ca^2+转运与细胞代谢调节   总被引:4,自引:0,他引:4  
线粒体具有一套完整的Ca^2+转运系统,包括两条摄取途径和三条释放途径。生理条件下,它们在细胞胞质与线粒体钙稳态维持以及细胞能量代谢中起重要作用,线粒体从胞质摄取的Ca^2+可激活某些Ca^2+敏感的呼吸酶和代谢过程。病理条件下,线粒体Ca^2+转运发生紊乱,通过线粒体通透性转换导致细胞坏死或凋亡。  相似文献   

10.
线粒体自噬(mitophagy)是指细胞通过自噬的机制选择性地清除线粒体的过程。选择性清除受损伤或功能不完整的线粒体对于整个线粒体网络的功能完整性和细胞生存来说十分关键。线粒体自噬的异常和很多疾病密切相关,因此对于线粒体自噬的具体分子机制以及生理意义研究有很重要的生物学意义。线粒体自噬的研究是目前生物学领域的研究热点,该文主要综述了近年来在线粒体自噬领域取得的研究进展,旨在为相关领域的研究提供参考。  相似文献   

11.
Rett syndrome, a neurodevelopmental X-linked disorder, represents the most important genetic cause of severe mental retardation in the female population and results from a mutation in the gene encoding methyl-CpG-binding protein 2 (MECP2). We report here the first characterization of Mecp2-null mice, by in vivo magnetic resonance imaging and spectroscopy, delineating the cerebral phenotype associated with the lack of Mecp2. We performed a morphometric study that revealed a size reduction of the whole brain and of structures involved in cognitive and motor functions (cerebellum and motor cortex). Significant metabolic anomalies, including reduced N-acetylaspartate, myo-inositol, and glutamine plus glutamate, and increased choline levels were evidenced. These findings indicate that not only neuronal but also glial metabolism is affected in Mecp2-null mice. Furthermore, we uncovered an important reduction of brain ATP level, a hitherto undetected anomaly of energy metabolism that may reflect and contribute to cerebral injury and dysfunction.  相似文献   

12.
Rett syndrome (RS) is an X-linked neurodevelopmental disorder mostly involving mutations in the gene for methyl-CpG-binding protein 2 (MECP2). Ganglioside abnormalities were previously found in cerebrum and cerebellum in RS patients. We evaluated total lipid distribution in cerebrum/brainstem, hippocampus, and cerebellum in male mice carrying either the Mecp2 tm1.1Bird knockout mutation or the Mecp2 308/y deletion mutation. The concentration of the neuronal enriched ganglioside GD1a was significantly lower in the cerebrum/brainstem of Mecp2 tm1.1Bird mice than in that of age matched controls, but was not reduced in the Mecp2 308/y mice. No other differences in brain lipid content, including myelin-enriched cerebrosides, were detected in mice with either type of Mecp2 mutation. These findings indicate that the poor motor performance previously reported in the RS mutant mice is not associated with major brain lipid abnormalities and that most previous brain lipid abnormalities observed in RS patients were not observed in the Mecp2 tm1.1Bird or the Mecp2 308/y RS mice.  相似文献   

13.
14.
15.
Rett syndrome (RTT) is an orphan progressive neurodevelopmental disease affecting almost exclusively females (frequency 1:10,000). RTT clinical expression is typically characterized by loss of purposeful hand movements, severe mental retardation and motor impairment, breathing disorders, ataxia and increased risk of sudden death. Although the main genetic cause, i.e. mutation in the methyl-CpG binding protein 2 gene (MECP2), has been already identified, the molecular and pathogenic mechanisms by which MECP2 deficiency drives pathology in RTT remains not fully understood. A wealth of evidence from our and other laboratories suggests a potential causal relationship between MECP2 dysfunction and systemic redox imbalance, a condition that has been widely found in association with RTT. In turn, a “short-circuit” of redox pathways may contribute to the systemic immune dysfunction expressed as cytokines/chemokines dysregulation, a feature clearly emerged from two recent studies on RTT patients. In this light, the purpose of this review is to describe and to stimulate a new discussion on the idea that systemic subclinical inflammation and oxidative stress are crucial players of a detrimental vicious circle, driving the pathogenesis and clinical course of RTT.  相似文献   

16.
17.
De novo loss-of-function mutations in methyl-CpG-binding protein 2 (MeCP2) lead to the neurodevelopmental disorder Rett syndrome (RTT). Despite promising results from strategies aimed at increasing MeCP2 levels, additional studies exploring how hypomorphic MeCP2 mutations impact the therapeutic window are needed. Here, we investigated the consequences of genetically introducing a wild-type MECP2 transgene in the Mecp2 R133C mouse model of RTT. The MECP2 transgene reversed the majority of RTT-like phenotypes exhibited by male and female Mecp2 R133C mice. However, three core symptom domains were adversely affected in female Mecp2R133C/+ animals; these phenotypes resemble those observed in disease contexts of excess MeCP2. Parallel control experiments in Mecp2Null/+ mice linked these adverse effects to the hypomorphic R133C mutation. Collectively, these data provide evidence regarding the safety and efficacy of genetically overexpressing functional MeCP2 in Mecp2 R133C mice and suggest that personalized approaches may warrant consideration for the clinical assessment of MeCP2-targeted therapies.  相似文献   

18.
Rett syndrome (RTT) is a pervasive neurodevelopmental disorder mainly caused by mutations in the X-linked MECP2 gene associated with severe intellectual disability, movement disorders, and autistic-like behaviors. Its pathogenesis remains mostly not understood and no effective therapy is available. High circulating levels of oxidative stress markers in patients and the occurrence of oxidative brain damage in MeCP2-deficient mouse models suggest the involvement of oxidative stress in RTT pathogenesis. However, the molecular mechanism and the origin of the oxidative stress have not been elucidated. Here we demonstrate that a redox imbalance arises from aberrant mitochondrial functionality in the brain of MeCP2-308 heterozygous female mice, a condition that more closely recapitulates that of RTT patients. The marked increase in the rate of hydrogen peroxide generation in the brain of RTT mice seems mainly produced by the dysfunctional complex II of the mitochondrial respiratory chain. In addition, both membrane potential generation and mitochondrial ATP synthesis are decreased in RTT mouse brains when succinate, the complex II respiratory substrate, is used as an energy source. Respiratory chain impairment is brain area specific, owing to a decrease in either cAMP-dependent phosphorylation or protein levels of specific complex subunits. Further, we investigated whether the treatment of RTT mice with the bacterial protein CNF1, previously reported to ameliorate the neurobehavioral phenotype and brain bioenergetic markers in an RTT mouse model, exerts specific effects on brain mitochondrial function and consequently on hydrogen peroxide production. In RTT brains treated with CNF1, we observed the reactivation of respiratory chain complexes, the rescue of mitochondrial functionality, and the prevention of brain hydrogen peroxide overproduction. These results provide definitive evidence of mitochondrial reactive oxygen species overproduction in RTT mouse brain and highlight CNF1 efficacy in counteracting RTT-related mitochondrial defects.  相似文献   

19.
Rett syndrome (RTT) is a progressive neurodevelop-mental disorder,mainly caused by mutations in MeCP2 and currently with no cure.We report here that neurons from R106W MeCP2 RTT human iPSCs as well as human embryonic stem cells after MeCP2 knockdown exhibit consistent and long-lasting impairment in maturation as indicated by impaired action potentials and passive membrane properties as well as reduced soma size and spine density.Moreover,RTT-inherent defects in neu-ronal maturation could be pan-neuronal and occurred in neurons with both dorsal and ventral forebrain features.Knockdown of MeCP2 led to more severe neuronal deficits as compared to RTT iPSC-derived neurons,which appeared to retain partial function.Strikingly,consistent deficits in nuclear size,dendritic complexity and circuitry-dependent spontaneous postsynaptic currents could only be observed in MeCP2 knockdown neurons but not RTT iPSC-derived neurons.Both neu-ron-intrinsic and circuitry-dependent deficits of MeCP2-deficient neurons could be fully or partially rescued by re-expression of wild type or T158M MeCP2,strengthening the dosage dependency of MeCP2 on disease phenotypes and also the partial function of the mutant.Our findings thus reveal stable neuronal matu-ration deficits and unexpectedly,graded sensitivities of neuron-inherent and neural transmission phenotypes towards the extent of MeCP2 deficiency,which is infor-mative for future therapeutic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号