首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Distinct metabolic pathways can intersect in ways that allow hierarchical or reciprocal regulation. In a screen of respiration-deficient Saccharomyces cerevisiae gene deletion strains for defects in mitochondrial RNA processing, we found that lack of any enzyme in the mitochondrial fatty acid type II biosynthetic pathway (FAS II) led to inefficient 5′ processing of mitochondrial precursor tRNAs by RNase P. In particular, the precursor containing both RNase P RNA (RPM1) and tRNAPro accumulated dramatically. Subsequent Pet127-driven 5′ processing of RPM1 was blocked. The FAS II pathway defects resulted in the loss of lipoic acid attachment to subunits of three key mitochondrial enzymes, which suggests that the octanoic acid produced by the pathway is the sole precursor for lipoic acid synthesis and attachment. The protein component of yeast mitochondrial RNase P, Rpm2, is not modified by lipoic acid in the wild-type strain, and it is imported in FAS II mutant strains. Thus, a product of the FAS II pathway is required for RNase P RNA maturation, which positively affects RNase P activity. In addition, a product is required for lipoic acid production, which is needed for the activity of pyruvate dehydrogenase, which feeds acetyl-coenzyme A into the FAS II pathway. These two positive feedback cycles may provide switch-like control of mitochondrial gene expression in response to the metabolic state of the cell.  相似文献   

2.
Whereas other organisms utilize type I or type II synthases to make fatty acids, trypanosomatid parasites such as Trypanosoma brucei are unique in their use of a microsomal elongase pathway (ELO) for de novo fatty acid synthesis (FAS). Because of the unusual lipid metabolism of the trypanosome, it was important to study a second FAS pathway predicted by the genome to be a type II synthase. We localized this pathway to the mitochondrion, and RNA interference (RNAi) or genomic deletion of acyl carrier protein (ACP) and beta-ketoacyl-ACP synthase indicated that this pathway is likely essential for bloodstream and procyclic life cycle stages of the parasite. In vitro assays show that the largest major fatty acid product of the pathway is C16, whereas the ELO pathway, utilizing ELOs 1, 2, and 3, synthesizes up to C18. To demonstrate mitochondrial FAS in vivo, we radio-labeled fatty acids in cultured procyclic parasites with [(14)C]pyruvate or [(14)C]threonine, either of which is catabolized to [(14)C]acetyl-CoA in the mitochondrion. Although some of the [(14)C]acetyl-CoA may be utilized by the ELO pathway, a striking reduction in radiolabeled fatty acids following ACP RNAi confirmed that it is also consumed by mitochondrial FAS. ACP depletion by RNAi or gene knockout also reduces lipoic acid levels and drastically decreases protein lipoylation. Thus, octanoate (C8), the precursor for lipoic acid synthesis, must also be a product of mitochondrial FAS. Trypanosomes employ two FAS systems: the unconventional ELO pathway that synthesizes bulk fatty acids and a mitochondrial pathway that synthesizes specialized fatty acids that are likely utilized intramitochondrially.  相似文献   

3.
The trypanosomatid parasite Trypanosoma brucei synthesizes fatty acids in the mitochondrion using the type II fatty acid synthesis (FAS) machinery. When mitochondrial FAS was characterized in T. brucei, all of the enzymatic components were identified based on their homology to yeast mitochondrial FAS enzymes, except for 3-hydroxyacyl-ACP dehydratase. Here we describe the characterization of T. brucei mitochondrial 3-hydroxyacyl-ACP dehydratase (TbHTD2), which was identified by its similarity to the human mitochondrial dehydratase. TbHTD2 can rescue the respiratory deficient phenotype of the yeast knock-out strain and restore the lipoic acid content, is localized in the mitochondrion and exhibits hydratase 2 activity.  相似文献   

4.
A human beta-ketoacyl synthase implicated in a mitochondrial pathway for fatty acid synthesis has been identified, cloned, expressed, and characterized. Sequence analysis indicates that the protein is more closely related to freestanding counterparts found in prokaryotes and chloroplasts than it is to the beta-ketoacyl synthase domain of the human cytosolic fatty acid synthase. The full-length nuclear-encoded 459-residue protein includes an N-terminal sequence element of approximately 38 residues that functions as a mitochondrial targeting sequence. The enzyme can elongate acyl-chains containing 2-14 carbon atoms with malonyl moieties attached in thioester linkage to the human mitochondrial acyl carrier protein and is able to restore growth to the respiratory-deficient yeast mutant cem1 that lacks the endogenous mitochondrial beta-ketoacyl synthase and exhibits lowered lipoic acid levels. To date, four components of a putative type II mitochondrial fatty acid synthase pathway have been identified in humans: acyl carrier protein, malonyl transferase, beta-ketoacyl synthase, and enoyl reductase. The substrate specificity and complementation data for the beta-ketoacyl synthase suggest that, as in plants and fungi, in humans this pathway may play an important role in the generation of octanoyl-acyl carrier protein, the lipoic acid precursor, as well as longer chain fatty acids that are required for optimal mitochondrial function.  相似文献   

5.
Mitochondria and fatty acids are tightly connected to a multiplicity of cellular processes that go far beyond mitochondrial fatty acid metabolism. In line with this view, there is hardly any common metabolic disorder that is not associated with disturbed mitochondrial lipid handling. Among other aspects of mitochondrial lipid metabolism, apparently all eukaryotes are capable of carrying out de novo fatty acid synthesis (FAS) in this cellular compartment in an acyl carrier protein (ACP)-dependent manner. The dual localization of FAS in eukaryotic cells raises the questions why eukaryotes have maintained the FAS in mitochondria in addition to the “classic” cytoplasmic FAS and what the products are that cannot be substituted by delivery of fatty acids of extramitochondrial origin. The current evidence indicates that mitochondrial FAS is essential for cellular respiration and mitochondrial biogenesis. Although both β-oxidation and FAS utilize thioester chemistry, CoA acts as acyl-group carrier in the breakdown pathway whereas ACP assumes this role in the synthetic direction. This arrangement metabolically separates these two pathways running towards opposite directions and prevents futile cycling. A role of this pathway in mitochondrial metabolic sensing has recently been proposed. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.  相似文献   

6.
We describe the physiological function of heterologously expressed Mycobacterium tuberculosis InhA during de novo lipoic acid synthesis in yeast (Saccharomyces cerevisiae) mitochondria. InhA, representing 2-trans-enoyl-acyl carrier protein reductase and the target for the front-line antituberculous drug isoniazid, is involved in the activity of dissociative type 2 fatty acid synthase (FASII) that extends associative type 1 fatty acid synthase (FASI)-derived C20 fatty acids to form C60-to-C90 mycolic acids. Mycolic acids are major constituents of the protective layer around the pathogen that contribute to virulence and resistance to certain antimicrobials. Unlike FASI, FASII is thought to be incapable of de novo biosynthesis of fatty acids. Here, the genes for InhA (Rv1484) and four similar proteins (Rv0927c, Rv3485c, Rv3530c, and Rv3559c) were expressed in S. cerevisiae etr1Δ cells lacking mitochondrial 2-trans-enoyl-thioester reductase activity. The phenotype of the yeast mutants includes the inability to produce sufficient levels of lipoic acid, form mitochondrial cytochromes, respire, or grow on nonfermentable carbon sources. Yeast etr1Δ cells expressing mitochondrial InhA were able to respire, grow on glycerol, and produce lipoic acid. Commensurate with a role in mitochondrial de novo fatty acid biosynthesis, InhA could accept in vivo much shorter acyl-thioesters (C4 to C8) than was previously thought (>C12). Moreover, InhA functioned in the absence of AcpM or protein-protein interactions with its native FASII partners KasA, KasB, FabD, and FabH. None of the four proteins similar to InhA complemented the yeast mutant phenotype. We discuss the implications of our findings with reference to lipoic acid synthesis in M. tuberculosis and the potential use of yeast FASII mutants for investigating the physiological function of drug-targeted pathogen enzymes involved in fatty acid biosynthesis.  相似文献   

7.
Trypanosoma brucei use microsomal elongases for de novo synthesis of most of its fatty acids. In addition, this parasite utilizes an essential mitochondrial type II synthase for production of octanoate (a lipoic acid precursor) as well as longer fatty acids such as palmitate. Evidence from other organisms suggests that mitochondrially synthesized fatty acids are required for efficient respiration but the exact relationship remains unclear. In procyclic form trypanosomes, we also found that RNAi depletion of the mitochondrial acyl carrier protein, an important component of the fatty acid synthesis machinery, significantly reduces cytochrome-mediated respiration. This reduction was explained by RNAi-mediated inhibition of respiratory complexes II, III and IV, but not complex I. Other effects of RNAi, such as changes in mitochondrial morphology and alterations in membrane potential, raised the possibility of a change in mitochondrial membrane composition. Using mass spectrometry, we observed a decrease in total and mitochondrial phosphatidylinositol and mitochondrial phosphatidylethanolamine. Thus, we conclude that the mitochondrial synthase produces fatty acids needed for maintaining local phospholipid levels that are required for activity of respiratory complexes and preservation of mitochondrial morphology and function.  相似文献   

8.
The objective of this study was to evaluate the physiological importance of the mitochondrial fatty acid synthesis pathway in mammalian cells using the RNA interference strategy. Transfection of HEK293T cells with small interfering RNAs targeting the acyl carrier protein (ACP) component reduced ACP mRNA and protein levels by >85% within 24 h. The earliest phenotypic changes observed were a marked decrease in the proportion of post-translationally lipoylated mitochondrial proteins recognized by anti-lipoate antibodies and a reduction in their catalytic activity, and a slowing of the cell growth rate. Later effects observed included a reduction in the specific activity of respiratory complex I, lowered mitochondrial membrane potential, the development of cytoplasmic membrane blebs containing high levels of reactive oxygen species and ultimately, cell death. Supplementation of the culture medium with lipoic acid offered some protection against oxidative damage but did not reverse the protein lipoylation defect. These observations are consistent with a dual role for ACP in mammalian mitochondrial function. First, as a key component of the mitochondrial fatty acid biosynthetic pathway, ACP plays an essential role in providing the octanoyl-ACP precursor required for the protein lipoylation pathway. Second, as one of the subunits of complex I, ACP is required for the efficient functioning of the electron transport chain and maintenance of normal mitochondrial membrane potential.Eukaryotes employ two distinct systems for the synthesis of fatty acids de novo. The bulk of fatty acids destined for membrane biogenesis and energy storage are synthesized in the cytosolic compartment by megasynthases in which the component enzymes are covalently linked in very large polypeptides; this system is referred to as the type I fatty acid synthase (FAS)2 (1, 2). A second system localized in mitochondria is composed of a suite of discrete, freestanding enzymes that closely resemble their counterparts in prokaryotes (310), which are characterized as type II FASs (11). Most of the constituent enzymes of the mitochondrial fatty acid biosynthetic system have been identified and characterized in fungi and animals; all are nuclear-encoded proteins that are transported to the matrix compartment of mitochondria. Fungi with deleted mitochondrial FAS genes fail to grow on non-fermentable carbon sources, have low levels of lipoic acid and elevated levels of mitochondrial lysophospholipids (12, 13). These observations indicate that the mitochondrial FAS may serve to provide the octanoyl precursor required for the biosynthesis of lipoyl moieties de novo, as well as providing fatty acids that are utilized in remodeling of mitochondrial membrane phospholipids (14). The mitochondrial FAS system in animals is less well characterized. However, kinetic analysis of the β-ketoacyl synthase enzyme responsible for catalysis of the chain extension reaction in human mitochondria suggested that this system is uniquely engineered to produce mainly octanoyl moieties and has limited ability to form long-chain products (9). Indeed, studies with a reconstituted system from bovine heart mitochondrial matrix extracts confirmed that octanoyl moieties are the main product and are utilized for the synthesis of lipoyl moieties (15). One of the key components of the prokaryotic and mitochondrial FAS systems is a small molecular mass, freestanding protein, the ACP, that shuttles substrates and pathway intermediates to each of the component enzymes. The mitochondrial ACP is localized primarily in the matrix compartment (16), but a small fraction is integrated into complex I of the electron transport chain (1723). As is the case with many of the other 45 subunits of complex I, the role of the ACP subunit is unclear (24). To clarify the physiological importance of the mitochondrial FAS, and the mitochondrial ACP in particular, in mammalian mitochondrial function we have utilized an RNA interference strategy to knockdown the mitochondrial ACP in cultured HEK293T cells.  相似文献   

9.
The activity of fatty acid synthetase (FAS) from Vibrio sp. strain ABE-1 required the presence of acyl carrier protein and was completely inhibited by thiolactomycin, an inhibitor specific for a type II FAS. These observations indicate that this enzyme is a type II FAS. Analysis by gas-liquid chromotography of the reaction products synthesized in vitro from [2-14C]malonyl-CoA by the partially purified FAS revealed, in addition to 16-and 18-carbon fatty acids which are normal constituents of this bacterium, the presence of fatty acids with very long chains. These fatty acids were identified as saturated and mono-unsaturated fatty acids with 20 up to as many as 30 carbon atoms. The longest fatty acids normally found in this bacterium contain 18-carbon atoms. These results suggest that the FAS from Vibrio sp. strain ABE-1 has potentially the ability to synthesize fatty acids with very long chains.Abbreviations ACP acyl carrier protein - FAME fatty acid methyl ester - FAS fatty acid synthetase - FID flame ionization detection - GLC gas-liquid chromatography - TLC thin-layer chromatography - In designations of fatty acids, such as 16:0, 16:1, etc the colon separates the number that denotes the number of carbon atoms and the number that denotes the number of double bonds, respectively, in the molecule - 16:0-CoA CoA ester of 16:0  相似文献   

10.
It has been recently recognized that mammalian mitochondria contain most, if not all, of the components of fatty acid synthesis type II (FAS II). Among the components identified is 2-enoyl thioester reductase/mitochondrial enoyl-CoA reductase (Etr1/Mecr), which catalyzes the NADPH-dependent reduction of trans-2-enoyl thioesters, generating saturated acyl-groups. Although the FAS type II pathway is highly conserved, its physiological role in fatty acid synthesis, which apparently occurs simultaneously with breakdown of fatty acids in the same subcellular compartment in mammals, has remained an enigma. To study the in vivo function of the mitochondrial FAS in mammals, with special reference to Mecr, we generated mice overexpressing Mecr under control of the mouse metallothionein-1 promoter. These Mecr transgenic mice developed cardiac abnormalities as demonstrated by echocardiography in vivo, heart perfusion ex vivo, and electron microscopy in situ. Moreover, the Mecr transgenic mice showed decreased performance in endurance exercise testing. Our results showed a ventricular dilatation behind impaired heart function upon Mecr overexpression, concurrent with appearance of dysmorphic mitochondria. Furthermore, the data suggested that inappropriate expression of genes of FAS II can result in the development of hereditary cardiomyopathy.  相似文献   

11.
Acyl carrier protein (ACP) is a principal partner in the cytosolic and mitochondrial fatty acid synthesis (FAS) pathways. The active form holo-ACP serves as FAS platform, using its 4′-phosphopantetheine group to present covalently attached FAS intermediates to the enzymes responsible for the acyl chain elongation process. Mitochondrial unacylated holo-ACP is a component of mammalian mitoribosomes, and acylated ACP species participate as interaction partners in several ACP-LYRM (leucine-tyrosine-arginine motif)-protein heterodimers that act either as assembly factors or subunits of the electron transport chain and Fe-S cluster assembly complexes. Moreover, octanoyl-ACP provides the C8 backbone for endogenous lipoic acid synthesis. Accumulating evidence suggests that mtFAS-generated acyl-ACPs act as signaling molecules in an intramitochondrial metabolic state sensing circuit, coordinating mitochondrial acetyl-CoA levels with mitochondrial respiration, Fe-S cluster biogenesis and protein lipoylation.  相似文献   

12.
Substrate specificity of condensing enzymes is a predominant factor determining the nature of fatty acyl chains synthesized by type II fatty acid synthase (FAS) enzyme complexes composed of discrete enzymes. The gene (mtKAS) encoding the condensing enzyme, beta-ketoacyl-[acyl carrier protein] (ACP) synthase (KAS), constituent of the mitochondrial FAS was cloned from Arabidopsis thaliana, and its product was purified and characterized. The mtKAS cDNA complemented the KAS II defect in the E. coli CY244 strain mutated in both fabB and fabF encoding KAS I and KAS II, respectively, demonstrating its ability to catalyze the condensation reaction in fatty acid synthesis. In vitro assays using extracts of CY244 containing all E. coli FAS components, except that KAS I and II were replaced by mtKAS, gave C(4)-C(18) fatty acids exhibiting a bimodal distribution with peaks at C(8) and C(14)-C(16). Previously observed bimodal distributions obtained using mitochondrial extracts appear attributable to the mtKAS enzyme in the extracts. Although the mtKAS sequence is most similar to that of bacterial KAS IIs, sensitivity of mtKAS to the antibiotic cerulenin resembles that of E. coli KAS I. In the first or priming condensation reaction of de novo fatty acid synthesis, purified His-tagged mtKAS efficiently utilized malonyl-ACP, but not acetyl-CoA as primer substrate. Intracellular targeting using green fluorescent protein, Western blot, and deletion analyses identified an N-terminal signal conveying mtKAS into mitochondria. Thus, mtKAS with its broad chain length specificity accomplishes all condensation steps in mitochondrial fatty acid synthesis, whereas in plastids three KAS enzymes are required.  相似文献   

13.
Structural and kinetic properties of the human 2-enoyl thioester reductase [mitochondrial enoyl-coenzyme A reductase (MECR)/ETR1] of the mitochondrial fatty acid synthesis (FAS) II pathway have been determined. The crystal structure of this dimeric enzyme (at 2.4 Å resolution) suggests that the binding site for the recognition helix of the acyl carrier protein is in a groove between the two adjacent monomers. This groove is connected via the pantetheine binding cleft to the active site. The modeled mode of NADPH binding, using molecular dynamics calculations, suggests that Tyr94 and Trp311 are critical for catalysis, which is supported by enzyme kinetic data. A deep, water-filled pocket, shaped by hydrophobic and polar residues and extending away from the catalytic site, was recognized. This pocket can accommodate a fatty acyl tail of up to 16 carbons. Mutagenesis of the residues near the end of this pocket confirms the importance of this region for the binding of substrate molecules with long fatty acyl tails. Furthermore, the kinetic analysis of the wild-type MECR/ETR1 shows a bimodal distribution of catalytic efficiencies, in agreement with the notion that two major products are generated by the mitochondrial FAS II pathway.  相似文献   

14.
15.
Lipoic acid is a sulfur-containing cofactor required for the function of several multienzyme complexes involved in the oxidative decarboxylation of α-keto acids and glycine. Mechanistic details of lipoic acid metabolism are unclear in eukaryotes, despite two well defined pathways for synthesis and covalent attachment of lipoic acid in prokaryotes. We report here the involvement of four genes in the synthesis and attachment of lipoic acid in Saccharomyces cerevisiae. LIP2 and LIP5 are required for lipoylation of all three mitochondrial target proteins: Lat1 and Kgd2, the respective E2 subunits of pyruvate dehydrogenase and α-ketoglutarate dehydrogenase, and Gcv3, the H protein of the glycine cleavage enzyme. LIP3, which encodes a lipoate-protein ligase homolog, is necessary for lipoylation of Lat1 and Kgd2, and the enzymatic activity of Lip3 is essential for this function. Finally, GCV3, encoding the H protein target of lipoylation, is itself absolutely required for lipoylation of Lat1 and Kgd2. We show that lipoylated Gcv3, and not glycine cleavage activity per se, is responsible for this function. Demonstration that a target of lipoylation is required for lipoylation is a novel result. Through analysis of the role of these genes in protein lipoylation, we conclude that only one pathway for de novo synthesis and attachment of lipoic acid exists in yeast. We propose a model for protein lipoylation in which Lip2, Lip3, Lip5, and Gcv3 function in a complex, which may be regulated by the availability of acetyl-CoA, and which in turn may regulate mitochondrial gene expression.Several oxidative decarboxylation reactions are carried out in prokaryotes and eukaryotes by multienzyme complexes. The function of these complexes requires the action of a sulfur-containing cofactor, lipoic acid (6,8-thioctic acid) (1, 2). Lipoic acid is covalently attached via an amide linkage to a specific lysine residue on the surface of the conserved lipoyl domain of the E2 subunits of pyruvate dehydrogenase (PDH),3 α-ketoglutarate dehydrogenase (α-KDH), the branched chain α-keto acid dehydrogenase complexes, and the H protein of the glycine cleavage (GC) enzyme (3). The lipoyl moiety serves as a swinging arm that shuttles reaction intermediates between active sites within the complexes (1). Despite the well characterized function of lipoic acid as a prosthetic group, the mechanisms of its synthesis and attachment to proteins are the subject of ongoing investigations (47).These reactions are best understood in Escherichia coli, which has two well defined pathways for lipoic acid synthesis and attachment: a de novo pathway and a salvage pathway (8). Octanoic acid, synthesized on the acyl carrier protein (ACP) (9), is the substrate for the de novo pathway. Lipoyl synthase (LipA) catalyzes the addition of two sulfur atoms to form lipoic acid from octanoic acid either before or after transfer to the target protein (10) by lipoyl(octanoyl)-ACP:protein transferase (LipB) (11, 12). The preferred order of these two reactions is attachment of octanoic acid by LipB, followed by addition of sulfur by LipA (13). By contrast, in the salvage pathway, lipoate-protein ligase (LplA) attaches free lipoic acid to proteins in a two-step reaction. Lipoic acid, which can be scavenged from the medium, is first activated to lipoyl-AMP and then the lipoyl group is transferred to the proteins (14).Lipoic acid synthesis and attachment to target proteins are less well understood in eukaryotes. Homologs of the E. coli enzymes have been found in fungi, plants, protists, and mammals, but many mechanistic details are unclear (1517). In Saccharomyces cerevisiae, the mitochondrial type II fatty acid biosynthetic pathway (FAS II) synthesizes octanoyl-ACP, which is the substrate for de novo lipoic acid synthesis (18). Lip2 and Lip5, the respective yeast homologs of E. coli LipB and LipA, were shown to be required for respiratory growth on glycerol medium, PDH activity (19), and lipoic acid synthesis (20), indicating functional roles in de novo lipoic acid synthesis and attachment. However, there has been no previous report of an LplA-like lipoate-protein ligase homolog in yeast. Furthermore, lip2 and lip5 mutant strains cannot grow on medium containing lipoic acid (19, 20), suggesting that yeast either cannot use exogenously supplied lipoic acid or there is no yeast equivalent of the E. coli LplA-driven salvage pathway.Here we report the involvement of two additional enzymes in protein lipoylation in yeast mitochondria. The first, Lip3, is a lipoate-protein ligase homolog and is required with Lip2 and Lip5 for lipoylation of the E2 subunits of PDH (Lat1) and α-KDH (Kgd2). The second enzyme, Gcv3, the H protein of the GC enzyme, is absolutely required for lipoylation of all proteins in yeast.  相似文献   

16.
Fatty acid synthase (FAS) is a multifunctional homodimeric protein, and is the key enzyme required for the anabolic conversion of dietary carbohydrates to fatty acids. FAS synthesizes long-chain fatty acids from three substrates: acetyl-CoA as a primer, malonyl-CoA as a 2 carbon donor, and NADPH for reduction. The entire reaction is composed of numerous sequential steps, each catalyzed by a specific functional domain of the enzyme. FAS comprises seven different functional domains, among which the β-ketoacyl synthase (KS) domain carries out the key condensation reaction to elongate the length of fatty acid chain. Acyl tail length controlled fatty acid synthesis in eukaryotes is a classic example of how a chain building multienzyme works. Different hypotheses have been put forward to explain how those sub-units of FAS are orchestrated to produce fatty acids with proper molecular weight. In the present study, molecular dynamic simulation based binding free energy calculation and access tunnels analysis showed that the C16 acyl tail fatty acid, the major product of FAS, fits to the active site on KS domain better than any other substrates. These simulations supported a new hypothesis about the mechanism of fatty acid production ratio: the geometric shape of active site on KS domain might play a determinate role.  相似文献   

17.
It is generally admitted that the ascomycete yeasts of the subphylum Saccharomycotina possess a single fatty acid ß-oxidation pathway located exclusively in peroxisomes, and that they lost mitochondrial ß-oxidation early during evolution. In this work, we showed that mutants of the opportunistic pathogenic yeast Candida lusitaniae which lack the multifunctional enzyme Fox2p, a key enzyme of the ß-oxidation pathway, were still able to grow on fatty acids as the sole carbon source, suggesting that C. lusitaniae harbored an alternative pathway for fatty acid catabolism. By assaying 14Cα-palmitoyl-CoA consumption, we demonstrated that fatty acid catabolism takes place in both peroxisomal and mitochondrial subcellular fractions. We then observed that a fox2Δ null mutant was unable to catabolize fatty acids in the mitochondrial fraction, thus indicating that the mitochondrial pathway was Fox2p-dependent. This finding was confirmed by the immunodetection of Fox2p in protein extracts obtained from purified peroxisomal and mitochondrial fractions. Finally, immunoelectron microscopy provided evidence that Fox2p was localized in both peroxisomes and mitochondria. This work constitutes the first demonstration of the existence of a Fox2p-dependent mitochondrial β-oxidation pathway in an ascomycetous yeast, C. lusitaniae. It also points to the existence of an alternative fatty acid catabolism pathway, probably located in peroxisomes, and functioning in a Fox2p-independent manner.  相似文献   

18.
We have cultivated the cel mutant of Neurospora crassa defective in cytosolic fatty acid synthesis with [2-14C]malonate and found radioactivity covalently attached to the mitochondrial acyl-carrier protein (ACP), a subunit of the respiratory chain NADH:ubiquinone oxidoreductase. We purified the ACP by reverse-phase HPLC: the bound acyl groups were trans-esterified to methylesters and analyzed by gas chromatography. The saturated C6 to C18 fatty acids and oleic acid were detected. De novo synthesis and desaturation of fatty acids at the ACP subunit of NADH:ubiquinone oxidoreductase and use of the products of this mitochondrial synthetic pathway for cardiolipin synthesis is discussed.  相似文献   

19.
Kroumova AB  Wagner GJ 《Planta》2003,216(6):1013-1021
Two common pathways are known for elongation of aliphatic acids via acetate in biological organisms: the fatty acid synthase (FAS) and the alpha-ketoacid elongation (alphaKAE) pathways. The alphaKAE route is utilized in many biosynthetic pathways, including the tricarboxylic acid cycle, leucine biosynthesis, and in formation of coenzyme B, glucosinolates, alpha-ketoadipate, sugar-ester acyl acids, short-chain alcohols of yeast and Clostridium species, 2-amino-4-methylhex-4-enoic acid, and l-gamma-phenyl butyrine. In the FAS route, both carbons from acetyl-acyl carrier protein are retained per elongation cycle, while in the alphaKAE route only one carbon from acetyl-coenzyme A is retained. Available evidence indicates that different members of the family Solanaceae may use one or the other of these elongation mechanisms in the synthesis of acyl groups of trichome-exuded sugar esters. In both, precursors for elongation are derived from branched-chain amino acid metabolism. Here we compared radiolabeling patterns in sugar-ester acyl groups from trichomes (the specific tissue in which sugar esters are synthesized) of the tobaccos, Nicotiana benthamiana, N. gossei, N. glutinosa, of Petunia x hybrida cv. Falcon Red & White, and Datura metel, and epidermal peels of Lycopsersicon pennellii after their synthesis from [2-(14)C]-, [1-(14)C]- and [1,2-(14)C]acetate. Recovered acyl acids were purified and then degraded to determine label distribution between the carboxyl termini and the remainder of the molecules. Six- and 20-h incubations were studied, and membrane fatty acids were monitored as internal controls for FAS-mediated elongation. Results are consistent with participation of alphaKAE in synthesis of sugar-ester acyl groups of tobaccos and petunia, but apparently FAS is utilized in the formation of these groups in L. pennellii and D. metel.  相似文献   

20.
Medium-chain fatty acids (C6–C10) have attracted much attention recently for their unique properties compared to their long-chain counterparts, including low melting points and relatively higher carbon conversion yield. Thioesterase enzymes, which can catalyze the hydrolysis of acyl-ACP (acyl carrier protein) to release free fatty acids (FAs), regulate both overall FA yields and acyl chain length distributions in bacterial and yeast fermentation cultures. These enzymes typically prefer longer chain substrates. Herein, seeking to increase bacterial production of MCFAs, we conducted structure-guided mutational screening of multiple residues in the substrate-binding pocket of the E. coli thioesterase enzyme ‘TesA. Confirming our hypothesis that enhancing substrate selectivity for medium-chain acyl substrates would promote overall MCFA production, we found that replacement of residues lining the bottom of the pocket with more hydrophobic residues strongly promoted the C8 substrate selectivity of ‘TesA. Specifically, two rounds of saturation mutagenesis led to the identification of the ‘TesARD−2 variant that exhibited a 133-fold increase in selectivity for the C8-ACP substrate as compared to C16-ACP substrate. Moreover, the recombinant expression of this variant in an E. coli strain with a blocked β-oxidation pathway led to a 1030% increase in the in vivo octanoic acid (C8) production titer. When this strain was fermented in a 5-L fed-batch bioreactor, it produced 2.7 g/L of free C8 (45%, molar fraction) and 7.9 g/L of total free FAs, which is the highest-to-date free C8 titer to date reported using the E. coli type II fatty acid synthetic pathway. Thus, reshaping the substrate binding pocket of a bacterial thioesterase enzyme by manipulating the hydrophobicity of multiple residues altered the substrate selectivity and therefore fatty acid product distributions in cells. Our study demonstrates the relevance of this strategy for increasing titers of industrially attractive MCFAs as fermentation products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号