首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The effect of bile acids as inducers of Ca2+ efflux from the matrix was studied on isolated rat liver mitochondria. Mitochondria in the presence of cyclosporin A (CsA) were energized by succinate, then loaded with Ca2+ and after the addition of the calcium uniporter inhibitor ruthenium red were de-energized by malonate. It was shown that under these conditions hydrophobic bile acids lithocholic and chenodeoxycholic at concentrations of 10 and 30 μM respectively and hydrophilic bile acids ursodeoxycholic and cholic at a concentration of 400 μM induce Ca2+ efflux from the mitochondrial matrix. It is noted that the efflux of these ions is not associated with damage of the inner mitochondrial membrane by bile acids, since it is accompanied by the generation of Δψ, i.e., the formation of the diffusion potential. It is assumed that along with induction of calcium efflux from the matrix, bile acids are also capable of transporting hydrogen and potassium ions in the opposite direction, i.e., perform H+/Ca2+ and K+/Ca2+ exchange. It was found that ruthenium red added to Ca2+-loaded energized mitochondria prevents the return of these ions to the matrix and weakens the effect of chenodeoxycholic acid as an inducer of the CsA-sensitive mitochondrial pore and the effect of ursodeoxycholic acid as an inducer of CsA-insensitive permeability of the inner mitochondrial membrane. We conclude that in the conditions of the calcium uniporter activity decrease, Ca2+ efflux from the matrix induced by bile acids can be considered as one of the mechanisms reducing their effectiveness as inducers of the Ca2+-dependent CsA-sensitive pore and CsA-insensitive permeability transition in mitochondria.  相似文献   

2.
A historical review of cellular calcium handling,with emphasis on mitochondria   总被引:13,自引:0,他引:13  
Calcium ions are of central importance in cellular physiology, as they carry the signal activating cells to perform their programmed function. Ca2+ is particularly suitable for this role because of its chemical properties and because its free concentration gradient between the extra cellular and the cytosolic concentrations is very high, about four orders of magnitude. The cytosolic concentration of Ca2+ is regulated by binding and chelation by various substances and by transport across plasma and intracellular membranes. Various channels, transport ATPases, uniporters, and antiporters in the plasma mem brane, endoplasmic and sarcoplasmic reticulum, and mitochondria are responsible for the transport of Ca2+ .The regulation of these transport systems is the subject of an increasing number of studies. In this short review, we focus on the mitochondrial transporters, i.e. the calcium uniporter used for Ca2+ uptake, and the antiporters used for the efflux, i.e. the Ca2+/Na+ antiporter in mitochondria and the plasma membrane of excitable cells,and the Ca2+/nH+ antiporter in liver and some other mitochondrial types. Mitochondria are of special interest in that Ca2+ stimulates respiration and oxidative phosphorylation to meet the energy needs of activated cells. The studies on Ca2+ and mitochondria began in the fifties, but interest in mito chondrial Ca2+ handling faded in the late seventies since it had become apparent that mitochondria in resting cells contain very low Ca2+. Interest increased again in the nineties also because it was discovered that mitochondria and Ca2+ had a central role in apoptosis and necrosis. This is of special interest in calcium overload and oxidative stress conditions, when the opening of the mitochondrial permeability transition pore is stimulated.Translated from Biokhimiya,Vol. 70, No. 2, 2005, pp. 231–239.Original Russian Text Copyright © 2005 by Saris, Carafoli.This revised version was published online in April 2005 with corrections to the post codes.  相似文献   

3.
Plant organelle function must constantly adjust to environmental conditions, which requires dynamic coordination. Ca2+ signaling may play a central role in this process. Free Ca2+ dynamics are tightly regulated and differ markedly between the cytosol, plastid stroma, and mitochondrial matrix. The mechanistic basis of compartment-specific Ca2+ dynamics is poorly understood. Here, we studied the function of At-MICU, an EF-hand protein of Arabidopsis thaliana with homology to constituents of the mitochondrial Ca2+ uniporter machinery in mammals. MICU binds Ca2+ and localizes to the mitochondria in Arabidopsis. In vivo imaging of roots expressing a genetically encoded Ca2+ sensor in the mitochondrial matrix revealed that lack of MICU increased resting concentrations of free Ca2+ in the matrix. Furthermore, Ca2+ elevations triggered by auxin and extracellular ATP occurred more rapidly and reached higher maximal concentrations in the mitochondria of micu mutants, whereas cytosolic Ca2+ signatures remained unchanged. These findings support the idea that a conserved uniporter system, with composition and regulation distinct from the mammalian machinery, mediates mitochondrial Ca2+ uptake in plants under in vivo conditions. They further suggest that MICU acts as a throttle that controls Ca2+ uptake by moderating influx, thereby shaping Ca2+ signatures in the matrix and preserving mitochondrial homeostasis. Our results open the door to genetic dissection of mitochondrial Ca2+ signaling in plants.  相似文献   

4.
Excessive “excitotoxic” accumulation of Ca2+ and Zn2+ within neurons contributes to neurodegeneration in pathological conditions including ischemia. Putative early targets of these ions, both of which are linked to increased reactive oxygen species (ROS) generation, are mitochondria and the cytosolic enzyme, NADPH oxidase (NOX). The present study uses primary cortical neuronal cultures to examine respective contributions of mitochondria and NOX to ROS generation in response to Ca2+ or Zn2+ loading. Induction of rapid cytosolic accumulation of either Ca2+ (via NMDA exposure) or Zn2+ (via Zn2+/Pyrithione exposure in 0 Ca2+) caused sharp cytosolic rises in these ions, as well as a strong and rapid increase in ROS generation. Inhibition of NOX activation significantly reduced the Ca2+-induced ROS production with little effect on the Zn2+- triggered ROS generation. Conversely, dissipation of the mitochondrial electrochemical gradient increased the cytosolic Ca2+ or Zn2+ rises caused by these exposures, consistent with inhibition of mitochondrial uptake of these ions. However, such disruption of mitochondrial function markedly suppressed the Zn2+-triggered ROS, while partially attenuating the Ca2+-triggered ROS. Furthermore, block of the mitochondrial Ca2+ uniporter (MCU), through which Zn2+ as well as Ca2+ can enter the mitochondrial matrix, substantially diminished Zn2+ triggered ROS production, suggesting that the ROS generation occurs specifically in response to Zn2+ entry into mitochondria. Finally, in the presence of the sulfhydryl-oxidizing agent 2,2''-dithiodipyridine, which impairs Zn2+ binding to cytosolic metalloproteins, far lower Zn2+ exposures were able to induce mitochondrial Zn2+ uptake and consequent ROS generation. Thus, whereas rapid acute accumulation of Zn2+ and Ca2+ each can trigger injurious ROS generation, Zn2+ entry into mitochondria via the MCU may do so with particular potency. This may be of particular relevance to conditions like ischemia in which cytosolic Zn2+ buffering is impaired due to acidosis and oxidative stress.  相似文献   

5.
Calcium is a major regulator of cellular metabolism. Calcium controls mitochondrial respiration, and calcium signaling is used to meet cellular energetic demands through energy production in the organelle. Although it has been widely assumed that Ca2+-actions require its uptake by mitochondrial calcium uniporter (MCU), alternative pathways modulated by cytosolic Ca2+ have been recently proposed. Recent findings have indicated a role for cytosolic Ca2+ signals acting on mitochondrial NADH shuttles in the control of cellular metabolism in neurons using glucose as fuel. It has been demonstrated that AGC1/Aralar, the component of the malate/aspartate shuttle (MAS) regulated by cytosolic Ca2+, participates in the maintenance of basal respiration exerted through Ca2+-fluxes between ER and mitochondria, whereas mitochondrial Ca2+-uptake by MCU does not contribute. Aralar/MAS pathway, activated by small cytosolic Ca2+ signals, provides in fact substrates, redox equivalents and pyruvate, fueling respiration. Upon activation and increases in workload, neurons upregulate OxPhos, cytosolic pyruvate production and glycolysis, together with glucose uptake, in a Ca2+-dependent way, and part of this upregulation is via Ca2+ signaling. Both MCU and Aralar/MAS contribute to OxPhos upregulation, Aralar/MAS playing a major role, especially at small and submaximal workloads. Ca2+ activation of Aralar/MAS, by increasing cytosolic NAD+/NADH provides Ca2+-dependent increases in glycolysis and cytosolic pyruvate production priming respiration as a feed-forward mechanism in response to workload. Thus, except for glucose uptake, these processes are dependent on Aralar/MAS, whereas MCU is the relevant target for Ca2+ signaling when MAS is bypassed, by using pyruvate or β-hydroxybutyrate as substrates.  相似文献   

6.
Bongkrekic acid and atractyloside, inhibitors of adenine nucleotide translocase, do not inhibit Ca2+ uptake and H+ production by pig heart mitochondria. However, bongkrekic acid, but not atractyloside, inhibits dinitrophenol-induced Ca2+ efflux and H+ uptake. Conversely, ruthenium red blocks Ca2+ uptake and H+ production but does not prevent dinitrophenol-induced Ca2+ efflux and H+ uptake by mitochondria. These results suggest that mitochondrial Ca2+ uptake and release exist as two independent pathways. The efflux of Ca2+ from mitochondria is mediated by a bongkrekic acid sensitive component which is apparently not identical to the ruthenium red sensitive Ca2+ uptake carrier.  相似文献   

7.
Ca2+ transport through mitochondrial Ca2+ uniporter is the primary Ca2+ uptake mechanism in respiring mitochondria. Thus, the uniporter plays a key role in regulating mitochondrial Ca2+. Despite the importance of mitochondrial Ca2+ to metabolic regulation and mitochondrial function, and to cell physiology and pathophysiology, the structure and composition of the uniporter functional unit and kinetic mechanisms associated with Ca2+ transport into mitochondria are still not well understood. In this study, based on available experimental data on the kinetics of Ca2+ transport via the uniporter, a mechanistic kinetic model of the uniporter is introduced. The model is thermodynamically balanced and satisfactorily describes a large number of independent data sets in the literature on initial or pseudo-steady-state influx rates of Ca2+ via the uniporter measured under a wide range of experimental conditions. The model is derived assuming a multi-state catalytic binding and Eyring's free-energy barrier theory-based transformation mechanisms associated with the carrier-mediated facilitated transport and electrodiffusion. The model is a great improvement over the previous theoretical models of mitochondrial Ca2+ uniporter in the literature in that it is thermodynamically balanced and matches a large number of independently published data sets on mitochondrial Ca2+ uptake. This theoretical model will be critical in developing mechanistic, integrated models of mitochondrial Ca2+ handling and bioenergetics which can be helpful in understanding the mechanisms by which Ca2+ plays a role in mediating signaling pathways and modulating mitochondrial energy metabolism.  相似文献   

8.
Ca2+ plays a central role in energy supply and demand matching in cardiomyocytes by transmitting changes in excitation-contraction coupling to mitochondrial oxidative phosphorylation. Matrix Ca2+ is controlled primarily by the mitochondrial Ca2+ uniporter and the mitochondrial Na+/Ca2+ exchanger, influencing NADH production through Ca2+-sensitive dehydrogenases in the Krebs cycle. In addition to the well-accepted role of the Ca2+-triggered mitochondrial permeability transition pore in cell death, it has been proposed that the permeability transition pore might also contribute to physiological mitochondrial Ca2+ release. Here we selectively measure Ca2+ influx rate through the mitochondrial Ca2+ uniporter and Ca2+ efflux rates through Na+-dependent and Na+-independent pathways in isolated guinea pig heart mitochondria in the presence or absence of inhibitors of mitochondrial Na+/Ca2+ exchanger (CGP 37157) or the permeability transition pore (cyclosporine A). cyclosporine A suppressed the negative bioenergetic consequences (ΔΨm loss, Ca2+ release, NADH oxidation, swelling) of high extramitochondrial Ca2+ additions, allowing mitochondria to tolerate total mitochondrial Ca2+ loads of > 400 nmol/mg protein. For Ca2+ pulses up to 15 μM, Na+-independent Ca2+ efflux through the permeability transition pore accounted for ~ 5% of the total Ca2+ efflux rate compared to that mediated by the mitochondrial Na+/Ca2+ exchanger (in 5 mM Na+). Unexpectedly, we also observed that cyclosporine A inhibited mitochondrial Na+/Ca2+ exchanger-mediated Ca2+ efflux at higher concentrations (IC50 = 2 μM) than those required to inhibit the permeability transition pore, with a maximal inhibition of ~ 40% at 10 μM cyclosporine A, while having no effect on the mitochondrial Ca2+ uniporter. The results suggest a possible alternative mechanism by which cyclosporine A could affect mitochondrial Ca2+ load in cardiomyocytes, potentially explaining the paradoxical toxic effects of cyclosporine A at high concentrations. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.  相似文献   

9.
The transfer of Ca2+ across the inner mitochondrial membrane is an important physiological process linked to the regulation of metabolism, signal transduction, and cell death. While the definite molecular composition of mitochondrial Ca2+ uptake sites remains unknown, several proteins of the inner mitochondrial membrane, that are likely to accomplish mitochondrial Ca2+ fluxes, have been described: the novel uncoupling proteins 2 and 3, the leucine zipper-EF-hand containing transmembrane protein 1 and the mitochondrial calcium uniporter. It is unclear whether these proteins contribute to one unique mitochondrial Ca2+ uptake pathway or establish distinct routes for mitochondrial Ca2+ sequestration. In this study, we show that a modulation of Ca2+ release from the endoplasmic reticulum by inhibition of the sarco/endoplasmatic reticulum ATPase modifies cytosolic Ca2+ signals and consequently switches mitochondrial Ca2+ uptake from an uncoupling protein 3- and mitochondrial calcium uniporter-dependent, but leucine zipper-EF-hand containing transmembrane protein 1-independent to a leucine zipper-EF-hand containing transmembrane protein 1- and mitochondrial calcium uniporter-mediated, but uncoupling protein 3-independent pathway. Thus, the activity of sarco/endoplasmatic reticulum ATPase is significant for the mode of mitochondrial Ca2+ sequestration and determines which mitochondrial proteins might actually accomplish the transfer of Ca2+ across the inner mitochondrial membrane. Moreover, our findings herein support the existence of distinct mitochondrial Ca2+ uptake routes that might be essential to ensure an efficient ion transfer into mitochondria despite heterogeneous cytosolic Ca2+ rises.  相似文献   

10.
Prooxidants induce release of Ca2+ from mitochondria through the giant solute pore in the mitochondrial inner membrane. However, under appropriate conditions prooxidants can induce Ca2+ release without inducing a nonspecific permeability change. Prooxidant-induced release of Ca2+ isselective. Presumably, this is the result of the operation of a permeability pathway for H+ coupled to the reversal of the Ca2+ uniporter, the latter generating the selectivity. The solute pore and prooxidant-induced Ca2+-specific pathways exhibit common sensitivities to a set of inhibitors and activators. It is proposed that the pore can operate in two open states: (1) permeable to H+ only and (2) permeable to solutes of Mr<1500. Under some conditions, prooxidants induce the H+-selective state which, in turn, collapses the inner membrane potential and permits selective loss of Ca2+ via the Ca2+ uniporter.  相似文献   

11.
Mitochondria contribute to cytosolic Ca2+ homeostasis through several uptake and release pathways. Here we report that 1,2-sn-diacylglycerols (DAGs) induce Ca2+ release from Ca2+-loaded mammalian mitochondria. Release is not mediated by the uniporter or the Na+/Ca2+ exchanger, nor is it attributed to putative catabolites. DAGs-induced Ca2+ efflux is biphasic. Initial release is rapid and transient, insensitive to permeability transition inhibitors, and not accompanied by mitochondrial swelling. Following initial rapid release of Ca2+ and relatively slow reuptake, a secondary progressive release of Ca2+ occurs, associated with swelling, and mitigated by permeability transition inhibitors. The initial peak of DAGs-induced Ca2+ efflux is abolished by La3+ (1 mM) and potentiated by protein kinase C inhibitors. Phorbol esters, 1,3-diacylglycerols and 1-monoacylglycerols do not induce mitochondrial Ca2+ efflux. Ca2+-loaded mitoplasts devoid of outer mitochondrial membrane also exhibit DAGs-induced Ca2+ release, indicating that this mechanism resides at the inner mitochondrial membrane. Patch clamping brain mitoplasts reveal DAGs-induced slightly cation-selective channel activity that is insensitive to bongkrekic acid and abolished by La3+. The presence of a second messenger-sensitive Ca2+ release mechanism in mitochondria could have an important impact on intracellular Ca2+ homeostasis.  相似文献   

12.
In pancreatic β-cells, uptake of Ca2+ into mitochondria facilitates metabolism-secretion coupling by activation of various matrix enzymes, thus facilitating ATP generation by oxidative phosphorylation and, in turn, augmenting insulin release. We employed an siRNA-based approach to evaluate the individual contribution of four proteins that were recently described to be engaged in mitochondrial Ca2+ sequestration in clonal INS-1 832/13 pancreatic β-cells: the mitochondrial Ca2+ uptake 1 (MICU1), mitochondrial Ca2+ uniporter (MCU), uncoupling protein 2 (UCP2), and leucine zipper EF-hand-containing transmembrane protein 1 (LETM1). Using a FRET-based genetically encoded Ca2+ sensor targeted to mitochondria, we show that a transient knockdown of MICU1 or MCU diminished mitochondrial Ca2+ uptake upon both intracellular Ca2+ release and Ca2+ entry via L-type channels. In contrast, knockdown of UCP2 and LETM1 exclusively reduced mitochondrial Ca2+ uptake in response to either intracellular Ca2+ release or Ca2+ entry, respectively. Therefore, we further investigated the role of MICU1 and MCU in metabolism-secretion coupling. Diminution of MICU1 or MCU reduced mitochondrial Ca2+ uptake in response to d-glucose, whereas d-glucose-triggered cytosolic Ca2+ oscillations remained unaffected. Moreover, d-glucose-evoked increases in cytosolic ATP and d-glucose-stimulated insulin secretion were diminished in MICU1- or MCU-silenced cells. Our data highlight the crucial role of MICU1 and MCU in mitochondrial Ca2+ uptake in pancreatic β-cells and their involvement in the positive feedback required for sustained insulin secretion.  相似文献   

13.
The receptor‐evoked Ca2+ signal is sensed and translated by mitochondria. Physiological cytoplasmic Ca2+ ([Ca2+]c) oscillations result in mitochondrial Ca2+ ([Ca2+]m) oscillations, while large and sustained [Ca2+]c increase results in a pathologic increase in basal [Ca2+]m and in Ca2+ accumulation. The physiological [Ca2+]m signal regulates [Ca2+]c and stimulates oxidative metabolism, while excess Ca2+ accumulation causes cell stress leading to cell death. [Ca2+]m is determined by Ca2+ uptake mediated by the mitochondria Ca2+ uniporter (MCU) channel and by Na+‐ and H+‐coupled Ca2+ extrusion 1 .  相似文献   

14.
Modulation of calcium signalling by mitochondria   总被引:1,自引:0,他引:1  
Ciara Walsh 《BBA》2009,1787(11):1374-1382
In this review we will attempt to summarise the complex and sometimes contradictory effects that mitochondria have on different forms of calcium signalling. Mitochondria can influence Ca2+ signalling indirectly by changing the concentration of ATP, NAD(P)H, pyruvate and reactive oxygen species — which in turn modulate components of the Ca2+ signalling machinery i.e. buffering, release from internal stores, influx from the extracellular solution, uptake into cellular organelles and extrusion by plasma membrane Ca2+ pumps. Mitochondria can directly influence the calcium concentration in the cytosol of the cell by importing Ca2+ via the mitochondrial Ca2+ uniporter or transporting Ca2+ from the interior of the organelle into the cytosol by means of Na+/Ca2+ or H+/Ca2+ exchangers. Considerable progress in understanding the relationship between Ca2+ signalling cascades and mitochondrial physiology has been accumulated over the last few years due to the development of more advanced optical techniques and electrophysiological approaches.  相似文献   

15.
The recent discovery of genes encoding the mitochondrial calcium (Ca2+) uniporter has revealed new opportunities for studying how abnormal Ca2+ signals cause disease. Ca2+ transport across the mitochondrial inner membrane is highly regulated, and the uniporter is the channel that acts as a major portal for Ca2+ influx. Low amounts of mitochondrial Ca2+ can boost ATP synthesis, but excess amounts, such as following cytoplasmic Ca2+ overload in heart failure, triggers mitochondrial failure and cell death. In fact, precisely because mitochondrial Ca2+ transport is so tightly regulated, a fundamental understanding of how the uniporter functions is necessary. Two key uniporter features allow Ca2+ influx without mitochondrial damage during normal physiology. First, the channel is significantly more selective than other known Ca2+ channels. This prevents the permeation of other ions and uncoupling of the electrochemical gradient. Second, the uniporter becomes active at only high Ca2+ concentrations, preventing a resting leak of cytoplasmic Ca2+ itself. Now possessing the identities of the various proteins forming the uniporter, we can proceed with efforts to define the molecular determinants of permeation, selectivity and Ca2+-regulation.  相似文献   

16.
Prakorn Chudapongse 《BBA》1976,423(2):196-202
Phosphoenolpyruvate was found to depress extra oxygen consumption associated with Ca2+-induced respiratory jump by rat heart mitochondria. Addition of phosphoenolpyruvate to mitochondria which have accumulated Ca2+ in the presence of glutamate and inorganic phosphate causes the release of Ca2+ from mitochondria. The phosphoenolpyruvate-stimulated Ca2+ efflux can be observed with mitochondria loaded with low initial Ca2+ concentration (0.12 mM) in the incubation medium. Measurements of mitochondrial H+ translocation produced by addition of Ca2+ to respiring mitochondria show that phosphoenolpyruvate depresses H+ ejection and enhances H+ uptake by mitochondria. The Ca2+-releasing effect of phosphoenolpyruvate was found to be significantly stronger than that produced by rotenone when added to mitochondria loaded with Ca2+ in the presence of glutamate and inorganic phosphate. Dithiothreitol cannot overcome the effect of phosphoenolpyruvate on mitochondrial Ca2+ transport.  相似文献   

17.
Mitochondria modulate cellular Ca2+ signals by accumulating the ion via a uniporter and releasing it via Na+- or H+-exchange. In smooth muscle, inhibition of mitochondrial Ca2+ uptake inhibits Ca2+ release from the sarcoplasmic reticulum (SR) via inositol-1,4,5-trisphosphate-sensitive receptors (IP3R). At least two mechanisms may explain this effect. First, localised uptake of Ca2+ by mitochondria may prevent negative feedback by cytosolic Ca2+ on IP3R activity, or secondly localised provision of Ca2+ by mitochondrial efflux may maintain IP3R function or SR Ca2+ content. To distinguish between these possibilities the role of mitochondrial Ca2+ efflux on IP3R function was examined. IP3 was liberated in freshly isolated single colonic smooth muscle cells and mitochondrial Na+–Ca2+ exchanger inhibited with CGP-37157 (10 μM). Mitochondria accumulated Ca2+ during IP3-evoked [Ca2+]c rises and released the ion back to the cytosol (within 15 s) when mitochondrial Ca2+ efflux was active. When mitochondrial Ca2+ efflux was inhibited by CGP-37157, an extensive and sustained loading of mitochondria with Ca2+ occurred after IP3-evoked Ca2+ release. IP3-evoked [Ca2+]c rises were initially unaffected, then only slowly inhibited by CGP-37157. IP3R activity was required for inhibition to occur; incubation with CGP-37157 for the same duration without IP3 release did not inhibit IP3R. CGP-37157 directly inhibited voltage-gated Ca2+ channel activity, however SR Ca2+ content was unaltered by the drug. Thus, the gradual decline of IP3R function that followed mitochondrial Na+–Ca2+ exchanger inhibition resulted from a gradual overload of mitochondria with Ca2+, leading to a reduced capacity for Ca2+ uptake. Localised uptake of Ca2+ by mitochondria, rather than mitochondrial Ca2+ efflux, appears critical for maintaining IP3R activity.  相似文献   

18.
It has been observed experimentally that cells from failing hearts exhibit elevated levels of reactive oxygen species (ROS) upon increases in energetic workload. One proposed mechanism for this behavior is mitochondrial Ca2+ mismanagement that leads to depletion of ROS scavengers. Here, we present a computational model to test this hypothesis. Previously published models of ROS production and scavenging were combined and reparameterized to describe ROS regulation in the cellular environment. Extramitochondrial Ca2+ pulses were applied to simulate frequency-dependent changes in cytosolic Ca2+. Model results show that decreased mitochondrial Ca2+uptake due to mitochondrial Ca2+ uniporter inhibition (simulating Ru360) or elevated cytosolic Na+, as in heart failure, leads to a decreased supply of NADH and NADPH upon increasing cellular workload. Oxidation of NADPH leads to oxidation of glutathione (GSH) and increased mitochondrial ROS levels, validating the Ca2+ mismanagement hypothesis. The model goes on to predict that the ratio of steady-state [H2O2]m during 3Hz pacing to [H2O2]m at rest is highly sensitive to the size of the GSH pool. The largest relative increase in [H2O2]m in response to pacing is shown to occur when the total GSH and GSSG is close to 1 mM, whereas pool sizes below 0.9 mM result in high resting H2O2 levels, a quantitative prediction only possible with a computational model.  相似文献   

19.
Summary Ca2+ uptake into Ehrlich ascites tumor cells was studied at 0°C in the presence of mitochondrial inhibitors, conditions that minimized complications caused by sequestration of Ca2+ into organelles or by excretion. Under these conditions Ruthenium Red inhibited Ca2+ uptake, but other previously implicated ions, such as Pi or Mg2+, had no effect. Valinomycin either inhibited or slightly stimulated Ca2+ uptake depending on the presence of excess K+ on the outside or inside of the cell, respectively. Nigericin inhibited Ca2+ transport. Based on these data we propose an electrogenic uptake of Ca2+, possibly via a Ca2+/H+ antiport mechanism.The observation that glucose inhibited Ca2+ uptake suggested that in Ehrlich ascites tumor cells an energy-driven Ca2+ expulsion mechanism is operative, similar to that in erythrocytes. Plasma membrane preparations of ascites tumor cells were found to contain a Ca2+-dependent ATPase. These preparations, when incorporated into liposomes in an inside-out orientation, catalyzed an ATP-dependent uptake of Ca2+.  相似文献   

20.
Mitochondria capture and subsequently release Ca2+ ions, thereby sensing and shaping cellular Ca2+ signals. The Ca2+ uniporter MCU mediates Ca2+ uptake, whereas NCLX (mitochondrial Na/Ca exchanger) and LETM1 (leucine zipper-EF-hand-containing transmembrane protein 1) were proposed to exchange Ca2+ against Na+ or H+, respectively. Here we study the role of these ion exchangers in mitochondrial Ca2+ extrusion and in Ca2+-metabolic coupling. Both NCLX and LETM1 proteins were expressed in HeLa cells mitochondria. The rate of mitochondrial Ca2+ efflux, measured with a genetically encoded indicator during agonist stimulations, increased with the amplitude of mitochondrial Ca2+ ([Ca2+]mt) elevations. NCLX overexpression enhanced the rates of Ca2+ efflux, whereas increasing LETM1 levels had no impact on Ca2+ extrusion. The fluorescence of the redox-sensitive probe roGFP increased during [Ca2+]mt elevations, indicating a net reduction of the matrix. This redox response was abolished by NCLX overexpression and restored by the Na+/Ca2+ exchanger inhibitor CGP37157. The [Ca2+]mt elevations were associated with increases in the autofluorescence of NAD(P)H, whose amplitude was strongly reduced by NCLX overexpression, an effect reverted by Na+/Ca2+ exchange inhibition. We conclude that NCLX, but not LETM1, mediates Ca2+ extrusion from mitochondria. By controlling the duration of matrix Ca2+ elevations, NCLX contributes to the regulation of NAD(P)H production and to the conversion of Ca2+ signals into redox changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号