首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The in vitro metabolism of carbosulfan, a widely used carbamate insecticide, by hepatic microsomes from human, rat, mouse, dog, rabbit, minipig, and monkey was studied. Altogether eight (8) phase I metabolites were detected by LC–MS; phase II metabolites were not found in human homogenates fortified with appropriate cofactors. The primary metabolic pathways were the initial oxidation of sulfur to carbosulfan sulfinamide (‘sulfur oxidation pathway’) and the cleavage of the nitrogen sulfur bond (N–S) to give carbofuran and dibutylamine (‘carbofuran pathway’). Carbofuran was further hydroxylated to 3-hydroxycarbofuran and/or 7-phenolcarbofuran, which were further oxidized to 3-ketocarbofuran or 3-hydroxy-7-phenolcarbofuran, respectively, and finally to 3-keto-7-phenolcarbofuran. 3-Hydroxycarbofuran was the main metabolite in all species, but otherwise there were some qualitative interspecies differences in carbofuran pathway metabolites. Only rabbit liver microsomes were able to metabolize carbofuran via hydroxylation to 7-phenolcarbofuran. Carbofuran was not detected in dog liver microsomes due to rapid further metabolism. In general, liver microsomes from all seven species produced more toxic products (carbofuran, 3-hydroxy-carbofuran, 3-ketocarbofuran) more rapidly than a detoxification product (carbosulfan sulfinamide). Differences in intrinsic hepatic clearances (CLint) between the lowest and highest species were moderate; 2-fold for the carbofuran pathway, 2.7-fold for carbosulfan sulfinamide and 6.2-fold for dibutylamine. Our studies, although restricted to in vitro metabolic data from human and animal hepatic preparations, provide valuable quantitative carbosulfan-specific data for risk assessment, which suggest that interspecies differences, for carbosulfan active chemical moiety, in toxicokinetics are within the standard applied factor for species extrapolation in toxicokinetics. These results will be valuable in further defining the risks associated with exposure to carbosulfan.  相似文献   

2.
Shenmai injection (SMI), one of the most popular herbal preparations, is widely used for the treatment of coronary atherosclerotic cardiopathy and viral myocarditis. The purpose of this study was to investigate the effect of Shenmai injection (SMI) on the CYP3A-mediated metabolism of midazolam (MDZ). The present study demonstrated that SMI could significantly inhibit MDZ 4-hydroxylation but activate its 1′-hydroxylation in human liver microsomes (HLMs), rat liver microsomes (RLM) and recombinant human CYP3A4 and CYP3A5. The opposing effect of SMI was characterized by the kinetic change of increasing Vmax/Km for MDZ 1′-hydroxylation and decreasing Vmax/Km for MDZ 4-hydroxylation in HLM and RLM. The presence ofSMI enhanced the inhibition of ketoconazole on MDZ 4-hydroxylation but weakened or reversed its inhibition on MDZ 1′-hydroxylation in HLM. After single or multiple pretreatment with SMI, the ratios of AUC4-OH MDZ/AUCMDZ in rats were significantly decreased, while the ratios of AUC1′-OH MDZ/AUCMDZ were increased. Among the major components in SMI, total ginsenoside (TG), ophiopogon total saponins (OTS), ophiopogon total flavone (OTF), ginsenoside Rd, ophiopogonin D and ophiopogonone A exhibited significant inhibition on both 4-hydroxylation and 1′-hydroxylation of MDZ in HLM and RLM, while no activation on MDZ metabolism was observed in the presence of these major constituents alone or together. To further explore the responsible components, 3 mL of SMI was loaded on a solid phase extraction (SPE) C18 cartridge and then separated by different concentrations of methanol. The fractions eluted with 60% and 90% methanol both showed significant activation on MDZ 1′-hydroxylation in HLM, but the fraction eluted with 30% methanol had no such effect. The results indicated that the activation of SMI on MDZ 1′-hydroxylation might be mainly resulted from the lipid-soluble components in SMI.  相似文献   

3.
AimsIn this study, we examined the inhibitory effects of Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), and cannabinol (CBN), the three major cannabinoids, on the activity of human cytochrome P450 (CYP) 3A enzymes. Furthermore, we investigated the kinetics and structural requirement for the inhibitory effect of CBD on the CYP3A activity.Main methodsDiltiazem N-demethylase activity of recombinant CYP3A4, CYP3A5, CYP3A7, and human liver microsomes (HLMs) in the presence of cannabinoids was determined.Key findingsAmong the three major cannabinoids, CBD most potently inhibited CYP3A4 and CYP3A5 (IC50 = 11.7 and 1.65 μM, respectively). The IC50 values of Δ9-THC and CBN for CYP3A4 and CYP3A5 were higher than 35 μM. For CYP3A7, Δ9-THC, CBD, and CBN inhibited the activity to a similar extent (IC50 = 23–31 μM). CBD competitively inhibited the activity of CYP3A4, CYP3A5, and HLMs (Ki = 1.00, 0.195, and 6.14 μM, respectively). On the other hand, CBD inhibited the CYP3A7 activity in a mixed manner (Ki = 12.3 μM). Olivetol partially inhibited all the CYP3A isoforms tested, whereas d-limonene showed lack of inhibition. The lesser inhibitory effects of monomethyl and dimethyl ethers of CBD indicated that the ability of CYP3A inhibition by the cannabinoid attenuated with the number of methylation on the phenolic hydroxyl groups in the resorcinol moiety.SignificanceThis study indicated that CBD most potently inhibited catalytic activity of human CYP3A enzymes, especially CYP3A4 and CYP3A5. These results suggest that two phenolic hydroxyl groups in the resorcinol moiety of CBD may play an important role in the CYP3A inhibition.  相似文献   

4.
Carbofuran is a carbamate pesticide used in agricultural practice throughout the world. Its effect as a pesticide is due to its ability to inhibit acetylcholinesterase activity. Though carbofuran has a long history of use, there is little information available with respect to its metabolic fate and disposition in mammals. The present study was designed to investigate the comparative in vitro metabolism of carbofuran from human, rat, and mouse liver microsomes (HLM, RLM, MLM, respectively), and characterize the specific enzymes involved in such metabolism, with particular reference to human metabolism. Carbofuran is metabolized by cytochrome P450 (CYP) leading to the production of one major ring oxidation metabolite, 3-hydroxycarbofuran, and two minor metabolites. The affinity of carbofuran for CYP enzymes involved in the oxidation to 3-hydroxycarbofuran is significantly less in HLM (Km = 1.950 mM) than in RLM (Km = 0.210 mM), or MLM (Km = 0.550 mM). Intrinsic clearance rate calculations indicate that HLM are 14-fold less efficient in the metabolism of carbofuran to 3-hydroxycarbofuran than RLM or MLM. A screen of 15 major human CYP isoforms for metabolic ability with respect to carbofuran metabolism demonstrated that CYP3A4 is the major isoform responsible for carbofuran oxidation in humans. CYP1A2 and 2C19 are much less active while other human CYP isoforms have minimal or no activity toward carbofuran. In contrast with the human isoforms, members of the CYP2C family in rats are likely to have a primary role in carbofuran metabolism. Normalization of HLM data with the average levels of each CYP in native HLM, indicates that carbofuran metabolism is primarily mediated by CYP3A4 (percent total normalized rate (% TNR) = 77.5), although CYP1A2 and 2C19 play ancillary roles (% TNR = 9.0 and 6.0, respectively). This is substantiated by the fact that ketoconazole, a specific inhibitor of CYP3A4, is an excellent inhibitor of 3-hydroxycarbofuran formation in HLM (IC50: 0.31 μM). Chlorpyrifos, an irreversible non-competitive inhibitor of CYP3A4, inhibits the formation of 3-hydroxycarbofuran in HLM (IC50: 39 μM). The use of phenotyped HLM demonstrated that individuals with high levels of CYP3A4 have the greatest potential to metabolize carbofuran to its major metabolite. The variation in carbofuran metabolism among 17 single-donor HLM samples is over 5-fold and the best correlation between CYP isoform activity and carbofuran metabolism was observed with CYP3A4 (r2 = 0.96). The interaction of carbofuran and the endogenous CYP3A4 substrates, testosterone and estradiol, were also investigated. Testosterone metabolism was activated by carbofuran in HLM and CYP3A4, however, less activation was observed for carbofuran metabolism by testosterone in HLM and CYP3A4. No interactions between carbofuran and estradiol metabolism were observed.  相似文献   

5.
Burkholderia cepacia PCL3 (GenBank accession number of EF990634) is a carbofuran degrader isolated from phytoremediated rhizosphere soil in our laboratory. Free and the immobilized PCL3 on corncob and sugarcane bagasse were investigated for their abilities to degrade carbofuran in Basal Salt Medium (BSM) and soil microcosm. The reusability and survival of immobilized PCL3 in comparison to free cells were also examined. Short half-lives (t1/2) of carbofuran of 3–4 d in BSM were obtained using the isolate PCL3 in both free and immobilized cell forms. Immobilized cells could survive (106–107 cfu ml?1) through 30 d of incubation, while the number of free cells decreased continuously after 10 d. Immobilized B. cepacia PCL3 could be reused twice without loss in their abilities to degrade carbofuran in BSM, which suggested an advantage of using immobilized cell over free cell. Free and immobilized cells were augmented into soil and showed an effective capability to remediate carbofuran residues, both of which indicated by 5-folds decrease in carbofuran half-lives in augmented soil. Immobilization of PCL3 on corncob and sugarcane bagasse provided the possibilities of reusing the cells as well as improving the cell survival without decreasing carbofuran degradation activity.  相似文献   

6.
Ortho-hydroxylation of cinnamates is a key step in coumarin biosynthesis in plants. Ortho-hydroxylated cinnamates undergo trans/cis isomerization of the side-chain and then lactonization to form coumarins. Sweet potato [Ipomoea batatas (L.) Lam.] accumulates umbelliferone and scopoletin after biotic and abiotic stresses. To elucidate molecular aspects of ortho-hydroxylation involved in umbelliferone formation in sweet potato, isolation and characterization of cDNAs encoding 2-oxoglutarate-dependent dioxygenases (2OGD) was performed from sweet potato tubers treated with a chitosan elicitor. Five cDNAs (designated as Ib) encoding a protein of 358 amino acid residues were cloned, and these were categorized into two groups, Ib1 and Ib2, based on their amino acid sequences. Whether the recombinant Ib proteins had any enzymatic activity toward cinnamates was examined. Ib1 proteins exhibited ortho-hydroxylation activity toward feruloyl coenzyme A (CoA) to form scopoletin (Km = ∼10 μM, kcat = ∼2.7 s−1). By contrast, Ib2 proteins catalyzed ortho-hydroxylation of feruloyl-CoA (Km = 7.3–14.0 μM, kcat = 0.28–0.55 s−1) and also of p-coumaroyl-CoA (Km = 6.1–15.2 μM, kcat = 0.28–0.64 s−1) to form scopoletin and umbelliferone, respectively. Fungal and chitosan treatments increased levels of umbelliferone and its glucoside (skimmin) in the tubers, and expression of the Ib2 gene was induced concomitantly.  相似文献   

7.
Human liver microsomes catalyze an efficient 25-hydroxylation of 5β-cholestane-3α,7α,12α-triol. The hydroxylation is involved in a minor, alternative pathway for side-chain degradation in the biosynthesis of cholic acid. The enzyme responsible for the microsomal 25-hydroxylation has been unidentified. In the present study, recombinant expressed human P-450 enzymes have been used to screen for 25-hydroxylase activity towards 5β-cholestane-3α,7α,12α-triol. High activity was found with CYP3A4, but also with CYP3A5 and to a minor extent with CYP2C19 and CYP2B6. Small amounts of 23- and 24-hydroxylated products were also formed by CYP3A4. The Vmax for 25-hydroxylation by CYP3A4 and CYP3A5 was 16 and 4.5 nmol/(nmol×min), respectively. The Km was 6 μM for CYP3A4 and 32 μM for CYP3A5. Cytochrome b5 increased the hydroxylase activities. Human liver microsomes from ten different donors, in which different P-450 marker activities had been determined, were incubated with 5β-cholestane-3α,7α,12α-triol. A strong correlation was observed between formation of 25-hydroxylated 5β-cholestane-3α,7α,12α-triol and CYP3A levels (r2=0.96). No correlation was observed with the levels of CYP2C19. Troleandomycin, a specific inhibitor of CYP3A4 and 3A5, inhibited the 25-hydroxylase activity of pooled human liver microsomes by more than 90% at 50 μM. Tranylcypromine, an inhibitor of CYP2C19, had very little effect on the conversion. From these results, it can be concluded that CYP3A4 is the predominant enzyme responsible for 25-hydroxylation of 5β-cholestane-3α,7α,12α-triol in human liver microsomes.  相似文献   

8.
Drug–drug interactions involving cytochrome P450 (CYP450s) are an important factor for evaluation of a new chemical entity (NCE) in drug development. To evaluate the potential inhibitory effects of a NCE on the pharmacokinetics of a cocktail of representative probes of CYP enzymes (midazolam for CYP3A4, tolbutamide for CYP2C9, omeprazole for CYP2C19 and dextromethorphan for CYP2D6) and the safety and tolerability of the NCE in the presence of probe substrates, a high throughput liquid chromatography/tandem mass spectrometry (LC–MS/MS) method was developed and validated for the simultaneous determination of tolbutamide, omeprazole, midazolam and dextromethorphan in human plasma using tolbutamide-d9, midazolam-d4, (±)-omeprazole-d3, and dextromethorphan-d3 as the internal standards (ISs). Human plasma samples of 50 μL were extracted by a simple protein-precipitation procedure and analyzed using a high performance liquid chromatography electrospray tandem mass spectrometer system. Reversed-phase HPLC separation was achieved with a Hypersil GOLD AQ column (50 mm × 4.6 mm, 5 μm). MS/MS detection was set at mass transitions of 271  172 m/z for tolbutamide, 346  198 m/z for omeprazole, 326  291 m/z for midazolam, 272  171 m/z for dextromethorphan, 280  172 m/z for tolbutamide-d9 (IS), 349  198 m/z for (±)-omeprazole-d3 (IS), 330  295 m/z for midazolam-d4 (IS), and 275  171 m/z for dextromethorphan-d3 (IS) in positive mode. The high throughput LC–MS/MS method was validated for accuracy, precision, sensitivity, stability, recovery, matrix effects, and calibration range. Acceptable intra-run and inter-run assay precision (<10%) and accuracy (<10%) were achieved over a linear range of 50–50,000 ng/mL for tolbutamide, 1–1000 ng/mL for omeprazole, 0.1–100 ng/mL for midazolam and 0.05–50 ng/mL for dextromethorphan in human plasma. Method robustness was demonstrated by the 100% pass rate of 24 incurred sample analysis runs and all of the 50 clinical study samples used for incurred sample reproducibility (ISR) test having met the acceptance criterion (%Diff within 20%). The overall ISR results for all compounds showed that over 95% of the samples had a %Diff of less than 10%. The method is simple, rapid and rugged, and has been applied successfully to sample analysis in support of a drug–drug interaction study.  相似文献   

9.
Self-sufficient CYP102As possess outstanding hydroxylating activity to fatty acids such as myristic acid. Other CYP102 subfamily members share substrate specificity of CYP102As, but, occasionally, unusual characteristics of its own subfamily have been found. In this study, only one self-sufficient cytochrome P450 from Streptomyces cattleya was renamed from CYP102A_scat to CYP102G4, purified and characterized. UV–Vis spectrometry pattern, FAD/FMN analysis, and protein sequence comparison among CYP102s have shown that CYP102 from Streptomyces cattleya belongs to CYP102G subfamily. It showed hydroxylation activity toward fatty acids generating ω-1, ω-2, and ω-3-hydroxyfatty acids, which is similar to the general substrate specificity of CYP102 family. Unexpectedly, however, expression of CYP102G4 showed indigo production in LB medium batch flask culture, and high catalytic activity (kcat/Km) for indole was measured as 6.14 ± 0.10 min 1 mM 1. Besides indole, CYP102G4 was able to hydroxylate aromatic compounds such as flavone, benzophenone, and chloroindoles. Homology model has shown such ability to accept aromatic compounds is due to its bigger active site cavity. Unlike other CYP102s, CYP102G4 did not have biased cofactor dependency, which was possibly determined by difference in NAD(P)H binding residues (Ala984, Val990, and Tyr1064) compared to CYP102A1 (Arg966, Lys972 and Trp1046). Overall, a self-sufficient CYP within CYP102G subfamily was characterized using purified enzymes, which appears to possess unique properties such as an only prokaryotic CYP naturally producing indigo.  相似文献   

10.
This study explored the effects of Danshen on metabolism/pharmacokinetics of model CYP1A2 substrates and hepatic CYP1A2 expression in rats. The effects of Danshen and tanshinones on CYP1A2 activity was determined by metabolism of model substrates in vitro (phenacetin) and in vivo (caffeine). HPLC was used to determine model substrates/metabolites. The effect of Danshen on CYP1A2 expression was determined by Western blot. Tanshinones (1.25–50 μM) competitively inhibited phenacetin O-deethylation in vitro. Inhibition kinetics studies showed the Ki values were in the order: dihydrotanshinone (3.64 μM), cryptotanshinone (4.07 μM), tanshinone I (22.6 μM) and tanshinone IIA (23.8 μM), furafylline (35.8 μM), a CYP1A2 inhibitor. The Ki of Danshen extract (mainly tanshinones) was 72 μg/ml. Acute Danshen extract treatment (50–200 mg/kg, i.p.) decreased metabolism of caffeine to paraxanthine, with overall decrease in caffeine clearance (14–22%); increase in AUC (11–25%) and plasma T1/2 (12–16%). Danshen treatment with (100 mg/kg/day, i.p. or 200 mg/kg/day, p.o.) for three or fourteen days showed similar pharmacokinetic changes of the CYP1A2 probe substrate without affecting CYP1A2 expression. This study demonstrated that major tanshinones competitively inhibited the metabolism of model CYP1A2 probe substrates but had no effect on rat CYP1A2 expression.  相似文献   

11.
Caffeic acid is a plant secondary metabolite and its biological synthesis has attracted increased attention due to its beneficial effects on human health. In this study, Escherichia coli was engineered for the production of caffeic acid using tyrosine as the initial precursor of the pathway. The pathway design included tyrosine ammonia lyase (TAL) from Rhodotorula glutinis to convert tyrosine to p-coumaric acid and 4-coumarate 3-hydroxylase (C3H) from Saccharothrix espanaensis or cytochrome P450 CYP199A2 from Rhodopseudomonas palustris to convert p-coumaric acid to caffeic acid. The genes were codon-optimized and different combinations of plasmids were used to improve the titer of caffeic acid. TAL was able to efficiently convert 3 mM of tyrosine to p-coumaric acid with the highest production obtained being 2.62 mM (472 mg/L). CYP199A2 exhibited higher catalytic activity towards p-coumaric acid than C3H. The highest caffeic acid production obtained using TAL and CYP199A2 and TAL and C3H was 1.56 mM (280 mg/L) and 1 mM (180 mg/L), respectively. This is the first study that shows caffeic acid production using CYP199A2 and tyrosine as the initial precursor. This study suggests the possibility of further producing more complex plant secondary metabolites like flavonoids and curcuminoids.  相似文献   

12.
《Process Biochemistry》2010,45(7):1036-1042
A recombinant strain of Escherichia coli with CYP102A1 gene was developed for the demethylation of colchicine into their derivatives. The CYP102A1 gene responsible for demethylation was isolated from Bacillus megaterium ACBT03 and amplified using suitable primers. The amplified product was cloned into pET28a+ expression vector using host E. coli BL21(DE3) cells. The CYP3A4 (product of CYP102A1 gene) protein expression and other parameters like substrate toxicity, product toxicity and enzyme activity were optimized in shake flasks; and further scaled-up to 5 l bioreactor with 3 l working volume. In 5 l bioreactor, dissolved oxygen (DO) was optimized for maximum specific growth and enhanced 3-demethylated colchicine (3-DMC) production. The optimized conditions from shake flasks were scaled-up to 70 l bioreactor and resulted into ∼80% conversion of 20 mM colchicine in 48 h with a volumetric productivity of 6.62 mg l−1 h−1. Scale-up factors were measured as volumetric oxygen transfer coefficient (kLa) i.e., 56 h−1 and impeller tip velocity (Vtip) i.e., 7.065 m s−1, respectively. The kinetic parameters Km, kcat, and kcat/Km of the CYP3A4 enzyme using colchicine as the substrate were determined to be 271 ± 30 μM, 8533 ± 25 min−1, and 31.49 μM min−1, respectively, when IPTG induced recombinant E. coli culture was used.  相似文献   

13.
Background: Associations between polymorphisms for gene encoding enzymes involved in biotransformation of xenobiotics and susceptibility to several cancers have been shown in several studies. The aim of the present study was to evaluate the association of polymorphisms of cytochrome P450 (CYP1A1) and GST deletions with the incidence of Polycythemia vera (PV) among the Jordanian population. Methods: The study included 61 PV patients and 70 cancer-free healthy controls. CYP1A1 (m1, m2, m3, m4) and GST (T1, M1) genotypes were determined by polymerase chain reaction and restriction fragment length polymorphism. The risk of cancer associated with gene polymorphisms was estimated by calculations of odds ratio (ORs) and confidence intervals (95% CIs) using Mantel–Haenszel statistics. Results: A statistically significant difference between the PV group and the control group was observed in the case of GSTM1 null genotype with 3.38 fold increase in risk of developing PV (95% CI = 1.63–7.01, p = 0.001) while GSTT1 null genotype showed no significance (OR = 1.11; 95% CI = 0.50–2.44, p = 0.38). No significant association was found between the CYP1A1 mutant genotypes (m1, m2, m4) and PV. The m3 genotype was absent in both patients and controls. Interestingly, a substantial significant increase of PV risk for the combination of GSTM1 null genotype and CYP1A1 m1 (T6235C) genotype was observed (OR = 4.38; 95% CI = 1.15–16.73, p = .02). Furthermore, the present case–control study showed that the studied Jordanian population generally resembles Caucasian populations with respect to the frequencies of CYP1A1 polymorphisms. Conclusion: Our data suggests that GSTM1 null genotype alone and in combination with CYP1A1 m1 genotype may be predisposing risk factors for PV in the Jordanian population.  相似文献   

14.
The aim of the present study was to identify the enzymes in human liver catalyzing hydroxylations of bile acids. Fourteen recombinant expressed cytochrome P450 (CYP) enzymes, human liver microsomes from different donors, and selective cytochrome P450 inhibitors were used to study the hydroxylation of taurochenodeoxycholic acid and lithocholic acid. Recombinant expressed CYP3A4 was the only enzyme that was active towards these bile acids and the enzyme catalyzed an efficient 6α-hydroxylation of both taurochenodeoxycholic acid and lithocholic acid. The Vmax for 6α-hydroxylation of taurochenodeoxycholic acid by CYP3A4 was 18.2 nmol/nmol P450/min and the apparent Km was 90 μM. Cytochrome b5 was required for maximal activity. Human liver microsomes from 10 different donors, in which different P450 marker activities had been determined, were separately incubated with taurochenodeoxycholic acid and lithocholic acid. A strong correlation was found between 6α-hydroxylation of taurochenodeoxycholic acid, CYP3A levels (r2=0.97) and testosterone 6β-hydroxylation (r2=0.9). There was also a strong correlation between 6α-hydroxylation of lithocholic acid, CYP3A levels and testosterone 6β-hydroxylation (r2=0.7). Troleandomycin, a selective inhibitor of CYP3A enzymes, inhibited 6α-hydroxylation of taurochenodeoxycholic acid almost completely at a 10 μM concentration. Other inhibitors, such as α-naphthoflavone, sulfaphenazole and tranylcypromine had very little or no effect on the activity. The apparent Km for 6α-hydroxylation of taurochenodeoxycholic by human liver microsomes was high (716 μM). This might give an explanation for the limited formation of 6α-hydroxylated bile acids in healthy humans. From the present results, it can be concluded that CYP3A4 is active in the 6α-hydroxylation of both taurochenodeoxycholic acid and lithocholic acid in human liver.  相似文献   

15.
Here we report the inter-paralog comparison of cytochrome P4501A (CYP1A) catalytic function in common cormorant (Phalacrocorax carbo) using the recombinant proteins synthesized by yeast-based vector system. CYP1A4 and CYP1A5 proteins from common cormorant were heterologously expressed in yeast Saccaromyces cerevisiae. Kinetic analyses revealed that among alkoxyresorufin (methoxy-, ethoxy-, pentoxy- and benzyloxyresorufin) O-dealkylase (AROD) activities Vmax value for ethoxyresorufin O-deethylase (EROD) activity was the highest for both enzymes, reaching 0.91 ± 0.034 and 1.8 ± 0.043 nmol/min/nmol CYP for CYP1A4 and CYP1A5, respectively. Similar results were obtained for the catalytic efficiencies represented as the ratios of Vmax to Km (Vmax/Km). Meanwhile, distinct substrate preferences were also observed; CYP1A4 had Vmax and Vmax/Km values for benzyloxyresorufin O-debenzylase (BROD) activity 12- and 46-fold greater than CYP1A5, respectively, while CYP1A5 was about 13- and 4.5-fold more efficient in methoxyresorufin O-demethylase (MROD) activity than CYP1A4. The Km values showed no significant change among MROD, EROD, pentoxyresorufin O-depenthylase (PROD) and BROD activities for both enzymes, except for significant differences between PROD and other three activities for CYP1A4. Comparing the results in the present study with previous studies addressing chicken and rat CYP1A enzymes, it is also clear that CYP1A orthologs have different catalytic preferences for AROD activities between cormorant and rat and even between cormorant and chicken. Variations in CYP1A catalytic function between cormorant CYP1A paralogs and between CYP1A orthologs from cormorant and other species indicate that enzymatic properties should be characterized on the basis not only of a limited model species such as chicken, but also of multiple species to further understand the mechanism underlying differences in substrate selectivity and the interaction with environmental contaminants in avian species.  相似文献   

16.
The 1,2,3,4-tetrahydroacridine derivative tacrine was the first drug approved to treat Alzheimer’s disease (AD). It is known to act as a potent cholinesterase inhibitor. However, tacrine was removed from the market due to its hepatotoxicity concerns as it undergoes metabolism to toxic quinonemethide species through the cytochrome P450 enzyme CYP1A2. Despite these challenges, tacrine serves as a useful template in the development of novel multi-targeting anti-AD agents. In this regard, we sought to evaluate the risk of hepatotoxicity in a series of C9 substituted tacrine derivatives that exhibit cholinesterase inhibition properties. The hepatotoxic potential of tacrine derivatives was evaluated using recombinant cytochrome (CYP) P450 CYP1A2 and CYP3A4 enzymes. Molecular docking studies were conducted to predict their binding modes and potential risk of forming hepatotoxic metabolites. Tacrine derivatives compound 1 (N-(3,4-dimethoxybenzyl)-1,2,3,4-tetrahydroacridin-9-amine) and 2 (6-chloro-N-(3,4-dimethoxybenzyl)-1,2,3,4-tetrahydroacridin-9-amine) which possess a C9 3,4-dimethoxybenzylamino substituent exhibited weak binding to CYP1A2 enzyme (1, IC50 = 33.0 µM; 2, IC50 = 8.5 µM) compared to tacrine (CYP1A2 IC50 = 1.5 µM). Modeling studies show that the presence of a bulky 3,4-dimethoxybenzylamino C9 substituent prevents the orientation of the 1,2,3,4-tetrahydroacridine ring close to the heme-iron center of CYP1A2 thereby reducing the risk of forming hepatotoxic species.  相似文献   

17.
A recombinant insecticide-resistant mosquito carboxylesterase B1 was purified to homogeneity from an Escherichia coli expression system. After non-denaturing electrophoresis, active carboxylesterase B1 bands were identified using fast blue RR. Lineweaver–Burk plots of the crude and purified CaE B1 indicate that this enzyme obeys Michaelis–Menten kinetics with Km value for malathion of 39.3 and 67.4 mM. The Vm of purified enzyme is approximately 17-folds of the value determined in crude homogenate. Carboxylesterase B1 detoxification of parathion had a major limitation which is the 1:1 stoichiometry. To improve the effectiveness of enzymatic detoxification, we developed an approach in which the catalytic activity of organophosphorus compound-inhibited carboxylesterase B1 was restored by having sufficient amounts diacetylmonoxime. It was demonstrated that repeated addition of 25 times the molar concentration of parathion to carboxylesterase B1 in the presence of 4 mM diacetylmonoxime every 2 h did not result in significant inhibition of the enzyme. Consequently the stoichiometry of enzyme detoxification is higher than 64: 1 for parathion.  相似文献   

18.
The Arabidopsis thaliana gene encoding CYP71A16 is part of the gene cluster for the biosynthesis and modification of the triterpenoid marneral. Previous investigations of A. thaliana have revealed that CYP71A16 catalyzes marneral oxidation, while it also can accept marnerol as substrate. The aim of the present study was to investigate functional properties of CYP71A16 in vitro. For this purpose, heterologous expression of a N-terminally modified version of CYP71A16 was established in Escherichia coli, which yielded up to 50 mg L 1 recombinant enzyme. The enzyme was purified and activity was reconstituted in vitro with different redox partners. A heterologous bacterial redox partner system consisting of the flavodoxin YkuN from Bacillus subtilis and the flavodoxin reductase Fpr from E. coli clearly outperformed the cytochrome P450 reductase ATR2 from A. thaliana in supporting the CYP71A16-mediated hydroxylation of marnerol. Substrate binding experiments with CYP71A16 revealed a dissociation constant KD of 225 μM for marnerol. CYP71A16 catalyzed the hydroxylation of marnerol to 23-hydroxymarnerol with a KM of 142 μM and a kcat of 3.9 min 1. Furthermore, GC/MS analysis revealed an as of yet unidentified overoxidation product of this in vitro reaction. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.  相似文献   

19.
AimsIn this study, the effects of four single nucleotide polymorphisms (SNPs), ? 3860G > A, ? 2467delT, ? 739T > G and ? 163C > A, of CYP1A2 gene on lung cancer were evaluated in Tunisian population.Main methodsFour polymorphisms of CYP1A2 gene were analysed in 109 healthy smokers and in 101 lung cancer cases, including 63 with squamous cell carcinoma (SCC) and 41 with adenocarcinoma (AD). The genotyping for the SNPs ? 3860 G > A, ? 2467delT, ? 739T > G and ? 163C > A was performed by polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis.Key findingsThe results showed that smokers with CYP1A2 gene polymorphisms were associated with an increased risk for the development of lung AD. There was however no significant increased risk of developing lung SCC in smokers having CYP1A2 gene polymorphisms. An increased risk of developing AD was observed in smokers who are carriers of at least one copy of ? 3680A or ? 739G giving a significant odds ratio (OR) of 6.02 (CI = 2.91–12.9) and 3.01 (CI = 1.54–5.98), respectively.SignificanceThese genotyping data are consistent with the hypothesis that tobacco-specific-N-nitrosamines (TSN) such as 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are major contributors to the development of lung AD and that CYP1A2 gene product plays an important role in the metabolic activation of NNK. This study suggests that SNPs of CYP1A2 could be considered as promising biomarkers in the aetiology of lung AD in smokers.  相似文献   

20.
New oxazolinyl derivatives of [17(20)E]-pregna-5,17(20)-diene: 2′-{[(E)-3β-hydroxyandrost-5-en-17-ylidene]methyl}-4′,5′-dihydro-1′,3′-oxazole 1 and 2′-{[(E)-3β-hydroxyandrost-5-en-17-ylidene]methyl}-4′,4′-dimethyl-4′,5′-dihydro-1′,3′-oxazole 2 were evaluated as potential CYP17A1 inhibitors in comparison with 17-(pyridin-3-yl)androsta-5,16-dien-3β-ol 3 (abiraterone). Differential absorption spectra of human recombinant CYP17A1 in the presence of compound 1 (λmax = 422 nm, λmin = 386 nm) and compound 2 (λmax = 416 nm) indicated significant differences in enzyme/inhibitors complexes. CYP17A1 activity was measured using electrochemical methods. Inhibitory activity of compound 1 was comparable with abiraterone 3 (IC50 = 0.9 ± 0.1 μM, and IC50 = 1.3 ± 0.1 μM, for compounds 1 and 3, respectively), while compound 2 was found to be weaker inhibitor (IC50 = 13 ± 1 μM). Docking of aforementioned compounds to CYP17A1 revealed that steroid fragments of compound 1 and abiraterone 3 occupied close positions; oxazoline cycle of compound 1 was coordinated with heme iron similarly to pyridine cycle of abiraterone 3. Configuration of substituents at 17(20) double bond in preferred docked position corresponded to Z-isomers of compounds 1 and 2. Presence of 4′-substituents in oxazoline ring of compound 2 prevents coordination of oxazoline nitrogen with heme iron and worsens its docking score in comparison with compound 1. These data indicate that oxazolinyl derivative of [17(20)E]-pregna-5,17(20)-diene 1 (rather than 4′,4′-dimethyl derivative 2) may be considered as potential CYP17A1 inhibitor and template for development of new compounds affecting growth and proliferation of prostate cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号