首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Olaquindox, a synthetic antimicrobial compound, was banned as feed additives in the U.S. and the EU. In China, the use of olaquindox is banned in poultry and aquaculture feed, restricted in livestock feed for growth promotion. Olaquindox's safety is the object of increasing attention. The present study was undertaken to investigate whether and how olaquindox elevates expression of c-Myc, which influences olaquindox-induced apoptosis in HepG2 cells. For a better understanding of c-Myc's role in susceptibility of human hepatoma G2 cells to olaquindox-induced apoptosis, two vectors (the pSilencer-cmyc(Si-cmyc) and the control vector) were transfected to HepG2 cells. The cells were pretreated with Si-cmyc, which expressed only 35-65% c-Myc protein levels compared to those of the parental cells and the control cells. We examined effects of olaquindox on reactive oxygen species (ROS) production in these c-Myc low-expressing cells, and on apoptosis. Our data revealed that ROS production induced by olaquindox treatment was partially blocked by Si-cmyc transfection and partly inhibited olaquindox-induced apoptosis through decreased ROS generation. Further data showed that olaquindox induced decreased ROS by Si-cmyc transfection through decreased cytochrome c release to cytosol, which inhibited apoptosis of the cells. These results suggest that c-Myc might be important during olaquindox-induced apoptosis in human hepatoma G2 cells.  相似文献   

2.
3.
Our purpose was to examine the roles of natural (estradiol (E2) and estrone (E1)) and synthetic estrogens (ethinyl estradiol (EE), moxestrol (MOX), and tamoxifene (TAM)) in regulating production of sex hormone-binding globulin (SHBG) by human hepatoma G2 (Hep G2) cells, the rationale being that synthetic estrogens are less rapidly metabolized than natural estrogens and, thus, may alter SHBG levels more readily. In Hep G2 cells, E2, E1, and EE at 10(-7) M did not result in significantly greater SHBG secretion compared to control cells. The synthetic estrogens, MOX and TAM, caused significant, P < 0.001, increases of 30% and 51% in SHBG secretion at 10(-7) M compared to controls. However, when TAM and E2 were added together, each at 10(-7) M, no increase in SHBG secretion was noted. We conclude that natural estrogens at physiologic concentrations do not increase SHBG secretion by Hep G2 cells, but the increase of SHBG secretion caused by MOX and TAM suggests that the lack of effect of E2 and E1 may, in part, be due to their rapid metabolism. In addition, TAM stimulates SHBG secretion by interaction with the genome that is different, in certain respects, from that of E2.  相似文献   

4.
Selenium is a cellular growth inhibitor in many mammary tumor cells. To comprehend the mechanism for the selenium-induced cell death, we examined the effects of sodium selenite, which has been one of the most extensively investigated selenium compounds, in human hepatoma Hep G2 cells. Cell viability gradually decreased after treatment with sodium selenite within the concentration range of 10–50 μM. Low (10 μM) selenite has shown a high-percentage laddering pattern compared to the high (25 μM) cytotoxic selenium concentration in agarose gel electrophoresis. G2M-phase enrichment was also concentration dependent. The most consistent transmission electron microscopic finding was the existence of large lysosomes. Based on these data, we hypothesize that sodium selenite predominantly shows its apoptotic effect over hydrogen selenite accumulation.  相似文献   

5.
Sarsasapogenin, a kind of mainly effective components of Anemarrhena asphodeloides Bunge (Liliaceae) has the effects of being anti-diabetes and improving memory. However, there are few reports focusing on its anti-tumor effects. In this study, the sarsasapogenin was extracted from rhizomes of A. asphodeloides Bunge and applied to inhibit HepG2 human hepatoma cells. MTT assay showed that sarsasapogenin induced a distinct dose- and time-dependent diminution of cell viability with IC(50) of 42.4+/-1.0microg/ml for 48h. Furthermore, sarsasapogenin-induced apoptosis of HepG2 cells was verified by Hoechst 33258 staining, electron microscopy, DNA fragmentation and PI staining. Flow cytometry analysis showed that sarsasapogenin-induced cell apoptosis was through arrest of cell cycle in G(2)/M phase. Hence we proposed that sarsasapogenin could be used as an anti-liver cancer drug for future studies.  相似文献   

6.
7.
Kurtoglu EL  Yuksel S 《Genetika》2012,48(6):762-767
We designed in vitro study to determine possible genotoxic effects oftacrolimus (FK-506), which is used as a potent immunosuppressive drug, by using sister chromatid exchange (SCEs), chromosome aberration (CAs), micronuclei tests (MN) and cell growth kinetics such as mitotic index (MI) and replication index (RI) in human lymphocytes. The cells were treated with 5, 25, 50, and 100 ng/mL concentrations of tacrolimus, for 24 h and 48 h treatment periods. Tacrolimus induced CA and MN frequency at all concentrations for 24 and 48 h In additon, it induced the SCE at the highest concantration for 24 h and at 25 and 100 ng/mL for 48 h. Tacrolimus decreased MI at all concentrations (except 5 ng/mL) for all treatment periods. It also inhibited the RI at 50 and 100 ng/mL concentrations for 24 h and at all concentrations for 48 h. Treatments given with tacrolimus result in the enhance of the different endpoints ofgenotoxicity, suggesting its mutagenic action on lymphocytes in vitro.  相似文献   

8.
Supernatants from endotoxin-stimulated human leukemic cells and human recombinant interferon-beta 2 similarly enhance synthesis of alpha 1-antichymotrypsin and haptoglobin but suppress synthesis of albumin in cultured Hep G2 cells. Human recombinant tumor necrosis factor only slightly affects production of alpha 1-antichymotrypsin and albumin in a similar manner as leukocyte cytokines. In distinction, recombinant human interferon-gamma profoundly inhibits synthesis of alpha 1-antichymotrypsin, and especially of haptoglobin, but stimulates production of alpha 2-macroglobulin thus modulating the acute phase response of these cells.  相似文献   

9.
In humans there is a correlation between the ratio of arachidonic acid (20:4n-6) to cis 8,11,14 eicosatrienoic acid (20:3n-6) in skeletal muscle phospholipids and insulin sensitivity. This has been interpreted as indicating a link between the activity of the delta5 desaturase enzyme and muscle insulin sensitivity. The present study addressed the possibility that insulin regulates delta5 desaturase activity using L6 rat myoblasts and hepG2 human hepatoma cells. Both cell lines responded to insulin by increasing the amount of D-[U-14C] glucose incorporated into glycogen. In L6 cells, insulin stimulated cis 8,11,14 eicosatrienoic acid uptake and arachidonic acid production but had no effect on the percentage conversion of cis 8,11,14 eicosatrienoic acid to arachidonic acid. In hepG2 cells, insulin had no effect on cis 8,11,14 eicosatrienoic acid uptake or arachidonic acid production. These results suggest that insulin has no direct effect on delta5 desaturase activity in the liver but can alter arachidonic acid production in muscle by altering substrate availability.  相似文献   

10.
Aim of the study was to investigate the usefulness of two human derived hepatoma cell lines (HepG2 and Hep3B) for the detection of dietary and lifestyle related DNA-reactive carcinogens. Comparisons of the sensitivity of HepG2 cells of different origin towards benzo[a]pyrene (B(a)P) showed that strong differences exist in the induction of micronuclei (MN). The most sensitive was used for all further experiments, in which we investigated the effects of aflatoxin B(1) (AFB(1)), B(a)P, As(2)O(3), CdCl(2), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), N-nitrosodimethylamine (NDMA), N-nitrosopyrrolidine (NPYR), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), ethanol, acetaldehyde and caffeic acid in micronucleus (MN) tests. Dose dependent effects were detected in HepG2 with AFB(1) (0.2microM), CdCl(2) (2.2microM), As(2)O(3) (8.1microM), B(a)P (22.7microM), PhIP (35.7microM), NDMA (22.7mM), acetaldehyde (11.2mM) and ethanol (442.2mM). Numbers in parentheses indicate the C(D) values (concentration that induced a two-fold increase over the background). NNK and caffeic acid gave negative results under all conditions. In Hep3B cells, the effects were generally weaker. With PhIP, As(2)O(3) and NDMA negative results were obtained; with caffeic acid and NPYR marginal but significant induction of MN was observed. Enzyme measurements showed that both cell lines possess CYP1A1, glutathione-S-transferase (three-fold higher in HepG2) as well as N-acetyltransferase (NAT) 1 and sulfotransferases (SULT1A1 and SULT1A3; two- and seven-fold higher in HepG2); other cytochrome P450 enzymes (CYP1A2, 2B1, 2E1) and NAT2 were not detectable. The differences in the activities of the various enzymes may explain the contrasting results obtained in the MN experiments. Overall, our results indicate that the HepG2 line is more sensitive towards dietary genotoxins than Hep3B, and support the assumption that the HepG2/MN assay enables the detection of genotoxic carcinogens which give negative results in other currently used in vitro assays.  相似文献   

11.
Curcumin, a major pigment of turmeric, is a natural antioxidant possessing a variety of pharmacological activities and therapeutic properties. But its mechanisms are unknown. In our previous study, we found that a 2-h exposure to curcumin induced DNA damage to both the mitochondrial DNA (mtDNA) and the nuclear DNA (nDNA) in HepG2 cells and that mtDNA damage was more extensive than nDNA damage. Therefore, experiments were initiated to evaluate the role of mtDNA damage in curcumin-induced apoptosis. The results demonstrated that HepG2 cells challenged with curcumin for 1 h showed a transient elevation of the mitochondrial membrane potential (DeltaPsim), followed by cytochrome c release into the cytosol and disruption of DeltaPsim after 6 h exposure to curcumin. Apoptosis was detected by Hoechst 33342 and annexin V/PI assay after 10 h treatment. Interestingly, the expression of Bcl-2 remained unchanged. A resistance to apoptosis for the corresponding rho0 counterparts confirmed a critical dependency for mitochondria during the induction of apoptosis in HepG2 cells mediated by curcumin. The effects of PEG-SOD in protecting against curcumin-induced cytotoxicity suggest that curcumin-induced cytotoxicity is directly dependent on superoxide anion O2- production. These data suggest that mitochondrial hyperpolarization is a prerequisite for curcumin-induced apoptosis and that mtDNA damage is the initial event triggering a chain of events leading to apoptosis in HepG2 cells.  相似文献   

12.
13.
Human hepatoma (Hep G2) cells have been shown to secrete nanogram quantities of carboxypeptidase N (Grimwood, B. G., Plummer, T. H., Jr., and Tarentino, A. (1988) J. Biol. Chem. 263, 14397-14401). A second carboxypeptidase with an acidic pH optimum (pH 5.5) is also secreted at levels 2-3-fold greater than carboxypeptidase N. This enzyme was partially purified from the conditioned medium and compared with pure bovine pituitary carboxypeptidase H. The two enzymes behaved in a similar fashion in DE52 ion-exchange chromatography and on gel filtration, with the Hep G2 enzyme being slightly larger than the bovine pituitary enzyme (52-54 versus 50-52 kDa). Both enzymes hydrolyzed COOH-terminal basic amino acids from typical synthetic substrates as well as from natural leuenkephalin peptides and were identical based on pH activity profiles, inhibition by EDTA or guanidinoethyl mercaptosuccinic acid, and stimulation by Co2+ ions. Inhibition of enzyme secretion from Hep G2 cells by tunicamycin indicated that the Hep G2 enzyme was glycosylated. This finding was confirmed by a parallel deglycosylation of the Hep G2 and bovine pituitary carboxypeptidase H enzymes with peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F. Immunoblots using mouse antiserum to bovine pituitary carboxypeptidase H revealed that the Hep G2 enzyme was immunocross-reactive with the bovine enzyme but was slightly larger in size (54 versus 52 kDa). Continuous [35S]methionine labeling and purification to near homogeneity using an affinity matrix corroborated the observations that the secreted Hep G2 carboxypeptidase H was slightly larger than bovine pituitary carboxypeptidase H. The Hep G2-secreted enzyme in pulse-chase experiments was initially detected intracellularly after a 15-min pulse as a single protein of about 54 kDa and was present in the 30-min chase medium with no evidence for pre- or postsecretion proteolytic processing. The human adrenergic cell line IMR-32 continuously labeled with [35S]methionine also secreted carboxypeptidase H of the same size as the Hep G2 enzyme.  相似文献   

14.
Long-term and large scale cultivation of an anchorage-dependent cell line using an industrial scale hollow fiber perfusion bioreactor is described. Hep G2 cells (a human hepatoma cell line) were cultivated in an Acysyst-P® (Endotronic) with a total fiber surface area of 7.2 m2 (6×1.2 m2) to produce Hep G2 crude conditioned medium (CCM). Pretreatment of the cellulose acetate hollow fibers with collagen enhances the attachment of the anchorage-dependent cells. We have succeeded in growing the Hep G2 cells in an antibiotics-and serum-free IMDM medium, supplemented with 50g/ml of Hep G2 CCM protein at inoculation. The Hep G2 cells replicate and secrete CCM protein in quantities comparable to those produced in DMEM containing 10% fetal calf serum (FCS). The highest CCM protein productivity during the 80-day cultivation was 1.1 g/day with a total of 30 g of protein accumulated. Hep G2 CCM (20–40 g protein/ml) was comparable to or even better than 10% FCS in supporting the growth of Molt-4 (a human T leukemia cell line) and FO (a mouse myeloma cell line) cells in vitro. The availability of this large amount of Hep G2 CCM will aid the further purification and characterization of growth factor(s) which could be used as serum substituents.  相似文献   

15.
Cadmium is a toxic transition heavy metal of continuing occupational and environmental concern, with a wide variety of adverse effects on regulation of gene expression and cellular signal transduction pathways. Injury to cells by cadmium leads to a complex series of events that can culminate in the death of the cell. It has been reported that cadmium induces apoptosis in many cell lines. However, the morphological characteristics leading to apoptosis or subsequent regeneration in cells exposed to cadmium have not been clarified. We evaluated whether human hepatoma cells maintained in culture undergo apoptosis when exposed to cadmium. Cytotoxic activity of cadmium on Hep G2 cells determined using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay. A DNA ladder assay was performed by electrophoresis. Cell cycle analysis was quantified by flow cytometry. Nuclear morphology was studied by fluorescence microscopy after staining with propidium iodide and Hoechst 33342. Morphologic alterations in culture hepatocytes treated with CdCl2 were observed by transmission electron microscopy. We have demonstrated that apoptosis is a major mode of elimination of damaged HepG2 cells in cadmium toxicity and it precedes necrosis.  相似文献   

16.
Genotoxic effects of sodium arsenite on human cells.   总被引:11,自引:0,他引:11  
The effects of sodium arsenite (SA) were studied either alone or in combination with X-rays in peripheral blood lymphocytes, and with short-wave ultraviolet (UV) radiation in primary human fibroblast culture systems. It was found that SA (i) inhibited the cell cycle progression of phytohaemagglutinin (PHA)-responsive lymphocytes, (ii) induced chromatid-type aberrations and sister-chromatid exchanges (SCEs) as a function of concentration and (iii) potentiated the X-ray- and UV-induced chromosomal damage. Our results suggest that SA interferes with the DNA repair process, presumably by inhibiting the ligase activity. This accounted for an increase in the DNA replication-dependent processes, chromatid aberrations and SCEs and synergistic enhancement of the X-ray- and UV-induced chromosomal damage. This ability of arsenite may be responsible for its comutagenic properties with different types of mutagens and hence its carcinogenicity.  相似文献   

17.
Transthyretin(TTR) gene was highly expressed in normal liver and it has been found to be deleted in part of DNA samples from human hepatic cancer.Its mRNA expression was suppressed in most hepatoma samples.In order to study the biological effect of TTR gene on the growth of hepatoma cells,a recombinant vector containing TTR cDNA was constructed by pCMV,then it was transfected into hepatoma cell lines SMMC-7721 and Q3.It has been demonstrated that the inhibition of growth rate of TTR cDNA transfected hepatoma cells was about 50% in strength compared with that of the control.This inhibition was further enhanced when the transfected hepatoma cells were treated with all-trans retinoic acid.Hepatoma cells of cell lines PLC/PRF/5,SMMC-7721 and Q3 as well as hepatoma cells SMMC-7721 transfected with pCMV or pCMV-TTR were analyzed for TTR expression by Northern hybridization.The low level of TTR expression was found in both hepatoma cell lines and in SMMC-7721 cells transfected with pCMV alone.However,a remarkable TTR mRNA expression was observed in hepatoma SMMV-7721 cells transfected with pCMV-TTR.It seems possible that TTR gene might be a candidate of cancer suppressor gene for human hepatic cancer.  相似文献   

18.
19.
Drug metabolism by the human hepatoma cell, Hep G2   总被引:4,自引:0,他引:4  
The human liver-derived cell line, Hep G2, has aryl hydrocarbon hydroxylase and 7-ethoxycoumarin o-de-ethylase activities. Partial purification of cytochrome P-450 from Hep G2 cells provided spectral evidence of this hemeprotein in the purified fraction. These results suggest that Hep G2 cells will be useful for the study of cytochrome P-450 and the regulation of mixed function oxidase activities in liver cells of human origin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号