共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
H L Scott 《Journal of theoretical biology》1974,46(1):241-253
We wish to present an order-disorder model for the observed phase transitions in lipid bilayers and biological membranes. We show that the model may, under certain circumstances, exhibit two phase transitions, one corresponding to positional disordering of entire lipid molecules, and the other corresponding to orientational disordering in the hydrocarbon chains. We then give results of our numerical analysis of the model and compare them with experimental data. Shortcomings of the model and future directions for analyses of this type are also discussed. 相似文献
3.
Saleem M Meyer MC Breitenstein D Galla HJ 《The Journal of biological chemistry》2008,283(8):5195-5207
Studies of different fragments and mutants of SP-B suggest that the function related structural and compositional characteristics in SP-B are its positive charges with intermittent hydrophobic domains. KL4 ([lysine-(leucine)4]4-lysine) is a synthetic peptide based on SP-B structure and is the major constituent of Surfaxin, a potential therapeutic agent for respiratory distress syndrome in premature infants. There is, however, no clear understanding about the possible lipid-KL4 interactions behind its function, which is an inevitable knowledge to design improved therapeutic agents. To examine the phase behavior, topography, and lipid specificity of KL4/lipid systems, we aimed to study different surfactant model systems containing KL4, neutral dipalmitoylphosphatidylcholine (DPPC) and/or negatively charged dipalmitoylphosphatidylglycerol (DPPG) in the presence of Ca2+ ions. Surface pressure-area isotherms, fluorescence microscopic images, scanning force microscopy as well as time-of-flight secondary ion mass spectrometry suggest (i) that KL4 is not miscible with DPPC and therefore forms peptide aggregates in DPPC/KL4 mixtures; (ii) that KL4 specifically interacts with DPPG via electrostatic interactions and induces percolation of DPPG-rich phases; (iii) that existing DPPG-Ca2+ interactions are too strong to be overcome by KL4, the reason why the peptide remains excluded from condensed DPPG domains and passively colocalizes with DPPC in a demixed fluid phase; and (iv) that the presence of negatively charged lipid is necessary for the formation of bilayer protrusions. These results indicate that the capability of the peptide to induce the formation of a defined surface-confined reservoir depends on the lipid environment, especially on the presence of anionic lipids. 相似文献
4.
N Düzgüne? C Newton K Fisher J Fedor D Papahadjopoulos 《Biochimica et biophysica acta》1988,944(3):391-398
We have investigated the thermotropic behavior of phospatidylserine bilayers interacting with Mg2+ either on one side or both sides, using differential scanning calorimetry. Large unilamellar vesicles (LUV) of phosphatidylserine exposed to Mg2+ on the external side only displayed an upward shift of the gel-liquid transition temperature (Tm) of about 6-8 degrees C relative to the Tm of LUV in Na+. Mg2+ was shown not to enter the vesicle interior, by means of fluorescence measurements on encapsulated 8-hydroxyquinoline-5-sulfonate. Multilamellar vesicles prepared in the presence of Mg2+, or vesicles prepared by Mg2+-induced fusion of small unilamellar vesicles, had Tm values that were shifted upward by about 16-17 C degrees. When the latter preparation was treated with EDTA to produce vesicles with Mg2+ inside and Na+ outside, the Tm was found to be shifted again by only 6-8 degrees C. These observations indicate that the monolayer interacting with Na+ fluidizes the monolayer interacting with Mg2+, and that the latter tends to solidify the former. The two monolayers thus appear to be coupled, possibly by hydrocarbon chain interdigitation. 相似文献
5.
6.
It was previously shown that myelin basic protein (MBP) can induce phase segregation in whole myelin monolayers and myelin lipid films, which leads to the accumulation of proteins into a separate phase, segregated from a cholesterol-enriched lipid phase. In this work we investigated some factors regulating the phase segregation induced by MBP using fluorescent microscopy of monolayers formed with binary and ternary lipid mixtures of dihydrocholesterol (a less-oxidable cholesterol analog) and phospholipids. The influence of the addition of salts to the subphase and of varying the lipid composition was analyzed. Our results show that MBP can induce a dihydrocholesterol-dependent segregation of phases that can be further regulated by the electrolyte concentration in the subphase and the composition (type and proportion) of non-sterol lipids. In this way, changes of the lipid composition of the film or the ionic strength in the aqueous media modify the local surface density of MBP and the properties (phase state and composition) of the protein environment. 相似文献
7.
The efficiency of pulmonary surfactant to stabilize the respiratory surface depends critically on the ability of surfactant to form highly packed films at the air-liquid interface. In the present study we have compared the packing and hydration properties of lipids in native pulmonary surfactant and in several surfactant models by analyzing the pressure and temperature dependence of the fluorescence emission of the LAURDAN (1-[6-(dimethylamino)-2-naphthyl]dodecan-1-one) probe incorporated into surfactant interfacial films or free-standing membranes. In interfacial films, compression-driven changes in the fluorescence of LAURDAN, evaluated from the generalized polarization function (GPF), correlated with changes in packing monitored by surface pressure. Compression isotherms and GPF profiles of films formed by native surfactant or its organic extract were compared at 25 or 37 °C to those of films made of dipalmitoylphosphatidylcholine (DPPC), palmitoyloleoylphosphatidylcholine (POPC), DPPC/phosphatidylglycerol (PG) (7:3, w/w), or the mixture DPPC/POPC/palmitoyloleoylphosphatidylglycerol (POPG)/cholesterol (Chol) (50:25:15.10), which simulates the lipid composition of surfactant. In general terms, compression of surfactant films at 25 °C leads to LAURDAN GPF values close to those obtained from pure DPPC monolayers, suggesting that compressed surfactant films reach a dehydrated state of the lipid surface, which is similar to that achieved in DPPC monolayers. However, at 37 °C, the highest GPF values were achieved in films made of full surfactant organic extract or the mixture DPPC/POPC/POPG/Chol, suggesting a potentially important role of cholesterol to ensure maximal packing/dehydration under physiological constraints. Native surfactant films reached high pressures at 37 °C while maintaining relatively low GPF, suggesting that the complex three-dimensional structures formed by whole surfactant might withstand the highest pressures without necessarily achieving full dehydration of the lipid environments sensed by LAURDAN. Finally, comparison of the thermotropic profiles of LAURDAN GPF in surfactant model bilayers and monolayers of analogous composition shows that the fluorophore probes an environment that is in average intrinsically more hydrated at the interface than inserted into free-standing bilayers, particularly at 37 °C. This effect suggests that the dependence of membrane and surfactant events on the balance of polar/non-polar interactions could differ in bilayer and monolayer models, and might be affected differently by the access of water molecules to confined or free-standing lipid structures. 相似文献
8.
M. Spassova I. R. Mellor A. G. Petrov K. A. Beattie G. A. Codd H. Vais P. N. R. Usherwood 《European biophysics journal : EBJ》1995,24(2):69-76
Nodularin (NODLN), a cyclic pentapeptide hepatotoxin from the cyanobacterium Nodularia spumigena, induces pores in bilayers of diphytanoyl lecithin (DPhL) and in locust muscle membrane. NODLN increases the surface pressure of a DPhL monolayer; except when the surface pressure of the monolayer is high when the toxin causes a reduction of this parameter. NODLN pores exhibit many open conductance states; the higher state probabilities increasing when the transmembrane pressure is increased. The results from these studies are discussed in terms of two models for a NODLN pore, a torroidal model and a barrel-stave model. The edge energy of the NODLN pore of 1.4× 10–12 J/m is determined.Abbreviations NODLN
Nodularin
- MCYST-LR
Microcystin-LR
- ADDA
3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid
- DPhL
diphytanoyl lecithin
Correspondence to: A. G. Petrov 相似文献
9.
Cabré EJ Loura LM Fedorov A Perez-Gil J Prieto M 《Biochimica et biophysica acta》2012,1818(7):1717-1725
Contradictory results have been reported with respect to the depth of penetration and the orientation of pulmonary surfactant protein SP-B in phospholipid membranes and its relative selectivity to interact with anionic over zwitterionic phospholipid species. In the present study we have re-evaluated lipid-protein interactions of SP-B by analysing F?rster resonance energy transfer (FRET) efficiencies, obtained from time-resolved measurements, from the single tryptophan in SP-B to different fluorescently labelled phospholipids in matrix bilayers made of either pure phosphatidylcholine (POPC) or the full lipid extract obtained from purified surfactant. In the background of POPC membranes SP-B exhibits a certain level of selectivity for anionic fluorescent phospholipids over the corresponding zwitterionic analogues, but apparently no preference for phosphatidylglycerol over other anionic species such as phosphatidylserine. No selectivity was detected in membranes made of full surfactant lipids, indicating that specific lipid-protein binding sites could already be occupied by endogenous anionic phospholipids. Furthermore, we have analysed the fit of two different models of how SP-B could be orientated with respect to phospholipid membrane surfaces to the FRET data. The FRET results are consistent with topology models in which the protein has a superficial orientation, with no regions of exclusion by the protein to the access of phospholipids, both in POPC membranes and in membranes made of the whole surfactant lipid fraction. This discards a deep penetration of the protein into the core of bilayers and suggests that most hydrophobic segments of SP-B could participate in protein-protein instead of lipid-protein interactions. 相似文献
10.
Phase separation in monolayers of pulmonary surfactant phospholipids at the air-water interface: composition and structure.
下载免费PDF全文

The phase behavior of monolayers containing the complete set of purified phospholipids (PPL) obtained from calf surfactant was investigated as a model for understanding the phase transitions that precede compression of pulmonary surfactant to high surface pressure. During compression, both fluorescence microscopy and Brewster angle microscopy (BAM) distinguished domains that separated from the surrounding film. Quantitative analysis of BAM grayscales indicated optical thicknesses for the PPL domains that were similar to the liquid condensed phase for dipalmitoyl phosphatidylcholine (DPPC), the most abundant component of pulmonary surfactant, and higher and less variable with surface pressure than for the surrounding film. BAM also showed the optical anisotropy that indicates long-range orientational order of tilted lipid chains for the domains, but not for the surrounding film. Fluorescence microscopy shows that addition of DPPC to the PPL increased the area of the domains. At fixed surface pressures from 20-40 mN/m, the total area of each phase grew in proportion with the mol fraction of DPPC. This constant variation allowed analysis of the DPPC mol fraction in each phase, construction of a simple phase diagram, and calculation of the molecular area for each phase. Our results indicate that the phase surrounding the domains is more expanded and compressible, and contains reduced amounts of DPPC in addition to the other phospholipids. The domains contain a mol fraction for DPPC of at least 96%. 相似文献
11.
12.
In this study, we used cholestatrienol (CTL) as a fluorescent reporter molecule to study sterol-rich L(o) domains in complex lipid bilayers. CTL is a fluorescent cholesterol analog that mimics the behavior of cholesterol well. The ability of 12SLPC to quench the fluorescence of cholestatrienol gives a measure of the amount of sterol included in L(o) domains in mixed lipid membranes. The stability of sterol-rich domains formed in complex lipid mixtures containing saturated sphingomyelins, phosphatidylcholines, or galactosylceramide as potential domain-forming lipids were studied. The amount of sterol associated with sterol-rich domains seemed to always increase with increasing temperature. The quenching efficiency was highly dependent on the domain-forming lipid present in complex lipid mixtures. Sphingomyelins formed stable sterol-enriched domains and were able to shield CTL from quenching better than the other lipids included in this study. The saturated phosphatidylcholines also formed sterol-rich domains, but the quenching efficiency in membranes with these was higher than with sphingomyelins and the domains melted at lower temperatures. PGalCer was not able to form sterol-enriched domains. However, we found that PGalCer stabilized sterol-rich domains formed in PSM-containing bilayers. Using a fluorescent ceramide analog, we also demonstrated that N-palmitoyl-ceramide displaced the sterol from sphingolipid-rich domains in mixed bilayer membranes. 相似文献
13.
The specificity of SNARE pairing in biological membranes is mediated by both proof-reading and spatial segregation 总被引:3,自引:0,他引:3
Soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins mediate organelle fusion in the secretory pathway. Different fusion steps are catalyzed by specific sets of SNARE proteins. Here we have used the SNAREs mediating the fusion of early endosomes and exocytosis, respectively, to investigate how pairing specificity is achieved. Although both sets of SNAREs promiscuously assemble in vitro, there is no functional crosstalk. We now show that they not only colocalize to overlapping microdomains in the membrane of early endosomes of neuroendocrine cells, but also form cis-complexes promiscuously, with the proportion of the different complexes being primarily dependent on mass action. Addition of soluble SNARE molecules onto native membranes revealed preference for cognate SNAREs. Furthermore, we found that SNAREs are laterally segregated at endosome contact sites, with the exocytotic synaptobrevin being depleted. We conclude that specificity in endosome fusion is mediated by the following two synergistically operating mechanisms: (i) preference for the cognate SNARE in 'trans' interactions and (ii) lateral segregation of SNAREs, leading to relative enrichment of the cognate ones at the prospective fusion sites. 相似文献
14.
15.
The permeation of the lipophilic ion dipicrylamine through planar lipid membranes formed from dipalmitoylphosphatidylcholine in n-decane shows an anomaly near the main phase transition of this system. Both the rate constant, ki, of ion translocation across the membrane interior and the interfacial concentration, N, of this ion have a maximum at about 36°C. Analogous experiments were performed with tetraphenylborate. A considerably lesser effect of the phase transition was found. The addition of cholesterol leads to a broadening of the maxima for ki and N. The time course of the current following a voltage jump shows a characteristic change below a temperature of about 45°C, if the molar ratio cholesterol/ phosphatidylcholine in the membrane forming solution exceeds 1. While the current transient decays exponentially above 45°C, a sum of two exponential terms yields an adequate fit below that temperature. This is regarded as evidence for a lateral phase separation below 45°C into structurally different domains, which provide two different pathways for dipicrylamine. 相似文献
16.
17.
18.
Geoffrey D Bothun 《Journal of nanobiotechnology》2008,6(1):13
Background
Lipid-based dispersion of nanoparticles provides a biologically inspired route to designing therapeutic agents and a means of reducing nanoparticle toxicity. Little is currently known on how the presence of nanoparticles influences lipid vesicle stability and bilayer phase behavior. In this work, the formation of aqueous lipid/nanoparticle assemblies (LNAs) consisting of hydrophobic silver-decanethiol particles (5.7 ± 1.8 nm) embedded within 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers is demonstrated as a function of the DPPC/Ag nanoparticle (AgNP) ratio. The effect of nanoparticle loading on the size distribution, bilayer phase behavior, and bilayer fluidity is determined. Concomitantly, the effect of bilayer incorporation on the optical properties of the AgNPs is also examined. 相似文献19.
The membrane composition and lipid physical properties have been systematically investigated as a function of fatty acid composition for a series of Acholeplasma laidlawii B membrane preparations made homogeneous in various fatty acids by growing cells on single fatty acids and avidin, a potent fatty acid synthetic inhibitor. The membrane protein molecular weight distribution is essentially constant as a function of fatty acid composition, but the lipid/protein ratio varies over a 2-fold range when different fatty acid growth supplements are used. The membrane lipid head-group composition varies somewhat under these conditions, particularly in the ratio of the two major neutral glycolipids. Differential thermal analytical investigations of the thermotropic phase transitions of various combinations of membrane components suggest that these compositional changes are unlikely to result in qualitative changes in the nature of lipid-protein or lipid-lipid interactions, although lesser changes of a quantitative nature probably do occur. The total lipids of membranes made homogeneous in their lipid fatty acyl chain composition exhibit sharper than normal gel-to-liquid-crystalline phase transitions of which midpoint temperatures correlate very well with the phase transition temperatures of synthetic hydrated phosphatidylcholines with like acyl chains. Our results indicate that using avidin and suitable fatty acids to grow A. laidlawii B, it is possible to manipulate the position and the sharpness of the membrane lipid phase transition widely and independently without causing major modifications in other aspects of the membrane composition. This fact makes the fatty acid-homogeneous A. laidlawii B membrane a very useful biological membrane preparation in which to study lipid physical properties and their functional consequences. 相似文献
20.
Chul Kim 《生物化学与生物物理学报:生物膜》2009,1788(7):1482-1496
Dynamic structures of supramolecular lipid assemblies, such as toroidal pores and thinned bilayers induced in oriented lipid membranes, which are interacting with membrane-acting antimicrobial peptides (AMPs), magainin-2 and aurein-3.3, were explored by 31P and 2H solid-state NMR (ssNMR) spectroscopy. Various types of phospholipid systems, such as POPC-d31, POPC-d31/POPG, and POPC-d31/cholesterol, were investigated to understand the membrane disruption mechanisms of magainin-2 and aurein-3.3 peptides at various peptide-to-lipid (P:L) ratios. The experimental lineshapes of anisotropic 31P and 2H ssNMR spectra measured on these peptide-lipid systems were simulated reasonably well by assuming the presence of supramolecular lipid assemblies, such as toroidal pores and thinned bilayers, in membranes. Furthermore, the observed decrease in the anisotropic frequency span of either 31P or 2H ssNMR spectra of oriented lipid bilayers, particularly when anionic POPG lipids are interacting with AMPs at high P:L ratios, can directly be explained by a thinned membrane surface model with fast lateral diffusive motions of lipids. The spectral analysis protocol we developed enables extraction of the lateral diffusion coefficients of lipids distributed on the curved surfaces of pores and thinned bilayers on a few nanometers scale. 相似文献