首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 98 毫秒
1.
Novel N,N'-diacyl-1,2-diaminopropyl-3-carbamoyl[bis-(2-dimethylaminoethane)] bivalent cationic lipids were synthesized and evaluated for in vitro transfection activity against a murine melanoma cell line. In the absence of the helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine), only the dioleoyl derivative 22 (1,2lb5) elicited transfection activity. The transfection activity of this lipid was reduced when formulated with DOPE. Contrary to that, the dimyristoyl derivative 19 (1,2lb2) mediated no activity when used alone but induced the highest levels of marker gene expression in the presence of DOPE. In an effort to correlate the transfection activity with cationic lipid structures, the physicochemical properties of cationic lipids in isolation and of lipoplexes were studied with surface tensiometry, photon correlation spectroscopy, gel electrophoresis mobility shift assay, and fluorescence techniques. In regard to the lipoplex properties, gel electrophoresis mobility shift assay and EtBr exclusion fluorescence assay revealed that the 1,2lb5 was the only lipid to associate and condense plasmid DNA, respectively. Photon correlation spectroscopy analysis found that 1,2lb5/DNA complexes were of relatively small size compared to all other lipoplexes. With respect to the properties of isolated lipids, Langmuir monolayer studies and fluorescence anisotropy on cationic lipid dispersions verified high two-plane elasticity and increased fluidity of the transfection competent dioleoyl derivative 1,2lb5, respectively. The results indicate that high transfection activity is mediated by cationic lipids characterized by an expanded mean molecular area, high molecular elasticity, and increased fluidity.  相似文献   

2.
A novel series of N,N'-diacyl-1,2-diaminopropyl-3-carbamoyl-(dimethylaminoethane) cationic derivatives was synthesized and screened for in vitro transfection activity at different charge ratios in the presence and absence of the helper lipids DOPE and cholesterol. Physicochemical properties of lipid-DNA complexes were studied by gel electrophoresis, fluorescence spectroscopy and dynamic light scattering. The interfacial properties of the lipids in isolation were studied using the Langmuir film balance technique at 23 degrees C. It was found that only lipoplexes formulated with the dioleoyl derivative, 1,2lmt[5], mediated significant in vitro transfection activity. Optimum activity was obtained with 1,2lmt[5]/DOPE mixture at a +/-charge ratio of 2. In agreement with the transfection results, 1,2lmt[5] was the only lipid found to complex and retard DNA migration as verified by gel electrophoresis. Despite the efficient complexation, no significant condensation of plasmid DNA was observed as indicated by fluorescence spectroscopy measurements. Monolayer studies showed that the dioleoyl derivative 1,2lmt[5] was the only lipid that existed in an all liquid-expanded state with a collapse area and collapse pressure of 59.5 A2 and 38.7 mN/m, respectively. This lipid was also found to have the highest elasticity with a compressibility modulus at monolayer collapse of 80.4 mN/m. In conclusion, increased acyl chain fluidity and high molecular elasticity of cationic lipids were found to correlate with improved transfection activity.  相似文献   

3.
Four different cationic derivatives of cholesterol were synthesized which contain either a tertiary or a quaternary amino head group, with and without a succinyl spacer-arm. Their ability to inhibit protein kinase C (PKC) activity was measured in a detergent mixed micellar solution. Derivatives containing a quaternary amino head group were effective inhibitors (Ki approx. 12 and 59 microM) of PKC and derivatives containing a tertiary amino head group were approx. 4-20-fold less inhibitory. Liposomes containing an equimolar mixture of dioleoylphosphatidylethanolamine (DOPE) and a cationic cholesterol derivative were tested for the DNA-mediated transfection activity in mouse L929 cells. Highest activity was found with the derivative with low PKC inhibitory activity and with a succinyl spacer-arm. The transfection activity of this tertiary amine derivative, N,N-dimethylethylenediaminyl succinyl cholesterol was dependent on DOPE as a helper lipid; liposomes containing dioleoylphosphatidylcholine and this derivative had little activity. The transfection protocol of this new cationic liposome reagent was optimized with respect to the ratio of liposome/DNA, dose of the complex and time of incubation with cells. Several adherent cell lines could be efficiently transfected with this liposome reagent without any apparent cytotoxicity. However, the transfection activity was strongly inhibited by the presence of serum components.  相似文献   

4.
Three novel polycationic gemini amphiphiles with different spacers were developed and evaluated in terms of their physiochemical properties and transfection efficiencies. Cationic liposomes formed by these amphiphiles and the helper lipid DOPE were able to successfully condense DNA, as shown by gel mobility shift and ethidium bromide intercalation assays. Transfection activity of the liposomes was superior to Lipofectamine® 2000 and was dependent on spacer structure, hydrophobicity, and nucleic acid type (pDNA or siRNA). We demonstrated that the cationic liposomes 2X6/DOPE and 2X7/DOPE are potential non-toxic vehicles for gene delivery.  相似文献   

5.
A novel series of symmetric double-chained primary and tertiary 1,3-dialkoylamido monovalent cationic lipids were synthesized and evaluated for their transfection activities. In the absence of the helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine), only the primary and tertiary dioleoyl derivatives 1,3lmp5 and 1,3lmt5, respectively elicited transfection activity. This is a striking difference between symmetrical 1,2-diacyl glycerol-based monovalent cationic lipids that always found both dioleoyl and dimyristoyl analogues being efficient transfection reagents. In the presence of helper lipid, all cationic derivatives induced marker gene expression, except the dilauroyl analogues 1,3lmp1 and 1,3lmt1 that elicited no transfection activity. Combining electrophoretic mobility data of the lipoplexes at different charge ratios with transfection activity suggested two requirements for high transfection activity with monovalent double-chained cationic lipids, that is, binding/association of the lipid to the plasmid DNA and membrane fusion properties of the lipid layers surrounding the DNA.  相似文献   

6.

Background

Cationic lipids are at present very actively investigated for gene transfer studies and gene therapy applications. Basically, they rely on the formation of DNA/lipid aggregates via electrostatic interactions between their cationic headgroup and the negatively charged DNA. Although their structure/activity relationships are not well understood, it is generally agreed that the nature of the positive headgroup impacts on their transfection activity. Thus, we have directed our efforts toward the development of cationic lipids with novel cationic moieties. In the present work, we have explored the transfection potential of the lipophilic derivatives of the aminoglycoside kanamycin A. Indeed, aminoglycosides, which are natural polyamines known to bind to nucleic acids, provide a favorable scaffold for the synthesis of a variety of cationic lipids because of their structural features and multifunctional nature.

Methods and results

We report here the synthesis of a cationic cholesterol derivative characterized by a kanamycin A headgroup and of its polyguanidinylated derivative. The amino‐sugar‐based cationic lipid is highly efficient for gene transfection into a variety of mammalian cell lines when used either alone or as a liposomal formulation with the neutral phospholipid dioleoylphosphatidylethanolamine (DOPE). Its polyguanidinylated derivative was also found to mediate in vitro gene transfection. In addition, colloidally stable kanamycin‐cholesterol/DOPE lipoplexes were found to be efficient for gene transfection into the mouse airways in vivo.

Conclusions

These results reveal the usefulness of cationic lipids characterized by headgroups composed of an aminoglycoside or its guanidinylated derivative for gene transfection in vitro and in vivo. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

7.
This paper reports results concerning the transfection of gliosarcoma cells 9L using an original cholesterol-based cationic liposome as carrier. This cationic liposome was prepared from triethyl aminopropane carbamoyl cholesterol (TEAPC-Chol) and a helper lipid, dioleoyl phosphatidyl ethanolamine (DOPE). The used concentration of liposome was not cytotoxic as revealed by the MTT test. TEAPC-Chol/DOPE liposomes allowed the plasmids encoding reporter genes to enter the nucleus as observed both by electron microscopy and functionality tests using fluorescence detection of green fluorescent protein (GFP) and luminometric measurements of luciferase activity. By changing the cationic lipid/DNA molar charge ratio, optimal conditions were determined. Further, improvement of the transfection level has been obtained by either precondensing plasmid DNA with poly-l-lysine or by adding polyethylene glycol (PEG) in the transfection medium. The optimal conditions determined are different depending on whether the transfection is made with cells in culture or with tumors induced by subcutaneous (s.c.) injection of cells in Nude mice. For in vivo assays, a simple method to overcome the interference of haemoglobin with the chemiluminescence intensity of luciferase has been used. These results would be useful for gaining knowledge about the potential for the cationic liposome TEAPC-Chol/DOPE to transfect brain tumors efficiently.  相似文献   

8.
Four novel cholesterol-based gemini cationic lipids differing in the length of oxyethylene-type spacers [-CH2-(CH2-O-CH2)n-CH2-] between each ammonium headgroup have been synthesized. These formed stable suspensions in aqueous media. Cationic liposomes were prepared from each of these lipids individually and as mixtures of cationic lipid and DOPE. These were used as nonviral gene delivery agents. All the cholesterol-based gemini lipids induced better transfection activity than their monomeric counterpart. Inclusion of DOPE in co-liposomal formulation of the cationic gemini lipid potentiates their gene transfer activity significantly. A major characteristic feature of these oxyethylene spacer based cholesterol gemini lipids was that serum does not inhibit the transfection activity of these gemini lipids, whereas the transfection activity of their monomeric counterpart decreased drastically in the presence of serum. One of the cholesterol-based gemini lipids 2a possessing a -CH2-CH2-O-CH2-CH2- spacer showed the highest transfection activity.  相似文献   

9.
This paper reports results concerning the transfection of gliosarcoma cells 9L using an original cholesterol-based cationic liposome as carrier. This cationic liposome was prepared from triethyl aminopropane carbamoyl cholesterol (TEAPC-Chol) and a helper lipid, dioleoyl phosphatidyl ethanolamine (DOPE). The used concentration of liposome was not cytotoxic as revealed by the MTT test. TEAPC-Chol/DOPE liposomes allowed the plasmids encoding reporter genes to enter the nucleus as observed both by electron microscopy and functionality tests using fluorescence detection of green fluorescent protein (GFP) and luminometric measurements of luciferase activity. By changing the cationic lipid/DNA molar charge ratio, optimal conditions were determined. Further, improvement of the transfection level has been obtained by either precondensing plasmid DNA with poly-L-lysine or by adding polyethylene glycol (PEG) in the transfection medium. The optimal conditions determined are different depending on whether the transfection is made with cells in culture or with tumors induced by subcutaneous (s.c.) injection of cells in Nude mice. For in vivo assays, a simple method to overcome the interference of haemoglobin with the chemiluminescence intensity of luciferase has been used. These results would be useful for gaining knowledge about the potential for the cationic liposome TEAPC-Chol/DOPE to transfect brain tumors efficiently.  相似文献   

10.
In a previous study, we developed a novel cationic lipid consisting of polyamidoamine dendron of third generation and two dodecyl chains, designated as DL-G3, which in combination with a fusogenic lipid dioleoylphosphatidylethanolamine (DOPE) achieves efficient transfection of CV1 cells by synergetic action of the proton sponge effect and membrane fusion. This study examines the effect of serum on the transfection activity of the DL-G3-DOPE-plasmid DNA lipoplexes. The transfection activity of a lipoplex with a composition optimized in the absence of serum decreased markedly in the presence of serum. However, the lipoplexes that induce efficient transfection in the presence of serum were obtainable by controlling the charge ratio of the primary amine of the DL-G3 to the phosphate group (N/P ratio) and DOPE content. The complex, which exhibited the highest transfection activity in the presence of serum, has a lower N/P ratio and higher DOPE content than that optimized in the absence of serum. Whereas disintegration of these complexes was induced by addition of heparin, which is a polysaccharide with negatively charged groups, the complex that retained transfection activity in the presence of serum required more negative charges of heparin for complex disintegration. That result implies its higher stability against negatively charged serum proteins. Comparison of the serum-resistant complex with some commercially available transfection reagents, such as Lipofectamine and SuperFect, indicates that the DL-G3 complex achieved more efficient transfection of these cells in the presence of serum.  相似文献   

11.
The structural and fusogenic properties of large unilamellar vesicles (LUVs) composed of the cationic lipid N-[2,3-(dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) and 1,2-dioleoyl-3-phosphatidylethanotamine (DOPE) have been examined in the presence of pCMV5 plasmid and correlated with transfection potency. It is shown, employing lipid mixing fusion assays, that pCMV5 plasmid strongly promotes fusion between DOTMA/DOPE (1:1) LUVs and DOTMA/1,2-dioleoyl-3-phosphatidylcholine (DOTMA/DOPC) (1:1) LUVs such that at a cationic lipid-to-DNA charge ratio of 3.0, approximately 80% fusion is observed. The anions citrate and chloride can also trigger fusion, but at much higher concentrations. Freeze-fracture electron microscopy studies demonstrate the tendency of cationic vesicles to form clusters at low pCMV5 content, whereas macroscopic fused aggregates can be observed at higher plasmid levels. 31P NMR studies of the fused DNA-DOTMA/DOPE (1:1) complexes obtained at high plasmid levels (charge ratio 1.0) reveal narrow "isotropic" 31P NMR resonances, whereas the corresponding DOPC containing systems exhibit much broader "bilayer" 31P NMR spectra. In agreement with previous studies, the transfection potency of the DOPE-containing systems is dramatically higher than for the DOPC-containing complexes, indicating a correlation between transfection potential and the motional properties of endogenous lipids. Interestingly, it was found that the complexes could be separated by centrifugation into a pellet fraction, which exhibits superior transfection potencies, and a supernatant fraction. Again, the pellet fraction in the DOPE-containing system exhibits a significantly narrower 31P NMR resonance than the corresponding DOPC-containing system. It is suggested that the 31P NMR characteristics of complexes exhibiting higher transfection potencies are consistent with the presence of nonbilayer lipid structures, which may play a direct role in the fusion or membrane destabilization events vital to transfection.  相似文献   

12.
Mukherjee K  Sen J  Chaudhuri A 《FEBS letters》2005,579(5):1291-1300
Efficacious cationic transfection lipids usually need either DOPE or cholesterol as co-lipid to deliver DNA inside the cell cytoplasm in non-viral gene delivery. If both of these co-lipids fail in imparting gene transfer properties, the cationic lipids are usually considered to be transfection inefficient. Herein, using both the reporter gene assay in CHO, COS-1 and HepG2 cells and the whole cell histochemical X-gal staining assay in representative CHO cells, we demonstrate that common co-lipids DOPE, Cholesterol and DOPC, when act in synergy, are capable of imparting improved gene transfer properties to a novel series of cationic lipids (1-5). Contrastingly, lipids 1-5 became essentially transfection-incompetent when used in combination with each of the pure co-lipid components alone.  相似文献   

13.
Some cationic triglycerides 1Aa-1Cb which have a symmetrical structure were effectively synthesized and formulated into cationic liposomes with the co-lipid dioleoylphosphatidylethanolamine (DOPE) and/or dilauroylphosphatidylcholine (DLPC). The plasmid encoding a luciferase was delivered into CHO cells by using these cationic liposomes. Our symmetrical cationic triglycerides showed high transfection activity when DOPE was used as a co-lipid. Among the symmetrical cationic triglycerides synthesized here, 1Ab and 1Ac, which have an oleoyl group at the 1- and 3-position in the glycerol backbone and also have a relatively long linker connecting the 2-hydroxy group in glycerol with the quaternary ammonium head group, were found to be the most suitable for gene delivery into cells. The transfection activity of the symmetrical cationic triglyceride 1Ab was comparable with that of its asymmetrical congener 6 and several times higher than that of Lipofectin.  相似文献   

14.
Four novel cationic lipids with different numbers of oxyethylene units at the linkage region between the pseudoglyceryl backbone and the hydrocarbon chains have been synthesized and used as mixtures with 1,2-dioleoyl-L-alpha-glycero-3-phosphatidyl ethanolamine (DOPE) for liposome-mediated gene transfection. Incorporation of different numbers of oxyethylene (-CH(2)CH(2)O-) units between long hydrocarbon chain at the C-1 and C-2 positions of the pseudoglyceryl skeleton improved the transfection efficiency considerably compared to the one in which the chains were connected via simple ether links. A pronounced improvement in the gene transfer efficiency was observed with the unsymmetrical cationic lipid 3 in which the long hydrocarbon at the C-1 position of the pseudoglyceryl segment is connected via two (-CH(2)CH(2)O-) units. Notably, the transfection ability of lipid 3 with DOPE in the presence of serum was significantly greater than LIPOFECTAMINE. This suggests that introduction of oxyethylene units between long hydrocarbon chains at the C-1 and C-2 positions of the pseudoglyceryl skeleton provides a novel strategy to achieve efficient gene transfer, especially in conditions where the presence of serum is critical.  相似文献   

15.
A novel series of cationic amphiphiles based on dialkyl glutamides with cationic pyridinium head group were synthesized as potential gene delivery agents. Four cationic lipids with glutamide as linker and varying chain lengths were tested for their transfection efficiency in three cell lines. The DNA-lipid complexes were characterized for their ability to bind to DNA, protection from nuclease digestion, size, zeta-potential, and toxicity. All four lipids demonstrated efficient transfection in MCF-7, COS, and HeLa cells, and the reporter gene expression was much higher with DOPE as the helper lipid in the formulation when compared to cholesterol. Among these 14-carbon lipids, lipid 2 has shown the highest transfection efficiency, complete protection of DNA from nuclease digestion, and low toxicity. Interestingly, lipid 2 has also shown remarkable enhancement in transfection in the presence of serum.  相似文献   

16.
Eight cholesterol based cationic lipids differing in the headgroup have been synthesized based on the ether linkage between the cationic headgroup and the cholesterol backbone. All the lipids formed stable suspensions in water. Transfection efficacies were examined in the absence and presence of serum using their optimized liposomal (lipid:DOPE) formulations. Our results showed that the transfection activities depend on the nature of the headgroup. Lipid bearing 4-N,N'-dimethylaminopyridine (DMAP) as headgroup showed the maximum transfection efficacy in the presence of serum. Importantly, the optimized formulation for this cationic lipid does not require DOPE, which is being used by most commercially available formulations. Cytotoxicity studies showed that the introduction of the positive charge decreases the cell viability of the cationic lipid formulations. Gel electrophoresis and Ethidium bromide exclusion assay revealed the different DNA binding abilities of formulations depending upon the headgroup of the cholesteryl lipid.  相似文献   

17.
A study related to the development and characterization of a new gene delivery system was performed. The approach consists in both the pre-condensation of plasmid DNA with an arginine-based cationic surfactant, arginine–N-lauroyl amide dihydrochloride (ALA), which was found not to be toxic, and the incorporation of the blood protein transferrin (Tf) into the formulations.Two cationic liposome formulations were used, one composed of a mixture of dioleoyl trimethylammoniopropane and cholesterol (DOTAP:Chol) and the other a pH sensitive formulation constituted of DOTAP, Chol, Dioleoyl phosphatidylethanolamine (DOPE) and cholesteryl hemisuccinate (CHEMS).Particles with different ALA/DNA and cationic lipid/DNA charge ratios were produced and a physicochemical characterization of the systems developed was performed. DNA conformational changes in the presence of ALA were studied by Circular Dichroism (CD) and the ALA binding to DNA was followed by surface tension measurements. Insight into the structure and morphology of the various ALA-complexes (complexes composed of ALA, DNA, Tf and liposomes) was obtained by cryogenic-Transmission Electron Microscopy (cryo-TEM) and the sizes of the ALA-complexes were determined through Photon Correlation Spectroscopy (PCS). We found that the transfection capacity of these systems is directly related with the presence of ALA and the lipidic composition. Complexes based on the pH sensitive liposome formulation present better transfection profiles. The correlation between the inner structure, density and size of the ALA-complexes and their biological activity is discussed. Overall, we demonstrate that the presence of ALA improves the transfection efficiency when conjugated with cationic liposome systems.  相似文献   

18.
A study related to the development and characterization of a new gene delivery system was performed. The approach consists in both the pre-condensation of plasmid DNA with an arginine-based cationic surfactant, arginine-N-lauroyl amide dihydrochloride (ALA), which was found not to be toxic, and the incorporation of the blood protein transferrin (Tf) into the formulations.Two cationic liposome formulations were used, one composed of a mixture of dioleoyl trimethylammoniopropane and cholesterol (DOTAP:Chol) and the other a pH sensitive formulation constituted of DOTAP, Chol, Dioleoyl phosphatidylethanolamine (DOPE) and cholesteryl hemisuccinate (CHEMS).Particles with different ALA/DNA and cationic lipid/DNA charge ratios were produced and a physicochemical characterization of the systems developed was performed. DNA conformational changes in the presence of ALA were studied by Circular Dichroism (CD) and the ALA binding to DNA was followed by surface tension measurements. Insight into the structure and morphology of the various ALA-complexes (complexes composed of ALA, DNA, Tf and liposomes) was obtained by cryogenic-Transmission Electron Microscopy (cryo-TEM) and the sizes of the ALA-complexes were determined through Photon Correlation Spectroscopy (PCS). We found that the transfection capacity of these systems is directly related with the presence of ALA and the lipidic composition. Complexes based on the pH sensitive liposome formulation present better transfection profiles. The correlation between the inner structure, density and size of the ALA-complexes and their biological activity is discussed. Overall, we demonstrate that the presence of ALA improves the transfection efficiency when conjugated with cationic liposome systems.  相似文献   

19.
重组病毒载体系统因为具有高效的基因转移能力得到了广泛应用,而病毒包装细胞的转染是重组病毒制备过程中的关键步骤。优化了脂质体DC-Chol/DOPE介导的转染常用的病毒包装细胞系HEK293FT的实验条件,比较了DC-Chol/DOPE、Lipofectamine2000和磷酸钙共沉淀法转染细胞的效率,并且比较了用DC-Chol/DOPE和磷酸钙共沉淀法转染293FT细胞制备重组腺病毒的结果,发现DC-Chol/DOPE对293FT细胞的转染效率以及最终收获的病毒滴度都远高于磷酸钙共沉淀法转染。所以,利用DC-Chol/DOPE转染293FT细胞制备重组病毒是一种简单、高效、成本低廉的方法。  相似文献   

20.
There is a need for the development of nonviral gene transfer systems with improved and original properties. "Fluorinated" lipoplexes are such candidates, as supported by the remarkably higher in vitro and in vivo transfection potency found for such fluorinated lipoplexes as compared with conventional ones or even with PEI-based polyplexes (Boussif, O., Gaucheron, J., Boulanger, C., Santaella, C., Kolbe, H. V. J., Vierling, P. (2001) Enhanced in vitro and in vivo cationic lipid-mediated gene delivery with a fluorinated glycerophosphoethanolamine helper lipid. J. Gene Med. 3, 109-114). Here, we describe the synthesis of fluorinated glycerophosphoethanolamines (F-PEs), close analogues of dioleoylphosphatidylethanolamine (DOPE), and report on their lipid helper properties vs that of DOPE, as in vitro gene transfer components of fluorinated lipoplexes based on pcTG90, DOGS (Transfectam), or DOTAP. To evaluate the contribution of the F-PEs to in vitro lipoplex-mediated gene transfer, we examined the effect of including the F-PEs in lipoplexes formulated with these cationic lipids (CL) for various CL:DOPE:F-PE molar ratios [1:(1 - x):x with x = 0, 0.5 and 1; 1:(2 - y):y with y = 0, 1, 1.5, and 2], and various N/P ratios (from 10 to 0.8, N = number of CL amines, P = number of DNA phosphates). Irrespective of the F-PE chemical structure, of the colipid F-PE:DOPE composition, and of the N/P ratio, comparable transfection levels to those of their respective control DOPE lipoplexes were most frequently obtained when using one of the F-PEs as colipid of DOGS, pcTG90, or DOTAP in place of part of or of all DOPE. However, a large proportion of DOGS-based lipoplexes were found to display a higher transfection efficiency when formulated with the F-PEs rather than with DOPE alone while the opposite tendency was evidenced for the DOTAP-based lipoplexes. The present work indicates that "fluorinated" lipoplexes formulated with fluorinated helper lipids and conventional cationic lipids are very attractive candidates for gene delivery. It confirms further that lipophobicity and restricted miscibility of the lipoplex lipids with the endogenous lipids does not preclude efficient gene transfer and expression. Their transfection potency is rather attributable to their unique lipophobic and hydrophobic character (resulting from the formulation of DNA with fluorinated lipids), thus preventing to some extent DNA from interactions with lipophilic and hydrophilic biocompounds, and from degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号