首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fluoxetine (Prozac) is one of the latest of a new generation of antidepressants, approved by FDA in 2002. The interactions of fluoxetine with multilamellar liposomes of pure phosphatidylcholine (PC) or containing cholesterol 10% molar were studied as a function of the lipid chain lengths, using differential scanning calorimetry and spin labelling EPR techniques. The DSC profiles of the gel-to-fluid state transition of liposomes of DMPC (C14:0) are broadened and shifted towards lower temperatures at increasing dopant concentrations and, with less than 10% fluoxetine, any detectable transition is destroyed. The broadened profiles and the lowered transition temperatures demonstrate that both the size and the packing of the cooperative units undergoing the transition are modified by fluoxetine, leading to a looser and more flexible bilayer. No phase separation was observed. The effects of fluoxetine on the thermotropic phase behaviour of DPPC (C16:0) and, even more, of DSPC (C18:0) are different from that of DMPC. In fact, in the former cases, two peaks appeared at increasing dopant concentrations, suggesting the occurrence of a phase separation phenomenon, which is a sign of a binding of fluoxetine in the phosphate region. In cholesterol containing membranes, fluoxetine, even at low concentrations, leads to a general corruption of the membrane, both in terms of packing and cooperativity, and the formation of any new phase is no longer observable. EPR spectra reflect the disordered motion of acyl chains in the bilayer. It was found that fluoxetine lowers the order of the lipid chains mainly in correspondence of the fifth carbon position of SASL, indicating a possible accumulation near the interfacial region.  相似文献   

2.
Atrazine (2-chloro-4 ethylamino-6-(isopropylamino)-s-triazine) is one of the most widely used herbicides. Fourier transform infrared spectroscopy, differential scanning calorimetry and fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) and of its derivative 1-(4-trimethylaminophenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) were used to study the interaction of atrazine with dipalmitoyl phosphatidylcholine liposomes used as a model for biological membranes. The results show that atrazine does not perturb the hydrophobic core of the lipid bilayer and suggest that the herbicide localizes near the glycerol backbone of the lipid.  相似文献   

3.
The interaction of gramicidin A with dipalmitoyl phosphatidylcholine liposomes is investigated by Laser-Raman spectroscopy. As revealed by the methylene CH stretching mode the phase transition of the hydrocarbon chains near 40°C is eliminated in the presence of gramicidin A. Liposomes prepared from a mixture of lecithin and cholesterol seem to be unaffected by gramicidin A and show only the normal broadened phase transition.  相似文献   

4.
The interaction of gramicidin A with dipalmitoyl phosphatidylcholine liposomes is investigated by Laser-Raman spectroscopy. As revealed by the methylene C-H stretching mode the phase transition of the hydrocarbon chains near 40 degree C is eliminated in the presence of gramicidin A. Liposomes prepared from a mixture of lecithin and cholesterol seem to be unaffected by gramicidin A and show only the normal broadened phase transition.  相似文献   

5.
Surface plasmon resonance (SPR) Biacore™ and equilibrium dialysis were applied to investigate the membrane affinities of salmeterol and propranolol and the kinetic interactions of salmeterol with egg phosphatidylcholine liposomes. The two methods revealed similar affinity values; however, they were dependent on the investigated drug concentrations. The kinetic experiments with salmeterol were optimized to obtain pseudo-first-order kinetics that were independent of the drug concentration. The adsorption and desorption phases followed biexponential functions up to pH 8.8 and mono or biexponential functions at higher pH values (i.e., between the two pKa values). The apparent rate constants of the faster phases of the biexponential functions were beyond the time resolution of the instrument in most measurements. The apparent rate constants of the slower phases ranged from 0.01 to 0.03 s−1 and were pH independent between pH 5.0 and pH 8.0. The rates of the monoexponential kinetics were between 0.08 and 0.12 s−1. We conclude that the biexponential kinetics at physiological pH reflect the partitioning into the outer lipid leaflet and “flip-flop,” respectively, of the cationic species.  相似文献   

6.
7.
The passive permeation of glucose and a small zwitterionic molecule, methyl-phosphoethanolamine, across two-component phospholipid bilayers (dimyristoyl phosphatidylcholine (DMPC)/dipalmitoyl phosphatidylcholine (DPPC) mixtures) exhibit a maximum when gel domains and fluid domains coexist. The permeability data of the two-phase bilayers cannot be fitted to single-rate kinetics, but are consistent with a Gaussian distribution of rate constants. In pure DMPC and DPPC as well as in their mixtures, at the temperature of the maximum excess heat capacity, the logarithm of the average permeability rate constants are linearly correlated with the mole fraction of DPPC in the total system. In addition, in the 50:50 mixture, the excess heat capacity values as well as the apparent fractions of interfacial lipid correlate with the logarithm of the excess permeabilities in the two-phase region. These results suggest that small polar molecules can cross the membrane at the interface between gel and fluid domains at a much faster rate than through the homogeneous phases; the acyl chains located at the domain interface experience lateral density fluctuations that are inversely proportional to their average length, and large enough to allow rapid transmembrane diffusion of the solute molecules. The distribution of the permeability rate constants may reflect temporal and spatial fluctuations of the lipid composition at the phase boundaries.  相似文献   

8.
The interaction of sheep erythrocyte membranes with phosphatidylcholine vesicles (liposomes) or human plasma lipoproteins is described. Isolated sheep red cell membranes were incubated with liposomes containing [14C]phosphatidylcholine or [3H]phosphatidylcholine in the presence of EDTA. A time-dependent uptake of phosphatidylcholine into the membranes could be observed. The content of this phospholipid was increased from 2 to 5%. The rate of transfer was dependent on temperature, the amount of phosphatidylcholine present in the incubation mixture and on the fatty acid composition of the liposomal phosphatidylcholine. A possible adsorption of lipid vesicles to the membranes could be monitored by adding cholesteryl [14C]oleate to the liposomal preparation. As cholesterylesters are not transferred between membranes [1], it was possible to differentiate between transfer of phosphatidylcholine molecules from the liposomes into the membranes and adsorption of liposomes to the membranes. The phosphatidylcholine incorporated in the membranes was isolated, and its fatty acids were analysed by gas chromatography. It could be shown that there was a preferential transfer of phosphatidylcholine molecules containing two unsaturated fatty acids.  相似文献   

9.
The interaction of melittin, a polypeptide consisting of 26 amino acid residues, with dimyristoyl phosphatidylcholine bilayers was investigated by vibrational Raman spectroscopy. Spectral peak height intensity ratios, involving vibrational transitions in both the 3000 cm?1 acyl chain methylene carbon-hydrogen stretching mode region and the 1100 cm?1 acyl chain carbon-carbon skeletal stretching mode interval, served as temperature profile indices for monitoring the bilayer order-disorder processes. For a lipid : melittin molar ratio of 14 : 1 two order-disorder transitions were observed. In comparison to a gel to liquid crystalline phase transition of 22.5°C for the pure lipid, the lower transition, exhibiting a 2°C width, is centered at 17°C and is associated with a depression of the main lipid phase transition of dimyristoyl phosphatidylcholine. The second thermal transition, displaying a 7°C interval, occurs at approx. 29°C and is associated with the melting behavior of approximately seven immobilized boundary lipids which surround the inserted hydrophobic segment of the polypeptide. For a lipid : melittin molar ratio of 10 : 1 two thermal transitions are also observed at 11 and 30°C. As before, they represent, respectively, the main gel to liquid crystalline phase transition and the melting behavior of approximately four boundary lipids attached to melittin. From these data alternative schemes are suggested for disposing the immobilized lipids around the hydrophobic portion of the polypeptide within the bilayer.  相似文献   

10.
A pulsed N.M.R study of D2O bound to 1,2 dipalmitoyl phosphatidylcholine   总被引:1,自引:0,他引:1  
Spin lattice relaxation times in both the lab and rotating frame, have been measured for deuterons (2H) in a number of unsonicated dispersions of 1,2 dipalmitoyl phosphatidylcholine in D2O over a range of resonant frequencies from 13 MHz to 1 MHz for temperatures from ?20°C to 65°C.The proton (1H) spin lattice relaxation time for the lecithin was measured for resonant frequencies of 8.5 MHz, and 40 MHz over a similar range of temperatures.The results agree with broadline measurements by Salsbury et al. [1], and for the liquid crystal phase are consistent with an anisotropic tumbling model of the water molecules bound to the lecithin headgroup. This tumbling occurs with correlation times of ≤10?10 sec and ≈ 10?6 sec about axes parallel to and perpendicular to the bisector of the D-O-D angle within a D2O molecule, hydrogen bonded to the negatively charged phosphate headgroup.  相似文献   

11.
12.
We studied the interaction between an apolipoprotein of pulmonary surfactant and the principal lipid found in this material, dipalmitoyl phosphatidylcholine. The apolipoprotein was extracted from canine surfactant and purified to greater than 90% homogeneity. The apolipoprotein was mixed for 16 h at room temperature with dipalmitoyl phosphatidylcholine dispersed in a buffer containing 0.1 M NaCl and 3mM CaCl2. Unbound lipid, unbound protein, and recombinants of lipid and protein were separated by density gradient centrifugation. 71% of the apolipoprotein was found associated with dipalmitoyl phosphatidylcholine. In comparable experiments using bovine plasma albumin about 13% of the albumin was recovered with the lipid. The physicochemical state of the lipid in the apolipoprotein-lipid complex was modified after binding of the protein. A distinct phase transition at 42 degrees C could no longer be detected, and the rate of adsorption to an air-liquid interface of the apolipoprotein-lipid complex was greater than that of the lipid alone. Surface tension vs. surface area isotherms of the dipalmitoyl phosphatidylcholine-apolipoprotein materials, however, were similar to those exhibited by pure dipalmitoyl phosphatidylcholine. The results suggest a physiological role for this apolipoprotein. It may bind to dipalmitoyl phosphatidylcholine under conditions expected in vivo, and may modify the physical properties of the aggregated dipalmitoyl phosphatidylcholine to form domains of lipid in a liquid-crystalline array. The complex dipalmitoyl phosphatidylcholine and apolipoprotein would have the physical properties necessary for its physiological function, allowing it to absorb to the alveolar interface and reduce its surface tension to less than 10 dynes/cm. Dipalmitoyl phosphatidylcholine, by itself, is in a gel-crystalline array below its phase transition temperature (42 degrees C) and would be incapable of effecting these actions.  相似文献   

13.
N-alkyl-N,N,N-trimethylamonium bromides (cnTMA, n = number of carbons in alkyl) stimulate and inhibit the autoperoxidation of egg yolk phosphatidylcholine (EYPC) in liposomes at n less than 12 and n greater than 12, respectively, with maximum stimulation for n = 8. CnTMA intercalate between EYPC molecules (decreasing the yield of ROO. + RH----ROOH+R. reaction, where RH is an unsaturated EYPC acyl chain, R. - EYPC acyl radical, and ROO. - peroxy radical of the EYPC acyl chain) and disorder the hydrophobic region of the bilayer (increasing the oxygen solubility there and thus yield of R. + O2----ROO. reaction). The final level of oxidation is affected by a summation of the EYPC lateral separation and disordering effects.  相似文献   

14.
When protoplasts from Bacillus subtilis are incubated with sonicated liposomes made from egg-yolk phosphatidylcholine, this phospholipid is incorporated into the protoplast membranes. Biochemical, fluorescence and ultrastructural data suggest that incorporation occurs through membrane fusion.  相似文献   

15.
Methods are presented for the preparation of large monodomain phospholipid bilayer arrays containing variable amounts of water approaching the two-phase limit. The optical birefringence of these lamellar phases of dipalmitoyl phosphatidylcholine (DDPC) is measured over a range of temperature and water content, and phase transitions are observed. The techniques employed for pure DPPC and water are extended in order to produce macroscopically aligned samples containing varying concentrations of cholesterol, inorganic salts, antibiotics, and chlorophyll a. Polarization studies of the 670-nm band of chlorophyll a indicate macroscopic orientational order in the chromophore under the same conditions.  相似文献   

16.
A novel method for the determination of dipalmitoyl phosphatidylcholine (DPPC) in amniotic fluid by high-performance liquid chromatography (HPLC) is described. Aliquots of 50 μl of amniotic fluid were hydrolyzed with phospholipase C from Bacillus cereus and the resulting dipalmitoylglycerol analyzed by HPLC. Run-to-run and day-to-day precision for DPPC analysis were 4.2 and 6.1%, respectively, and analysis time was 10 min. Recoveries for DPPC ranged between 92 and 98%. In summarizing, this method provides a high precision and fast turnaround time means for the analysis of DPPC in amniotic fluid.  相似文献   

17.
X-ray diffraction studies have been made on the effects of cations upon the dipamitoyl phosphatidylcholine/water system, which originally consists of a lamellar phase with period of 64.5 Å and of excess water. Addition of 1 mM CaCl2 destroys the lamellar structure and makes it swell into the excess water. the lamellar phase, however, reappears when the concentration of CaCl2 increases: a partially disordered lamellar phase with the repeat distance of 150–200 Å comes out at the concentration of about 10 mM, the lamellar diffraction lines become sharp and the repeat distance decreases with increasing CaCl2 concentration. A small amount of uranyl acetate destroys lamellar phase in pure water. MgCl2 induces the lamellar phase of large repeat distance, whereas LiCl, NaCl, KCl, SrCl2 and BaCl2 exhibit practically no effect by themselves. Addition of cholesterol to the phosphatidylcholine bilayers tends to stabilize the lamellar phaseThe high-angle reflections indicate that molecular arrangements on phosphatidylcholine bilayers change at CaCl2 concentrations around 0.5 M. The bilayers at high CaCl2 concentration seem to consist of two phases of pure phosphatidylcholine and of equimolar mixture of phosphatidylcholine and cholesterol.  相似文献   

18.
As a model of phospholipid bilayers in solid an oriented multilayer film (built-up film) of L-α-dipalmitoyl phosphatidylcholine (DPPC) was prepared from the monolayer by the dipping method. Structural analysis has been carried out by measuring infrared dichroism of the built-up film. The results were compared with those of the built-up film of L-α-dipalmitoyl phosphatidylethanolamine (DPPE). The tilting of the hydrocarbon chains is larger for DPPC than for DPPE. The orientation of the bisector of the two non-esterified PO bonds is closer to the film plane for DPPC than for DPPE. The strong hydrogen bonding interaction between the polar head groups was shown for DPPE, but not for DPPC. These features resemble the structural differences between dilauroyl phosphatidylethanolamine (DLPE) and dimyristoryl phosphatidylcholine (DMPC) in crystals. The hydrogen bonding interaction of DPPE found in solid remains even in the presence of water, namely, in the gel state. More closed packing of the hydrocarbon chains of solid DPPE than DPPC in solid was concluded on the basis of infrared and Raman spectra.  相似文献   

19.
A cooperative alignment of lipid chains in dipalmitoyl phosphatidylcholine (DPPC) bilayers was detected by using oriented multilayers containing small amounts of spin-labeled phosphatidylcholine. It is shown that a significant angle of tilt exists along the entire length of the lipid chains in DPPC. This behavior is compared with that of the more complex egg phosphatidylcholine bilayers. The lipid chains do not have the alignment of a single crystal but evidently exist in domains consisting of either clusters within a bilayer or successive layers out of register in the stacked multilayer.  相似文献   

20.
Pretransition and main transition of aqueous dipalmitoyl phosphatidylcholine (DPPC) dispersions were investigated by pulse NMR. The second moment M2 inter of the proton absorption line shows significant changes at 42 degrees C and about 35 degree C. Over the whole investigated temperature range between 25 and 50 degree C a superposition of at least two distinct second moments assigned to different molecular regions was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号