首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was hypothesized to investigate the hepatoprotective nature of resveratrol in averting hyperglycemia-mediated oxidative stress by measuring extent of oxidant stress and levels of proinflammatory cytokines and antioxidant competence in the hepatic tissues of streptozotocin–nicotinamide-induced diabetic rats. After the experimental period of 30 days, the pathophysiological markers such as serum bilirubin and hepatic aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP) were studied in addition to hepatic TNF-α, IL-1β, IL-6, NF-κB p65 and nitric oxide (NO) levels in control and experimental groups of rats. The levels of vitamin C, vitamin E and reduced glutathione (GSH) and activities of superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) were determined in the liver tissues. Extent of oxidative stress was also assessed by hepatic lipid peroxides, hydroperoxides and protein carbonyls. A portion of liver was processed for histological and ultrastructural studies. Oral administration of resveratrol (5 mg/kg b.w.) to diabetic rats showed a significant decline in hepatic proinflammatory cytokines and notable attenuation in hepatic lipid peroxides, hydroperoxides and protein carbonyls. The diminished activities of hepatic enzymic antioxidants as well as the decreased levels of hepatic non-enzymic antioxidants of diabetic rats were reverted to near normalcy by resveratrol administration. Moreover, the histological and ultrastructural observations evidenced that resveratrol effectively rescues the hepatocytes from hyperglycemia-mediated oxidative damage without affecting its cellular function and structural integrity. The findings of the present investigation demonstrated the hepatocyte protective nature of resveratrol by attenuating markers of hyperglycemia-mediated oxidative stress and antioxidant competence in hepatic tissues of diabetic rats.  相似文献   

2.
Hyperglycemia-mediated oxidative stress plays a crucial role in the progression of diabetic nephropathy. Hence, the present study was hypothesized to explore the renoprotective nature of resveratrol by assessing markers of oxidative stress, proinflammatory cytokines and antioxidant competence in streptozotocin-nicotinamide-induced diabetic rats. Oral administration of resveratrol to diabetic rats showed a significant normalization on the levels of creatinine clearance, plasma adiponectin, C-peptide and renal superoxide anion, hydroxyl radical, nitric oxide, TNF-α, IL-1β, IL-6 and NF-κB p65 subunit and activities of renal aspartate transaminase, alanine transaminase and alkaline phosphatase in comparison with diabetic rats. The altered activities of renal aldose reductase, sorbitol dehydrogenase and glyoxalase-I and elevated level of serum advanced glycation end products in diabetic rats were also reverted back to near normalcy. Further, resveratrol treatment revealed a significant improvement in superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase activities and vitamins C and E, and reduced glutathione levels, with a significant decline in lipid peroxides, hydroperoxides and protein carbonyls levels in diabetic kidneys. Similarly, mRNA and protein analyses substantiated that resveratrol treatment notably normalizes the renal expression of Nrf2/Keap1and its downstream regulatory proteins in the diabetic group of rats. Histological and ultrastructural observations also evidenced that resveratrol effectively protects the kidneys from hyperglycemia-mediated oxidative damage. These findings demonstrated the renoprotective nature of resveratrol by attenuating markers of oxidative stress in renal tissues of diabetic rats.  相似文献   

3.
The present study was to evaluate the effects of 20-OH ecdysone on hyperglycemia mediated oxidative stress in streptozotocin induced diabetic rats. Diabetes was induced in experimental rats by single intraperitoneal injection of STZ (45 mg/kg b.w.) dissolved in 0.1 mol/L citrate buffer (pH 4.5). Diabetic rats exhibited increased blood glucose with significant decrease in plasma insulin levels. The activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and the levels of non-enzymic antioxidants vitamin C, vitamin E and reduced glutathione (GSH) were decreased while increases in the levels of LPO markers were observed in liver and kidney tissues of diabetic rats. Moreover, hepatic markers (aspartate aminotransferase and alanine aminotransferase) and renal markers (urea, creatinine) were significantly increased in diabetic rats as compared to control rats. Upon treatment with 20-OH ecdysone to diabetic rats showed significant ameliorative effects on all the biochemical parameters studied. Biochemical findings were supported by histological studies. These results indicated that 20-OH ecdysone exerts a protective action on pancreatic beta cell function and overcomes oxidative stress through its hypoglycemic potential. The effect produced by the 20-OH ecdysone on various parameters was comparable to that of glibenclamide – an antidiabetic drug.  相似文献   

4.
Diabetes mellitus is the most common serious metabolic disorder and it is considered to be one of the five leading causes of death in the world. Hyperglycemia-mediated oxidative stress plays a crucial role in diabetic complications. Hence, this study was undertaken to evaluate the protective effect of esculetin on the plasma glucose, insulin levels, tissue antioxidant defense system and lipid peroxidative status in streptozotocin-induced diabetic rats. Diabetic rats exhibited increased blood glucose with significant decrease in plasma insulin levels. Extent of oxidative stress was assessed by the elevation in the levels of lipid peroxidation markers such as thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (HP) and conjugated dienes (CD); reduction in the enzymic antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST); nonenzymic antioxidants Vitamin C, E and reduced glutathione (GSH) were observed in the liver and kidney tissues of diabetic control rats as compared to control rats. Oral supplementation of esculetin to diabetic rats for 45 days significantly brought back lipid peroxidation markers, enzymic and nonenzymic antioxidants to near normalcy. Moreover, the histological observations evidenced that esculetin effectively rescues the hepatocytes and kidney from hyperglycemia mediated oxidative damage without affecting its cellular function and structural integrity. These findings suggest that esculetin (40 mg/kg BW) treatment exerts a protective effect in diabetes by attenuating hyperglycemia-mediated oxidative stress and antioxidant competence in hepatic and renal tissues. Further, detailed studies are in progress to elucidate the molecular mechanism by which esculetin elicits its modulatory effects in insulin signaling pathway.  相似文献   

5.
Diabetes mellitus is a chronic disease characterized by anomalies forming in carbohydrate, lipid, protein metabolisms and the incidence of this disease varies widely throughout the world. Zinc is an important element which is essential for life and is present in nature. In this study, the animals were divided into four groups. These groups were named as untreated; zinc sulfate; streptozotocin (STZ); STZ and zinc sulfate. STZ (65 mg/kg) was dissolved in a freshly prepared 0.01 M pH 4.5 citrate buffer and given with intraperitoneal injection in a single dose. Zinc sulfate (100 mg/kg) was dissolved in distilled water and given to the animals by gavage at a daily dose for 60 days. The rats were sacrificed under ether anesthesia. This study was aimed to investigate histological and biochemical changes of zinc supplementation on the kidney tissue in STZ-induced diabetic rats. In the current study, histological and histochemical observations showed that the occurred degenerative changes decreased after giving zinc in the kidney tissue of diabetic group. Kidney glutathione (GSH) levels decreased and lipid peroxidation (LPO), nonenzymatic glycosylation (NEG), urea and creatinine levels increased in diabetic rats. GSH levels increased, while LPO, NEG, urea and creatinine levels decreased in the kidney with administration of zinc to diabetic rats. As a result, we observed curative effects of zinc given to diabetic rats. We can say that zinc may be an important antioxidant for the treatment of secondary complications of diabetes in kidney tissue.  相似文献   

6.
《Free radical research》2013,47(6):668-678
Abstract

The present study was aimed to investigate the effect of D-pinitol on hyperglycaemia mediated oxidative stress by analysing the hepatic antioxidant competence, pro-inflammatory cytokines and ultrastructural changes in liver tissues of streptozotocin-induced diabetic rats. Oral administration of D-pinitol (50 mg/kg b.w.) resulted in significant (p < 0.05) attenuation in blood glucose, glycosylated haemoglobin and pro-inflammatory markers such as TNF-α, IL-1β, IL-6, NF-κB p65 unit and NO and significant (p < 0.05) elevation in the plasma insulin level. In addition, D-pinitol instigated a significant escalation in the levels of hepatic tissue non-enzymatic antioxidants and the activities enzymatic antioxidants of diabetic rats with significant (p < 0.05) decrease in lipid peroxides and hydroperoxides formation, thus demonstrating the protective role of D-pinitol on the hepatic tissues from oxidative stress-induced liver damage. These biochemical observations were complemented by histological and ultrastructural examination of liver section. Thus, the present study demonstrates the hepatoprotective nature of D-pinitol by attenuating hyperglycaemia-mediated pro-inflammatory cytokines and oxidative stress.  相似文献   

7.
The aim of this study was to determine whether biochemical changes occurred in the liver and kidney of arsenic (As) exposed pups during gestation and lactation, and investigate the potential beneficial role of antioxidants against arsenic exposure damage. Pregnant wistar rats received the following treatments as drinking water: (1) distilled water; (2) arsenic (50 mg/L); (3) antioxidants: zinc (20 mg/L) + vitamin C (2 g/L) + vitamin E (500 mg/L); (4) arsenic (50 mg/L) + antioxidants. As- intoxicated pups showed significant decreases in liver cholesterol and triglyceride concentration, whereas Aspartate aminotransferase (AST) and alkaline phosphatase (ALP) activities were increased. Treatment with antioxidants returns these values to control ones. TBARS production in both organs and liver glutathione peroxidase (GPx) activity also increased whereas catalase (CAT) activity in both organs decreased in arsenic-exposed pups; the antioxidant administration only recover TBARS concentration to control values. Our findings suggest that administration of antioxidants during gestation and lactation could prevent some of the negative effects of arsenic.  相似文献   

8.
In the current study, we scrutinized the effect of sevoflurane and halothane on cognitive and immune function in young rats. The rats were divided into following groups: sevoflurane, halothane and sevoflurane + halothane groups, respectively. The rats were regularly treated with the pre-determined treatment. We also scrutinized the serum proinflammatory cytokines including IL-10, IL-4 and IL-2; brain level IL-1β; hippocampal neuronal apoptosis concentration were estimated. The water maze test was performed in rats for the estimation of cognitive ability. During the water maze test, on the 1st day the sevoflurane group showed the latency; sevoflurane and sevoflurane + halothane group demonstrated the declined latency gradually as compared to the control group rats after the 3 days. The latency of the control, halothane, sevoflurane + halothane group rats showed the reduced latency and also showed the reduced crossing circle times. The hippocampal neuron apoptosis was significantly increased in halothane and sevoflurane + halothane group as compared to control group rats, respectively. Control group rats demonstrated the increased neuron apoptosis. The proinflammatory cytokines including IL-10 and IL-4 was significantly higher in sevoflurane, halothane and sevoflurane + halothane group rats after anesthesia and the whole brain IL-1β was significantly decrease in the sevoflurane, halothane and sevoflurane + halothane as compared to control group. Sevoflurane can inhibit the anesthesia effect of halothane on the immune and cognitive function of rats.  相似文献   

9.
Objective: To examine the effect of galangin on hyperglycemia-mediated oxidative stress in streptozotocin (STZ)-induced diabetic rats.

Methods: Diabetes was induced by intraperitoneal administration of low-dose STZ (40?mg/kg body weight (BW)) into male albino Wistar rats. Galangin (8?mg/kg BW) or glibenclamide (600?µg/kg BW) was given orally, once daily for 45 days to normal and STZ-induced diabetic rats.

Results: Diabetic rats showed significantly increased levels of plasma glucose, thiobarbituric acid reactive substances, lipid hydroperoxides, and conjugated dienes. The levels of insulin and non-enzymatic antioxidants (vitamin C, vitamin E, reduced glutathione) and the activity of enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase (GST)) were decreased significantly in diabetic control rats. These altered plasma glucose, insulin, lipid peroxidation products, enzymatic and non-enzymatic antioxidants ions were reverted to near-normal level after the administration of galangin and glibenclamide.

Conclusion: The present study shows that galangin decreased oxidative stress and increased antioxidant status in diabetic rats, which may be due to its antidiabetic and antioxidant potential.  相似文献   

10.
11.
Treatment with antioxidants may act more effectively to alter markers of free radical damage in combinations than singly. This study has determined whether treatment with combinations of pycnogenol, beta-carotene, and alpha-lipoic acid was more effective at reducing oxidative stress in diabetic rats than treatment with these antioxidants alone. It is not feasible, based on this study, to assume that there are interactive effects that make combinations of these antioxidants more effective than any one alone to combat oxidative stress. Female Sprague-Dawley rats, normal and streptozotocin-induced diabetic, were treated (10 mg/kg/day ip for 14 days) with pycnogenol, beta-carotene, pycnogenol + beta-carotene, or pycnogenol + beta-carotene + alpha-lipoic acid; controls were untreated. Concentrations of thiobarbituric acid reactive substances, glutathione and glutathione disulfide, and activities of glutathione reductase, glutathione peroxidase, superoxide dismutase, and catalase were measured in liver, kidney, and heart. Four types of effects were observed: (1) treatment with beta-carotene alone either reversed (cardiac glutathione disulfide) or elevated (cardiac glutathione, hepatic glutathione peroxidase activity) levels seen in diabetic animals; (2) beta-carotene alone produced no effect, but pycnogenol both alone and in combinations elevated (renal glutathione peroxidase and glutathione reductase activities, hepatic glutathione reductase activity and glutathione disulfide) or depressed (cardiac glutathione disulfide) levels seen in untreated diabetic animals; (3) all treatments with antioxidants, either alone or in combination, either normalized (lipid peroxidation in all tissues), elevated (hepatic GSH, cardiac glutathione peroxidase activity), or had no effect on (activities of hepatic catalase and superoxide dismutase in all tissues) levels seen in diabetic animals; (4) in only one case (cardiac glutathione reductase activity) levels in diabetic animals treated with combinations of antioxidants were normal, but elevated in animals treated with either antioxidant alone. Antioxidant effects seem to be dependent on the nature of the antioxidant used and not on combination effects.  相似文献   

12.
《Phytomedicine》2014,21(14):1785-1793
Diabetic nephropathy is a complex disease that involves increased production of free radicals which is a strong stimulus for the release of pro-inflammatory factors. We evaluated the renal protective effect of kolaviron (KV) – a Garcinia kola seed extract containing a mixture of 5 flavonoids, in diabetes-induced nephrotoxic rats. Male Wistar rats were divided into 4 groups: untreated controls (C); normal rats treated with kolaviron (C + KV); untreated diabetic rats (D); kolaviron treated diabetic rats (D + KV). A single intraperitoneal injection of streptozotocin (STZ, 50 mg/kg) was used for the induction of diabetes. Renal function parameters were estimated in a clinical chemistry analyzer. Markers of oxidative stress in the kidney homogenate were analyzed in a Multiskan Spectrum plate reader and Bio-plex Promagnetic bead-based assays was used for the analysis of inflammatory markers. The effect of kolaviron on diabetes-induced apoptosis was assessed by TUNEL assay. In the diabetic rats, alterations in antioxidant defenses such as an increase in lipid peroxidation, glutathione peroxidase (GPX) activity and a decrease in catalase (CAT) activity, glutathione (GSH) levels and oxygen radical absorbance capacity (ORAC) were observed. There was no difference in superoxide dismutase (SOD) activity. Diabetes induction increased apoptotic cell death and the levels of interleukin (IL)-1β and tumor necrosis factor (TNF)-α with no effect on IL-10. Kolaviron treatment of diabetic rats restored the activities of antioxidant enzymes, reduced lipid peroxidation and increased ORAC and GSH concentration in renal tissues. Kolaviron treatment of diabetic rats also suppressed renal IL-1β. The beneficial effects of kolaviron on diabetes-induced kidney injury may be due to its inhibitory action on oxidative stress, IL-1β production and apoptosis.  相似文献   

13.
Reactive oxygen species may be actively involved in the genesis of various pathological states such as ischemia-reperfusion injury, cancer, and diabetes. Our objective was to determine if subacute treatment with combined antioxidants quercetin and coenzyme Q(10) (10 mg/kg/day ip for 14 days) affects the activities of antioxidant enzymes in normal and 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Quercetin treatment raised blood glucose concentrations in normal and diabetic rats, whereas treatment with coenzyme Q(10) did not. Liver, kidney, heart, and brain tissues were excised and the activities of catalase, glutathione reductase, glutathione peroxidase, superoxide dismutase, and concentrations of oxidized and reduced glutathione were determined. In the liver of diabetic rats, superoxide dismutase, glutathione peroxidase, and levels of both oxidized and reduced glutathione were significantly decreased from the nondiabetic control, and these effects were not reversed when antioxidants were administered. In kidney, glutathione peroxidase activity was significantly elevated in the diabetic rats as compared to nondiabetic rats, and antioxidant treatment did not return the enzyme activity to nondiabetic levels. In heart, catalase activity was increased in diabetic animals and restored to normal levels after combined treatment with quercetin and coenzyme Q(10). Cardiac superoxide dismutase was lower than normal in quercetin- and quercetin + coenzyme Q(10)-treated diabetic rats. There were no adverse effects on oxidative stress markers after treatment with quercetin or coenzyme Q(10) singly or in combination. In spite of the elevation of glucose, quercetin may be effective in reversing some effects of diabetes, but the combination of quercetin + coenzyme Q(10) did not increase effectiveness in reversing effects of diabetes.  相似文献   

14.
Abstract

Objective

The aim of the present study was to evaluate the protective effect of kaempferol against oxidative stress in streptozotocin (STZ)-induced diabetic rats.

Methods

Diabetes was induced in male, adult albino rats of the Wistar strain, by intraperitoneal administration of STZ (40 mg/kg body weight (BW)). Kaempferol (100 mg/kg BW) or glibenclamide (600 µg/kg BW) was administered orally once daily for 45 days to normal and STZ-induced diabetic rats.

Results

The STZ-induced diabetic rats showed significantly increased levels of plasma glucose, thiobarbituric acid reactive substances, lipid hydroperoxides, and conjugated dienes in plasma, liver, kidney, and heart whereas they showed significantly decreased level of plasma insulin. The levels of non-enzymic antioxidants (vitamin C, vitamin E, reduced glutathione) in plasma, liver, kidney, and heart and the activities of enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase) in liver, kidney, and heart were significantly decreased in diabetic rats. Administration of kaempferol to diabetic rats was showed brought back in plasma glucose, insulin, lipid peroxidation products, enzymatic, and non-enzymatic antioxidants to near normal.

Conclusion

The present study indicates that kaempferol has a good antioxidant property, as evidenced by its increase of antioxidant status and decrease of lipid peroxidation markers, thus providing protection from the risks of diabetic complications.  相似文献   

15.
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide, exerting diverse effects. One of its frequently examined functions is cell protection, which is achieved mainly via inhibiting apoptotic, inflammatory and oxidative processes. All its three receptors (PAC1, VPAC1, VPAC2) are expressed in the kidney and PACAP has been shown to have protective effects against different renal pathologies. Diabetic nephropathy is the leading cause of end stage renal disease. The aim of the present study was to investigate the possible ameliorative effect of PACAP in streptozotocin-induced diabetic nephropathy and to evaluate its anti-inflammatory effect in this model. Diabetes was induced by a single intravenous injection of streptozotocin (65 mg/kg) in male Wistar rats. PACAP-treated animals were administered ip. 20 μg PACAP every second day, while untreated animals were given vehicle. Kidneys were removed after 8-weeks survival. Besides the complex histological analysis (glomerular PAS positive area/glomerulus area, tubular damage, arteriolar hyalinosis), expression of several cytokines was evaluated by cytokine array and Luminex assay. Histological analysis revealed severe diabetic changes in kidneys of control diabetic animals (glomerular PAS-positive area expansion, tubular damage, Armanni-Ebstein phenomenon). PACAP treatment significantly diminished the damage. Diabetic kidneys showed significant cytokine activation compared to their healthy controls. PACAP was effective in downregulation of several cytokines including CINC-1, TIMP-1, LIX, MIG, s-ICAM. To conclude, PACAP is effective in ameliorating diabetic nephropathy at least partly through its well-known anti-inflammatory effect. These results raise the opportunity for the use of PACAP as a possible therapeutic or preventive method in treating the complications of diabetes.  相似文献   

16.
Oxidative stress is currently suggested to play as a pathogenesis in the development of diabetes mellitus. The present study was designed to evaluate the effect of Casearia esculenta root extract on oxidative stress-related parameters in streptozotocin (STZ) -induced diabetic rats. Antidiabetic treatment with C. esculenta root extract (45 days) significantly (p < .05) decreased thiobarbituric acid reactive substances (TBARS) and remarkably improved tissue antioxidants status such as glutathione (GSH), ascorbic acid (vitamin C) and alpha-tocopherol (vitamin E) in liver and kidney of STZ-diabetic rats. In diabetics rats, the activities of enzymatic antioxidants such as superoxide dismutase (SOD, EC 1.11.1.1) catalase (CAT, EC 1.11.1.6) were decreased significantly while the activity of glutathione peroxidase (GPx, EC 1.11.1.9) decreased in the liver and increased in the kidney. The treatment of diabetic rats with C. esculenta root extract over a 45-day period returned these levels close to normal. These results suggest that C. esculenta root extracts exhibit antiperoxidative as well as antioxidant effects in STZ-induced diabetic rats.  相似文献   

17.
Quercitrin, a bio flavonoid, was investigated for its antioxidant potential in streptozotocin (STZ)-induced diabetic rats. Rats were induced diabetic by a single intraperitoneal injection of streptozotocin (50 mg/kg). The levels of fasting plasma glucose and insulin were estimated. Lipid peroxidative products and antioxidants were estimated in pancreas, liver, and kidney. Histopathological studies were carried out in these tissues. A significant (P < 0.05) increase in the levels of fasting plasma glucose and lipid peroxidative products (thiobarbituric acid reactive substances and lipid hydroperoxides) and a significant (P < 0.05) decrease in plasma insulin, enzymic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase), and nonenzymic antioxidants (reduced glutathione, vitamin C, and E) in diabetic pancreas, liver, and kidney were observed. Oral administration of quercitrin (30 mg/kg) for a period of 30 days significantly (P < 0.05) decreased fasting plasma glucose, increased insulin levels, and improved the antioxidant status of diabetic rats by decreasing lipid peroxidative products and increasing enzymic and nonenzymic antioxidants. Normal rats treated with quercitrin (30 mg/kg) showed no significant (P < 0.05) effect on any of the parameters studied. Histopathological studies of the pancreas, liver, and kidney showed the protective role of quercitrin. Thus, our study clearly shows that quercitrin has antioxidant effect in STZ-induced experimental diabetes.  相似文献   

18.
The aims of this study were to clarify the effects of high dietary supplementation with boric acid and borax, called boron (B) compounds, on lipid peroxidation (LPO), antioxidant activity, some vitamin levels, and DNA damage in rats. Thirty Sprague Dawley male rats were divided into three equal groups: the animals in the first group (control) were fed with a standard rodent diet containing 6.4 mg B/kg, and the animals in the experimental group were fed with a standard rodent diet added with a supra-nutritional amount of boric acid and borax (100 mg B/kg) throughout the experimental period of 28 days. The B compounds decreased malondialdehyde (MDA), DNA damage, the protein carbonyl content (PCO) level in blood, and glutathione (GSH) concentration in the liver, Cu–Zn superoxide dismutase (SOD), and catalase (CAT) activity in the kidney. The B compounds increased GSH concentration in blood and the vitamin C level in plasma. Consequently, our results demonstrate that B supplementation (100 mg/kg) in diet decreases LPO, and enhances the antioxidant defense mechanism and vitamin status. There are no differences in oxidant/antioxidant balance and biochemical parameters except for serum vitamin A and liver GSH concentration, between the boron compounds used in this study.  相似文献   

19.
《Phytomedicine》2014,21(5):595-601
Diabetic cardiomyopathy (DCM) is a disorder of the heart muscle that contributes to cardiovascular deaths in the diabetic population. Excessive generation of free radicals has been directly implicated in the pathogenesis of DCM. The use of antioxidants, through dietary supplementation, to combat increased cellular oxidative stress has gained popularity worldwide. Aspalathus linearis (rooibos) is a popular herbal tea that contains a novel antioxidant, aspalathin. Literature has reported on the antidiabetic, anti-inflammatory and free radical scavenging effects of rooibos. However, its protective effect against DCM has not been established. Therefore, this study investigated whether chronic exposure to an aqueous extract of fermented rooibos (FRE) has an ex vivo cardioprotective effect on hearts obtained from streptozotocin (STZ) induced diabetic rats. Adult Wistar rats were injected with 40 mg/kg of STZ. Two weeks after STZ injection, cardiomyocytes were isolated and cultured. Cultured cardiomyocytes were treated with FRE (1 and 10 μg/ml), vitamin E (50 μg/ml), and n-acetyl cysteine (1 mM) for 6 h, before exposure to either hydrogen peroxide (H2O2) or an ischemic solution. Cardiomyocytes exposed to H2O2 or an ischemic solution showed a decrease in metabolic activity and glutathione content with a concomitant increase in apoptosis and intracellular reactive oxygen species. Pretreatment with FRE was able to combat these effects and the observed amelioration was better than the known antioxidant vitamin E. This study provides evidence that an aqueous extract of fermented rooibos protects cardiomyocytes, derived from diabetic rats, against experimentally induced oxidative stress and ischemia.  相似文献   

20.
This study aimed to evaluate the protective efficacy of some antioxidants against sodium tungstate induced oxidative stress in male wistar rats. Animals were sub-chronically exposed to sodium tungstate (100 ppm in drinking water) for three months except for control group. In the same time, many rats were supplemented orally with different antioxidants (alpha-lipoic acid (ALA), n-acetylcysteine (NAC), quercetin or naringenin (0.30 mM)) for five consecutive days a week for the same mentioned period before. Exposure to sodium tungstate significantly (P < 0.05) inhibit blood δ-aminolevulinic acid dehydratase (ALAD) activity, liver and blood reduced glutathione (GSH) levels and an increase in oxidized glutathione (GSSG) and thiobarbituric acid reactive species (TBARS) levels in tissues. ALA acid and NAC supplementation post sodium tungstate exposure increased GSH and also, was beneficial in the recovery of altered superoxide dismutase and catalase activity, besides, significantly reducing blood and tissue reactive oxygen species and TBARS levels. The results suggest a more pronounced efficacy of ALA acid and NAC supplementation than quercetin or naringenin supplementation post sodium tungstate exposure in preventing induced oxidative stress in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号