共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Cytotoxicity of S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-L-cysteine in isolated rat kidney cells 总被引:1,自引:0,他引:1
S-(1,2-Dichlorovinyl)glutathione (DCVG) and S-(1,2-dichlorovinyl)-L-cysteine (DCVC) produced time- and concentration-dependent cell death in isolated rat kidney proximal tubular cells. AT-125 blocked and glycylglycine potentiated DCVG toxicity, indicating that metabolism by gamma-glutamyltransferase is required. S-(1,2-Dichlorovinyl)-L-cysteinylglycine, a putative metabolite of DCVG, also produced cell death, which was prevented by 1,10-phenanthroline, phenylalanylglycine, and aminooxyacetic acid, inhibitors of aminopeptidase M, cysteinylglycine dipeptidase, and cysteine conjugate beta-lyase, respectively. Aminooxyacetic acid and probenecid protected against DCVC toxicity, indicating a role for metabolism by cysteine conjugate beta-lyase and organic anion transport, respectively. DCVC produced a small decrease in cellular glutathione concentrations and did not change cellular glutathione disulfide concentrations or initiate lipid peroxidation. DCVC caused a large decrease in cellular glutamate and ATP concentrations with a parallel decrease in the total adenine nucleotide pool; these changes were partially prevented by aminooxyacetic acid. Both DCVG and DCVC inhibited succinate-dependent oxygen consumption, but DCVC had no effect when glutamate + malate or ascorbate + N,N,N',N'-tetramethyl-p-phenylenediamine were the electron donors. DCVC inhibited mitochondrial, but not microsomal, Ca2+ sequestration. These alterations in mitochondrial function were partially prevented by inhibition of DCVG and DCVC metabolism and were strongly correlated with decreases in cell viability, indicating that mitochondria may be the primary targets of nephrotoxic cysteine S-conjugates. 相似文献
4.
5.
Chuĭko GM Podgornaia VA Lavrikova IV 《Zhurnal evoliutsionno? biokhimii i fiziologii》2002,38(3):203-207
6.
Incubation of isolated, rat kidney cells with S-(1,2-dichlorovinyl)-L-homocysteine (DCVHC) caused time-dependent cell death. Cytotoxicity of DCVHC was potentiated by addition of alpha-ketobutyrate, indicating the involvement of pyridoxal phosphate-dependent enzymes. A second addition of DCVHC to cells produced increased cytotoxicity, indicating that the bioactivating ability is not lost after exposure to the conjugate. DCVHC decreased cellular glutathione concentrations by 52% and substantially inhibited glutathione biosynthesis from precursors. In contrast, the cysteine analog S-(1,2-dichlorovinyl)-L-cysteine (DCVC) failed to decrease cellular glutathione concentrations and only partially inhibited glutathione biosynthesis. As with DCVC, DCVHC did not increase cellular glutathione disulfide concentrations and did not initiate lipid peroxidation, indicating that it does not produce an oxidative stress. DCVHC and DCVC produced similar alterations in mitochondrial function: Cellular ATP concentrations were decreased by 57% and cellular ADP and AMP concentrations were increased twofold, thereby decreasing the ATP/ADP ratio from 2.8 to 0.6 and the cellular energy charge from 0.80 to 0.56; DCVHC was a potent inhibitor of succinate-dependent oxygen consumption, but had little effect on respiration linked to oxidation of glutamate + malate or ascorbate + N,N,N'N'-tetramethyl-p-phenylenediamine. DCVHC was a potent inhibitor of mitochondrial Ca2+ sequestration and, in contrast to DCVC, also inhibited microsomal Ca2+ sequestration. These DCVHC-induced alterations in cellular metabolism were prevented by addition of propargylglycine or aminooxyacetic acid, and the alpha-methyl analog S-(1,2-dichlorovinyl)-DL-alpha-methylhomocysteine was not toxic. These results support a role for pyridoxal phosphate-dependent bioactivation of DCVHC and indicate that the greater nephrotoxic potency of DCVHC as compared to DCVC is partially due to the presence of both mitochondrial and extramitochondrial targets for DCVHC. 相似文献
7.
8.
A continuous-rate assay for the detection of esterases which hydrolyze synthetic pyrethroids is described. The assay is based on the release of p-nitrophenolate ion upon hydrolysis of the pyrethroid-like compound, trans- or cis-p-nitrophenyl-(1R,S)-3-(2,2-dichlorovinyl)-2, 2-dimethylcyclopropanecarboxylate, at pH 7.4 where spontaneous hydrolysis is not detected. The reagent is solubilized by 0.02% Triton X-100 in the presence of 1.0% ethanol. A simple procedure for the synthesis and separation of the isomers is described. The application of the reagent to the assay of esterases which detoxify synthetic pyrethroids in the cattle tick Boophilus microplus is reported. 相似文献
9.
The activities of phosphatases and other biochemical parameters were examined in rats treated with isosaline leaf and stem-bark extracts of Harungana madagascariensis (L). Results show that both the leaf and stem-bark extracts significantly increased the activities of serum and liver alkaline phosphatase, liver acid phosphatase, liver and kidney glucose-6-phosphatase, fructose-1,6-diphosphatase and glycogen in the treated rats. While the stem-bark extract significantly elevated the activities of fructose-1,6-diphosphatase and glycogen in the kidney, these biochemical parameters were not affected by treatment with the leaf extract. The activity of serum acid phosphatase was unaffected by the two extracts. The results obtained clearly show that these extracts caused a marked increase in gluconeogenesis in the liver and kidney of the treated rats. While the stem-bark extract increased gluconeogenesis in both liver and kidney, the leaf extract caused an increase in gluconeogenesis only in the liver. The increased serum alkaline phosphatase activity caused by these extracts may, aside from having other tissues contributing to it, be due to damage caused by these extracts to the hepatocytes. The extent of pathological changes as well as the implications of these findings to folklore medicine requires further investigation. 相似文献
10.
The genotoxic activity of atrazine, a widely used triazine herbicide, was assayed by the DNA alkaline elution technique in rats given orally a single high dose or repeated daily doses. DNA breaks (and/or alkali-labile lesions) were detected in cell suspensions obtained from stomach, kidney and liver, but not in those from lung. 相似文献
11.
Amdekar S Kumar A Sharma P Singh R Singh V 《Molecular and cellular biochemistry》2012,368(1-2):155-165
The aim of the study was to evaluate protective property of Lactobacillus casei and Lactobacillus acidophilus in minimizing oxidative stress associated with arthritis from liver and kidney. Subsequently, protective property of Lactobacillus against the bone damage was also taken into consideration. Arthritis was induced by injecting freund's complete adjuvant (100 μl) into sub plantar surface of hind paw. Oral administration of culture, vehicle, and drug started after induction of arthritis (i.e. on day 9th). Indomethacin was used as a standard drug. Radiographic analysis of the hind paw knee joint was also done at the end of the 21st day. Oxidative stress parameters were studied from liver and kidney homogenate. Histopathology of liver and kidney was also performed. Lactobacillus treatment significantly rescued the enzymatic level of catalase, superoxide dismutase, reduced glutathione, and glutathione peroxidase in both liver and kidney homogenates, whereas it has decreased the malonaldehyde accumulation. Oral administration of Lactobacillus also significantly decreased the serum ceruloplasmin level. Radiographic analysis also corroborated these findings. Lactobacillus treatment maintained the normal histopathology of liver and kidney. Results of this study clearly suggest that L. casei and L. acidophilus, alone or in combination, decreased the bone damaged and effectively restored antioxidant status of liver and kidney. Lactobacillus has a significant antiarthritic and antioxidant activity against freund's complete adjuvant induced arthritis in rats. 相似文献
12.
Since chromium(III) was demonstrated to have antioxidative action, we have decided to study the effect of this element on V-induced LPO in liver and kidney of rats. Outbred 2-month-old, albino male Wistar rats received daily, for a period of 12 weeks: group I (control), deionized water to drink; group II, sodium metavanadate (SMV) solution at a concentration of 0.100mgV/mL; group III, chromium chloride (CC) solution at a concentration of 0.004mgCr/mL and group IV, SMV-CC solution at a concentration of 0.100mgV and 0.004mgCr/mL. The particular experimental groups took up with drinking water about 8.6mgV/kg b.w./24h (group II), 0.4mgCr/kg b.w./24h (group III), 9mgV and 0.36mgCr/kg b.w./24h (group IV). The V- or Cr-treated groups had higher concentrations of these two elements in liver and kidney compared to the controls. The administration of vanadium alone caused a significant decrease in fluid intake and in body weight gain compared to the controls. In liver supernatants obtained from all tested rats a statistically significant increase in MDA concentration was demonstrated in spontaneous LPO in comparison with the control rats. Moreover, in rats intoxicated with vanadium alone a statistically significant increase in liver MDA level was observed in the presence of 100microM NaVO(3). Instead, in supernatants of liver received from rats treated with chromium alone, a statistically significant increase in MDA concentration in comparison with the controls was found in the presence of 400microM NaVO(3). In kidney supernatants obtained from rats treated with chromium alone, a statistically significant increase in lipid peroxidation was shown in the presence of 30microM FeSO(4) and 400microM NaVO(3). These results show that the tested doses of vanadium(V) and chromium(III) ingested by rats with their drinking water caused significant alterations in internal organs, especially in liver. Under the conditions of our experiment, Cr(III) did not demonstrate antioxidant action, it rather had an oxidant effect. 相似文献
13.
Redox status of thioredoxin-1 (TRX1) determines the sensitivity of human liver carcinoma cells (HepG2) to arsenic trioxide-induced cell death 总被引:1,自引:0,他引:1
lntracellular redox homeostasis plays a critical role in determining tumor cells' sensitivity to drug-induced apoptosis. Here we investigated the role of thioredoxin-1 (TRX1), a key component of redox regulation, in arsenic trioxide (AS2O3)-induced apoptosis. Over-expression of wild-type TRX1 in HepG2 cells led to the inhibition of As2O3-induced cytochrome c (cyto c) release, caspase activation and apoptosis, and down-regulation of TRX1 expression by RNAi sensitized HepG2 cells to As2O3-induced apoptosis. Interestingly, mutation of the active site of TRX1 from Cys^32/35 to Ser^32/35 converted this molecule from an apoptotic protector to an apoptotic promoter. In an effort to understand the mechanisms of this conversion, we used isolated mitochondria from mouse liver and found that recombinant wild-type TRX1 could protect mitochondria from the apoptotic changes. In contrast, the mutant form of TRX1 alone elicited mitochondria-related apoptotic changes, including the mitochondrial permeability transition pore (mPTP) opening, loss of mitochondrial membrane potential, and cyto c release from mitochondria. These apoptotic effects were inhibited by cyclosporine A (CsA), indicating that mutant TRX1 targeted to mPTP. Alteration of TRX1 from its reduced form to oxidized form in vivo by 2,4-dinitrochlorobenzene (DNCB), a specific inhibitor ofTRX reductase, also sensitized HepG2 cells to As203-induced apoptosis. These data suggest that TRX1 plays a central role in regulating apoptosis by blocking cyto c release, and inactivation of TRX1 by either mutation or oxidization of the active site cysteines may sensitize tumor cells to As2O3-induced apoptosis. 相似文献
14.
Influence of phosphate status on phosphate uptake kinetics of maize (Zea mays) and soybean (Glycine max) 总被引:1,自引:0,他引:1
To obtain plants of different P status, maize and soybean seedlings were grown for several weeks in flowing nutrient solution culture with P concentrations ranging from 0.03–100 µmol P L-1 kept constant within treatments. P uptake kinetics of the roots were then determined with intact plants in short-term experiments by monitoring P depletion of a 3.5 L volume of nutrient solution in contact with the roots. Results show maximum influx, Imax, 5-fold higher in plants which had been raised in solution of low compared with high P concentration. Because P concentrations in the plants were increased with increase in external P concentration, Imax was negatively related to % P in shoots. Michaelis constants, Km, were also increased with increased pretreatment P concentration, only slightly with soybean, but by a factor of 3 with maize. The minimum P concentration, Cmin, where net influx equals zero, was found between 0.06 and 0.3 µmol L-1 with a tendency to increase with pretreatment P concentration. Filtration of solutions at the end of the depletion experiment showed that part of the external P was associated with solid particles.It was concluded that plants markedly adapt P uptake kinetics to their P status, essentially by the increase of Imax, when internal P concentration decreases. Changes of Km and Cmin were of minor importance. 相似文献
15.
Isaac A. Adedara Amos O. Abolaji Blessing E. Odion Abiola A. Omoloja Isioma J. Okwudi Ebenezer O. Farombi 《Redox report : communications in free radical research》2013,18(6):239-247
Objectives: Exposure to 2,5-hexanedione (2,5-HD) is well known to be associated with reproductive dysfunctions in both humans and animals. However, the role of oxidative stress in 2,5-HD-induced toxicity in testes and sperm has not yet been studied.Methodology: The present study investigated the influence of 2,5-HD on antioxidant systems in the testes and epididymal sperm of rats following exposure to 0, 0.25, 0.5, and 1% 2,5-HD in drinking water for 21 consecutive days.Results: Administration of 0.5% 2,5-HD significantly (P?<?0.05) decreased epididymis weight, whereas 1% 2,5-HD-treated rats showed significantly decreased body weight, testis, and epididymis weights compared with the control group. Exposure to 2,5-HD caused a significant dose-dependent increase in the activities of superoxide dismutase, catalase, and glutathione peroxidase in both testes and sperm compared with the control group. Moreover, 2,5-HD-exposed rats showed significant decrease in glutathione-S-transferase activity and glutathione level with concomitant significant elevation in the levels of hydrogen peroxide and malondialdehyde in both testes and sperm. Testicular and epididymal atrophy with significant, dose-dependent, decrease in epididymal sperm number, sperm motility, and viability were observed in 2,5-HD-treated rats.Conclusion: 2,5-HD exposure impaired testicular function and sperm characteristics by disruption of the antioxidant systems and consequently, increased oxidative stress in the treated rats. 相似文献
16.
17.
A series of complexes of Au(III) with nucleosides and nucleotides and their methyl derivatives in different stoichiometry have been prepared. Ultraviolet, visible, ir, and nmr studies have been performed to determine the site of binding of these ligands with the metal ion. In (1:4) Au(III): guanosine complex, N7 is the binding site, whereas at 1:1 complex, a bidentate type of chelation through C6O and N7 is observed. C6-NH2 is favored over N1 as coordinating site at all stoichiometry in the adenosine complex. Inosine binds through N1 at r = 1. In cytidine, N1 is the binding site, whereas thymidine reacts only at high pH. In the case of nucleotides a bidentate type of chelation through the phosphate and the ring nitrogen occurs. The phosphate binding ability of Au(III) was further confirmed by studying the interaction of Au(III) with dimethyl phosphate—a conformational analog of the phosphate backbone in DNA chain. 相似文献
18.
Mariana Argirova Mischa Kleine-Reidick Winrich Breipohl 《Cell biochemistry and biophysics》2004,41(3):381-389
The aim of this work was to study the regional variation of some antioxidant systems in calf lens. Specific lens regions of
nearly same age were obtained by a microsectioning technique, and the concentration of reduced and oxidized glutathione, protein
sulfhydryl groups and iron were measured in each lens region. The concentration of reduced glutathione, the major redox buffer
in lens, exponentially decreased from the cortical regions to the nucleus. In contrast, the concentration of protein sulfhydryl
groups gradually increased from the cortex toward the nucleus. The protein-bound disulfides remained constant throughout the
lens. Iron was concentrated in the outer cortical region.
The results show that the most dynamic redox-active zone in the lens is the subcapsular cortical region where the oxidant
flux meets a highly reducing environment containing a potent redox catalyst. 相似文献
19.
Intraperitoneal injection of the iron chelate ferric-nitrilotriacetate (Fe-NTA) induces in rodents renal and hepatic suffering, associated with oxidative damage. We investigated the oxidation pattern in plasma of treated rats in relation to liver and kidney, monitoring the variation of the lipid components more susceptible to oxidation, unsaturated fatty acids (UFA) and alpha-tocopherol, as biomarkers of the oxidative damage. A sublethal dose of Fe-NTA induced a strong and extremely significant decrease of UFA levels at 1 h after injection in the plasma compartment and at 3 h in the kidney, with reductions up to 40-50% of the control values, together with an increase of conjugated dienes fatty acids hydroperoxides and a consumption of alpha-tocopherol. The same modifications were observed in the liver, but to a lesser extent. Histological observation proved that biochemical changes in the lipid fraction were a direct consequence of an ongoing membrane lipid peroxidation process. Our data show that oxidative damage to the lipid fraction is initially evident in the plasma compartment, where Fe-NTA toxicity is assumed to be caused by the elevation of serum free iron concentration, and proceeds with different speed and severity in the kidney and liver. 相似文献
20.
H. Steve Hsieh Howard E. Ganther 《Biochimica et Biophysica Acta (BBA)/General Subjects》1977,497(1):205-217
A pathway for the synthesis of dimethyl seledine from sodium selenite was studied in rat liver and kidney fractions under anaerobic conditions in the presence of GSH, a NADPH-generating system, and S-adenosylmethionine. Chromatography of liver or kidney soluble fraction on Sephadex G-75 yielded a Fraction C (30 000 molecular weight) which synthesized dimethyl selenide, but at a low rate. Addition of proteins eluting at the void volume (Fraction A) to Fraction C restored full activity. Fractionation of Fraction A on DEAE-cellulose revealed that its ability to stimulate Fraction C was associated with two fractions, one containing glutathione reductase and the other a NADPH-dependent disulfide reductase. It was concluded that Fraction C contains a methyltransferase acting on small amounts of hydrogen selenide produced non-enzymically by the reaction of selenite with GSH, and that stimulation by Fraction A results partly from the NADPH-linked formation of hydrogen selenide catalyzed by glutathione reductase present in Fraction A. Washed liver microsomal fraction incubated with selenite plus 20 mM GSH also synthesized dimethyl selenide, but addition of soluble fraction stimulated activity. A synergistic effect was obtained when liver soluble fraction was added to microsomal fraction in the presence of a physiological level of GSH (2 mM), whereas at 20 mM GSH the effect was merely additive. The microsomal component of the liver system was labile, had maximal activity around pH 7.5, and was exceedingly sensitive to NaAsO2 (93% inhibition by 10?6 M arsenite in the presence of a 20 000-fold excess of GSH). The microsomal activity apparently results from a Se-methyltransferase, possibly a dithiol protein, that methylates hydrogen selenide produced enzymically by the soluble fraction or non-enzymically when a sufficiently high concentration of GSH is used. 相似文献