首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anaerobic bacterium Fusobacterium nucleatum uses glutamate decarboxylation to generate a transmembrane gradient of Na+. Here, we demonstrate that this ion-motive force is directly coupled to ATP synthesis, via an F1Fo-ATP synthase with a novel Na+ recognition motif, shared by other human pathogens. Molecular modeling and free-energy simulations of the rotary element of the enzyme, the c-ring, indicate Na+ specificity in physiological settings. Consistently, activity measurements showed Na+ stimulation of the enzyme, either membrane-embedded or isolated, and ATP synthesis was sensitive to the Na+ ionophore monensin. Furthermore, Na+ has a protective effect against inhibitors targeting the ion-binding sites, both in the complete ATP synthase and the isolated c-ring. Definitive evidence of Na+ coupling is provided by two identical crystal structures of the c11 ring, solved by X-ray crystallography at 2.2 and 2.6 Å resolution, at pH 5.3 and 8.7, respectively. Na+ ions occupy all binding sites, each coordinated by four amino acids and a water molecule. Intriguingly, two carboxylates instead of one mediate ion binding. Simulations and experiments demonstrate that this motif implies that a proton is concurrently bound to all sites, although Na+ alone drives the rotary mechanism. The structure thus reveals a new mode of ion coupling in ATP synthases and provides a basis for drug-design efforts against this opportunistic pathogen.  相似文献   

2.
Potassium channels allow the selective flux of K+ excluding the smaller, and more abundant in the extracellular solution, Na+ ions. Here we show that Shab is a typical K+ channel that excludes Na+ under bi-ionic, Nao/Ki or Nao/Rbi, conditions. However, when internal K+ is replaced by Cs+ (Nao/Csi), stable inward Na+ and outward Cs+ currents are observed. These currents show that Shab selectivity is not accounted for by protein structural elements alone, as implicit in the snug-fit model of selectivity. Additionally, here we report the block of Shab channels by external Ca2+ ions, and compare the effect that internal K+ replacement exerts on both Ca2+ and TEA block. Our observations indicate that Ca2+ blocks the channels at a site located near the external TEA binding site, and that this pore region changes conformation under conditions that allow Na+ permeation. In contrast, the latter ion conditions do not significantly affect the binding of quinidine to the pore central cavity. Based on our observations and the structural information derived from the NaK bacterial channel, we hypothesize that Ca2+ is probably coordinated by main chain carbonyls of the pore´s first K+-binding site.  相似文献   

3.
Summary We have studied the kinetic properties of rabbit red cell (RRBC) Na+/Na+ and Na+/H+ exchanges (EXC) in order to define whether or not both transport functions are conducted by the same molecule. The strategy has been to determine the interactions of Na+ and H+ at the internal (i) and external (o) sites for both exchanges modes. RRBC containing varying Na i and H l were prepared by nystatin and DIDS treatment of acid-loaded cells. Na+/Na+ EXC was measured as Na o -stimulated Na+ efflux and Na+/H+ EXC as Na o -stimulated H+ efflux and pH o -stimulated Na+ influx into acid-loaded cells.The activation of Na+/Na+ EXC by Na o at pH i 7.4 did not follow simple hyperbolic kinetics. Testing of different kinetic models to obtain the best fit for the experimental data indicated the presence of high (K m 2.2 mM) and low affinity (K m 108 mM) sites for a single- or two-carrier system. The activation of Na+/H+ EXC by Na o (pH i 6.6, Na i <1 mM) also showed high (K m 11 mM) and low (K m 248 mM) affinity sites. External H+ competitively inhibited Na+/Na+ EXC at the low affinity Na o site (K H 52 nM) while internally H+ were competitive inhibitors (pK 6.7) at low Na i and allosteric activators (pK 7.0) at high Na i .Na+/H+ EXC was also inhibited by acid pH o and allosterically activated by H i (pK 6.4). We also established the presence of a Na i regulatory site which activates Na+/H+ and Na+/Na+ EXC modifying the affinity for Na o of both pathways. At low Na i , Na+/Na+ EXC was inhibited by acid pH i and Na+/H+ stimulated but at high Na i , Na+/Na+ EXC was stimulated and Na+/H+ inhibited being the sum of both pathways kept constant. Both exchange modes were activated by two classes of Na o sites,cis-inhibited by external H o , allosterically modified by the binding of H+ to a H i regulatory site and regulated by Na i . These findings are consistent with Na+/Na+ EXC being a mode of operation of the Na+/H+ exchanger.Na+/H+ EXC was partially inhibited (80–100%) by dimethyl-amiloride (DMA) but basal or pH i -stimulated Na+/Na+ EXC (pH i 6.5, Na i 80 mM) was completely insensitive indicating that Na+/Na+ EXC is an amiloride-insensitive component of Na+/H+ EXC. However, Na+ and H+ efflux into Na-free media were stimulated by cell acidification and also partially (10 to 40%) inhibited by DMA: this also indicates that the Na+/H+ EXC might operate in reverse or uncoupled modes in the absence of Na+/Na+ EXC.In summary, the observed kinetic properties can be explained by a model of Na+/H+ EXC with several conformational states, H i and Na i regulatory sites and loaded/unloaded internal and external transport sites at which Na+ and H+ can compete. The occupancy of the H+ regulatory site induces a conformational change and the occupancy of the Na i regulatory site modulates the flow through both pathways so that it will conduct Na+/H+ and/or Na+/Na+ EXC depending on the ratio of internal Na+:H+.  相似文献   

4.
The recently reported crystal structures of the membrane-embedded proton-dependent c-ring rotors of a cyanobacterial F1Fo ATP synthase and a chloroplast F1Fo ATP synthase have provided new insights into the mechanism of this essential enzyme. While the overall features of these c-rings are similar, a discrepancy in the structure and hydrogen-bonding interaction network of the H+ sites suggests two distinct binding modes, potentially reflecting a mechanistic differentiation. Importantly, the conformation of the key glutamate side chain to which the proton binds is also altered. To investigate the nature of these differences, we use molecular dynamics simulations of both c-rings embedded in a phospholipid membrane. We observe that the structure of the c15 ring from Spirulina platensis is unequivocally stable within the simulation time. By contrast, the proposed structure of the H+ site in the chloroplast c14 ring changes rapidly and consistently into that reported for the c15 ring, indicating that the latter represents a common binding mode. To assess this hypothesis, we have remodeled the c14 ring by molecular replacement using the published structure factors. The resulting structure provides clear evidence in support of a common binding site conformation and is also considerably improved statistically. These findings, taken together with a sequence analysis of c-subunits in the ATP synthase family, indicate that the so-called proton-locked conformation observed in the c15 ring may be a common characteristic not only of light-driven systems such as chloroplasts and cyanobacteria but also of a selection of other bacterial species.  相似文献   

5.
Meier T  Dimroth P 《EMBO reports》2002,3(11):1094-1098
The oligomeric c-rings of Na+-translocating F1F0 ATP synthases exhibit unusual stability, resisting even boiling in SDS. Here, we show that the molecular basis for this remarkable property is intersubunit crossbridging by Na+ or Li+ ions. The heat stability of c11 was dependent on the presence of Na+ or Li+ ions. For equal stability, 10 times higher Li+ than Na+ concentrations were required, reflecting the 10 times lower binding affinity for Li+ than for Na+. In a recent structural model of c11, the Na+ or Li+ binding ligands are located on neighboring c-subunits, which thus become crossbridged by the binding of either alkali ion with a concomitant increase in the stability of the ring. Site-directed mutagenesis strengthens the essential role of glutamate 65 in the crossbridging of the subunits and also corroborates the proposed stabilizing effect of an ion bridge including aspartate 2.  相似文献   

6.
《BBA》2014,1837(6):940-952
Archaea live under different environmental conditions, such as high salinity, extreme pHs and cold or hot temperatures. How energy is conserved under such harsh environmental conditions is a major question in cellular bioenergetics of archaea. The key enzymes in energy conservation are the archaeal A1AO ATP synthases, a class of ATP synthases distinct from the F1FO ATP synthase ATP synthase found in bacteria, mitochondria and chloroplasts and the V1VO ATPases of eukaryotes. A1AO ATP synthases have distinct structural features such as a collar-like structure, an extended central stalk, and two peripheral stalks possibly stabilizing the A1AO ATP synthase during rotation in ATP synthesis/hydrolysis at high temperatures as well as to provide the storage of transient elastic energy during ion-pumping and ATP synthesis/-hydrolysis. High resolution structures of individual subunits and subcomplexes have been obtained in recent years that shed new light on the function and mechanism of this unique class of ATP synthases. An outstanding feature of archaeal A1AO ATP synthases is their diversity in size of rotor subunits and the coupling ion used for ATP synthesis with H+, Na+ or even H+ and Na+ using enzymes. The evolution of the H+ binding site to a Na+ binding site and its implications for the energy metabolism and physiology of the cell are discussed.  相似文献   

7.
Mrp antiporters and their homologues in the cation/proton antiporter 3 family of the Membrane Transporter Database are widely distributed in bacteria. They have major roles in supporting cation and cytoplasmic pH homeostasis in many environmental, extremophilic, and pathogenic bacteria. These antiporters require six or seven hydrophobic proteins that form hetero-oligomeric complexes, while most other cation/proton antiporters require only one membrane protein for their activity. The resemblance of three Mrp subunits to membrane-embedded subunits of the NADH:quinone oxidoreductase of respiratory chains and to subunits of several hydrogenases has raised interest in the evolutionary path and commonalities of their proton-translocating domains. In order to move toward a greater mechanistic understanding of these unusual antiporters and to rigorously demonstrate that they function as secondary antiporters, powered by an imposed proton motive force, we established a method for purification and functional reconstitution of the seven-subunit Mrp antiporter from alkaliphilic Bacillus pseudofirmus OF4. Na+/H+ antiporter activity was demonstrated by a fluorescence-based assay with proteoliposomes in which the Mrp complex was coreconstituted with a bacterial FoF1-ATPase. Proton pumping by the ATPase upon addition of ATP generated a proton motive force across the membranes that powered antiporter activity upon subsequent addition of Na+.  相似文献   

8.
In Propionigenium modestum, ATP is manufactured from ADP and phosphate by the enzyme ATP synthase using the free energy of an electrochemical gradient of Na+ ions. The P. modestum ATP synthase is a clear member of the family of F-type ATP synthases and the only major distinction is an extension of the coupling ion specificity to H+, Li+, or Na+, depending on the conditions. The use of Na+ as a coupling ion offers unique experimental options to decipher the ion-translocation mechanism and the osmotic and mechanical behavior of the enzyme. The single a subunit and the oligomer of c subunits are part of the stator and rotor, respectively, and operate together in the ion-translocation mechanism. During ATP synthesis, Na+ diffuses from the periplasm through the a subunit channel onto the Na+ binding site on a c subunit. From there it dissociates into the cytoplasm after the site has rotated out of the interface with subunit a. In the absence of a membrane potential, the rotor performs Brownian motions into either direction and Na+ ions are exchanged between the two compartments separated by the membrane. Upon applying voltage, however, the direction of Na+ flux and of rotation is biased by the potential. The motor generates torque to drive the rotation of the subunit, thereby releasing tightly bound ATP from catalytic sites in F1. Hence, the membrane potential plays a pivotal role in the torque-generating mechanism. This is corroborated by the fact that for ATP synthesis, at physiological rates, the membrane potential is indispensable. We propose a catalytic mechanism for torque generation by the Fo motor that is in accord with all experimental data and is in quantitative agreement with the requirement for ATP synthesis.  相似文献   

9.
猪心线粒体Fo的纯化、重建及其质子转运功能   总被引:1,自引:0,他引:1  
比较了猪心线粒体FoF1-ATPase膜部分Fo的四种纯化方法.结果表明,用NaBr从亚线粒体除去FoF1-ATPase的水溶性部分F1-ATPase后,再以CHAPS增溶,并经蔗糖梯度离心,可获得高纯度的Fo.SDS-聚丙烯酰胺凝胶电泳鉴定表明,纯化的Fo含有b、OSCP(寡霉素敏感授予蛋白)、d、a、e、F6、IF1、A6L和c等9种亚基.用去污剂稀释法将纯化的Fo在脂质体上重建后,重建Fo表现较高的被动转运质子活性.这为在体外深入研究Fo的活性、构象与膜脂的关系,以及Fo与F1-ATPase的组装等提供了很好的实验模型.  相似文献   

10.
We evaluated the H+:Na+ coupling ratio of the Na+-H+ exchanger present in microvillus membrane vesicles isolated from the rabbit renal cortex. Our approach was to impose transmembrane Na+ and H+ gradients of varying magnitude and then to measure the net flux of Na+ over the subsequent 5-s period. The Na+-H+ exchanger was observed to be at equilibrium (i.e. no significant net Na+ flux) whenever [Na+]i/[Na+]o was equal to [H+]i/[H+]o. Moreover, under all conditions the magnitude and direction of net Na+ flux was independent of changes in the transmembrane electrical potential difference. These results are consistent with a value of 1.0 for the coupling ratio of Na+-H+ exchange in renal microvillus membrane vesicles.  相似文献   

11.
H+-transporting, F1Fo-type ATP synthases utilize a transmembrane H+ potential to drive ATP formation by a rotary catalytic mechanism. ATP is formed in alternating β subunits of the extramembranous F1 sector of the enzyme, synthesis being driven by rotation of the γ subunit in the center of the F1 molecule between the alternating catalytic sites . The H+ electrochemical potential is thought to drive γ subunit rotation by first coupling H+ transport to rotation of an oligomeric rotor of c subunits within the transmembrane Fo sector. The γ subunit is forced to turn with the c-oligomeric rotor due to connections between subunit c and the γ and ε subunits of F1. In this essay we will review recent studies on the Escherichia coli Fo sector. The monomeric structure of subunit c, determined by NMR, shows that subunit c folds in a helical hairpin with the proton carrying Asp61 centered in the second transmembrane helix (TMH). A model for the structural organization of the c10 oligomer in Fo was deduced from extensive cross-linking studies and by molecular modeling. The model indicates that the H+-carrying carboxyl of subunit c is occluded between neighboring subunits of the c10 oligomer and that two c subunits pack in a “front-to-back” manner to form the H+ (cation) binding site. In order for protons to gain access to Asp61 during the protonation/deprotonation cycle, we propose that the outer, Asp61-bearing TMH-2s of the c-ring and TMHs from subunits composing the inlet and outlet channels must turn relative to each other, and that the swiveling motion associated with Asp61 protonation/deprotonation drives the rotation of the c-ring. The NMR structures of wild-type subunit c differs according to the protonation state of Asp61. The idea that the conformational state of subunit c changes during the catalytic cycle is supported by the cross-linking evidence in situ, and two recent NMR structures of functional mutant proteins in which critical residues have been switched between TMH-1 and TMH-2. The structural information is considered in the context of the possible mechanism of rotary movement of the c10 oligomer during coupled synthesis of ATP.  相似文献   

12.
The effects of temperature on interactions between univalent cations or ATP and the p-nitrophenylphosphatase activity associated with brain (Na+,K+)-ATPase were examined. The apparent affinity for K+ activation under conditions favoring the moderate affinity site was temperature dependent, increasing with decreasing temperature. A comparison of univalent cations showed that the negative apparent ΔH and ΔS for cation binding increased with increasing apparent cation affinity. In contrast to the case with the moderate affinity sites, apparent affinity for the high affinity K+ site was independent of temperature. As temperature decreased, properties of moderate affinity site binding approached those of the high affinity site. The temperature dependence of ATP inhibition was opposite to that for K+ activation, with positive apparent ΔH and ΔS. The apparent ΔH and ΔS for cation binding approached those for the overall conformational change to K+-sensitive enzyme as cation affinity increased. These data suggest that E2, the K+-sensitive form of (Na+,K+)-ATPase, is stabilized by forces that require a decrease in entropy, explaining the predominant existence of E1 at physiologic temperatures. A conformational change leading to stabilization of E2 at higher temperatures can be produced by binding of univalent cations to a moderate affinity, presumably intracellular, site. This effect is counteracted by ATP. ATP also appears to alter the selectivity of this site to favor Na+ over K+ binding.  相似文献   

13.
The Na+/K+-ATPase exports 3Na+ and imports 2K+ at the expense of the hydrolysis of 1 ATP. In the absence of K+, it carries on electroneutral, Na+-dependent transient charge movement (also known as “electroneutral Na+/Na+ exchange mode”) and produces a transient current containing faster and slower components in response to a sudden voltage step. Components with different speeds represent sequential release of Na+ ions from three binding sites. The effect of holding potential on slow charge movement was studied in the presence of different concentrations of ADPi, Nai+ and Nao+ with the intention of improving our understanding of Nai+ binding. However, the manipulation of [ADP]i and [Na+]i did not cause as pronounced changes as predicted in the magnitude of charge movement (Q tot), which indicated that our experimental conditions were not able to backwardly drive reaction across the energy barrier to Nai+ release/rebinding steps. On the contrary, lowering [Na+]o caused evident dependence of Q tot on holding potential, with characteristics suggesting that pumps were escaping from E2P through the uncoupled Na+ efflux activity.  相似文献   

14.
The effects of the solvents deuterated water (2H2O) and dimethyl sulfoxide (Me2SO) on [3H]ouabain binding to (Na+,K+)-ATPase under different ligand conditions were examined. These solvents inhibited the type I ouabain binding to the enzyme (i.e., in the presence of Mg2++ATP+Na+). In contrast, both solvents stimulated type II (i.e., Mg2++Pi-, or Mn2+-dependent) binding of the drug. The solvent effects were not due to pH changes in the reaction. However, pH did influence ouabain binding in a differential manner, depending on the ligands present. For example, changes in pH from 7.05 to 7.86 caused a drop in the rate of binding by about 15% in the presence of Mg2++Na++ATP, 75% in the Mg2++Pi system, and in the presence of Mn2+ an increase by 24% under similar conditions. Inhibitory or stimulatory effects of solvents were modified as various ligands, and their order of addition, were altered. Thus, 2H2O inhibition of type I ouabain binding was dependent on Na+ concentration in the reaction and was reduced as Na+ was elevated. Contact of the enzyme with Me2SO, prior to ligands for type I binding, resulted in a greater inhibition of ouabain binding than that when enzyme was exposed to Na++ATP first and then to Me2SO. Likewise, the stimulation of type II binding was greater when appropriate ligands acted on enzyme prior to addition of the solvent. Since Me2SO and 2H2O inhibit type I ouabain binding, it is proposed that this reaction is favored under conditions which promote loss of H2O, and E1 enzyme conformation; the stimulation of type II ouabain binding in the presence of the solvents suggests that this type of binding is favored under conditions which promote the presence of H2O at the active enzyme center and E2 enzyme conformation. This postulation of a role of H2O in modulating enzyme conformations and ouabain interaction with them is in concordance with previous observations.  相似文献   

15.
Summary We have investigated the kinetic properties of the human red blood cell Na+/H+ exchanger to provide a tool to study the role of genetic, hormonal and environmental factors in its expression as well as its functional properties in several clinical conditions. The present study reports its stoichiometry and the kinetic effects of internal H+ (H i ) and external Na+ (Na o ) in red blood cells of normal subjects.Red blood cells with different cell Na+ (Na i ) and pH (pH i ) were prepared by nystatin and DIDS treatment of acid-loaded cells. Unidirectional and net Na+ influx were measured by varying pH i (from 5.7 to 7.4), external pH (pH o ), Na i and Na o and by incubating the cells in media containing ouabain, bumetanide and methazolamide. Net Na+ influx (Na i <2.0 mmol/liter cell, Na o = 150mm) increased sigmoidally (Hill coefficient 2.5) when pH i fell below 7.0 and the external pH o was 8.0, but increased linearly at pH o 6.0. The net Na+ influx driven by an outward H+ gradient was estimated from the difference of Na+ influx at the two pH o levels (pH o 8 and pH o 6). The H+-driven Na+ influx reached saturation between pH i 5.9 and 6.1. TheV max had a wide interindividual variation (6 to 63 mmol/liter cell · hr, 31.0±3, mean±sem,n=20). TheK m for H i to activate H+-driven Na+ influx was 347±30nm (n=7). Amiloride (1mm) or DMA (20 m) partially (59±10%) inhibited red cell Na+/H+ exchange. The stoichiometric ratio between H+-driven Na+ influx and Na+-driven H+ efflux was 11. The dependence of Na+ influx from Na o was studied at pH i 6.0, and Na i lower than 2 mmol/liter cell at pH o 6.0 and 8.0. The meanK m for Na o of the H+-gradient-driven Na+ influx was 55±7mm.An increase in Na i from 2 to 20 mmol/liter cell did not change significantly H+-driven net Na+ influx as estimated from the difference between unidirectional22Na influx and efflux. Na+/Na+ exchange was negligible in acid-loaded, DIDS-treated cells. Na+ and H+ efflux from acid-loaded cells were inhibited by amiloride analogs in the absence of external Na+ indicating that they may represent nonspecific effects of these compounds and/or uncoupled transport modes of the Na+/H+ exchanger.It is concluded that human red cell Na+/H+ exchange performs 11 exchange of external Na+ for internal protons, which is partially amiloride sensitive. Its kinetic dependence from internal H+ and external Na+ is similar to other cells, but it displays a larger variability in theV max between individuals.  相似文献   

16.
The x-ray structure of LeuT, a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters, provides a great opportunity to better understand the molecular basis of monovalent cation selectivity in ion-coupled transporters. LeuT possesses two ion binding sites, NA1 and NA2, which are highly selective for Na+. Extensive all-atom free-energy molecular dynamics simulations of LeuT embedded in an explicit membrane are performed at different temperatures and various occupancy states of the binding sites to dissect the molecular mechanism of ion selectivity. The results show that the two binding sites display robust selectivity for Na+ over K+ or Li+, the competing ions of most similar radii. Of particular interest, the mechanism primarily responsible for selectivity for each of the two binding sites appears to be different. In NA1, selectivity for Na+ over K+ arises predominantly from the strong electrostatic field arising from the negatively charged carboxylate group of the leucine substrate coordinating the ion directly. In NA2, which comprises only neutral ligands, selectivity for Na+ is enforced by the local structural restraints arising from the hydrogen-bonding network and the covalent connectivity of the polypeptide chain surrounding the ion according to a “snug-fit” mechanism.  相似文献   

17.
Acid sensing ion channels (ASICs) are cation-selective membrane channels activated by H+ binding upon decrease in extracellular pH. It is known that Ca2+ plays an important modulatory role in ASIC gating, competing with the ligand (H+) for its binding site(s). However, the H+ or Ca2+ binding sites involved in gating and the gating mechanism are not fully known. We carried out a computational study to investigate potential cation and H+ binding sites for ASIC1 via all-atom molecular dynamics simulations on five systems. The systems were designed to test the candidacy of some acid sensing residues proposed from experiment and to determine yet unknown ligand binding sites. The ion binding patterns reveal sites of cation (Na+ and Ca2+) localization where they may compete with protons and influence channel gating. The highest incidence of Ca2+ and Na+ binding is observed at a highly acidic pocket on the protein surface. Also, Na+ ions fill in an inner chamber that contains a ring of acidic residues and that is near the channel entrance; this site could possibly be a temporary reservoir involved in ion permeation. Some acidic residues were observed to orient and move significantly close together to bind Ca2+, indicating the structural consequences of Ca2+ release from these sites. Local structural changes in the protein due to cation binding or ligand binding (protonation) are examined at the binding sites and discussed. This study provides structural and dynamic details to test hypotheses for the role of Ca2+ and Na+ ions in the channel gating mechanism.  相似文献   

18.
Intraerythrocytic malaria parasites produce vast amounts of lactic acid through glycolysis. While the egress of lactate is very rapid, the mode of extrusion of H+ is not known. The possible involvement of a Na+/H+ antiport in the extrusion of protons across the plasma membrane of Plasmodium falciparum has been investigated by using the fluorescent pH probe 6-carboxyfluorescein. The resting cytosolic pH was 7.27 ± 0.1 in ring stage parasites and 7.31 ± 0.12 in trophozoites. Spontaneous acidification of parasite cytosol was observed in Na+-medium and realkalinization occurred upon addition of Na+ to the medium in a concentration-dependent manner, with no apparent saturation. The rate of H+-at the ring stage was higher than that at the trophozoite stage due to the larger surface/volume ratio of the young parasite stage. Na+-H+-was: 1) inhibited by the Na+/H+ inhibitors amiloride and 5-(N-ethyl-isopropyl) amiloride (EIPA), though at relatively high concentrations; 2) augmented with rising pH6 (pHi = 6.2 [Na+]o = 30 mM); and 3) decreased with increasing pHi (pHo = 7.4; [Na+]o = 30 mM). The pHi and the pHo dependencies of H+-were almost identical at all parasite stages. Only at pHi > 7.6 efflux was totally obliterated. The target of this inhibitory effect is probably other than the antiport. Results indicate that H+-is mediated by a Na+/H+ antiport which is regulated by host and parasite pH and by the host cytosol sodium concentration. The proton transport capacity of the antiport can easily cope with all the protons of lactic acid produced by parasite's glycolysis. © 1993 Wiley-Liss, Inc.  相似文献   

19.
Summary Rabbit erythrocytes are well known for possessing highly active Na+/Na+ and Na+/H+ countertransport systems. Since these two transport systems share many similar properties, the possibility exists that they represent different transport modes of a single transport molecule. Therefore, we evaluated this hypothesis by measuring Na+ transport through these exchangers in acid-loaded cells. In addition, selective inhibitors of these transport systems such as ethylisopropyl-amiloride (EIPA) and N-ethylmaleimide (NEM) were used. Na+/Na+ exchange activity, determined as the Na o + -dependent22Na efflux or Na i + -induced22Na entry was completely abolished by NEM. This inhibitor, however, did not affect the H i + -induced Na+ entry sensitive to amiloride (Na+/H+ exchange activity). Similarly, EIPA, a strong inhibitor of the Na+/H+ exchanger, did not inhibit Na+/Na countertransport, suggesting the independent nature of both transport systems. The possibility that the NEM-sensitive Na+/Na+ exchanger could be involved in Na+/H+ countertransport was suggested by studies in which the net Na+ transport sensitive to NEM was determined. As expected, net Na+ transport through this transport system was zero at different [Na+] i /[Na+] o ratios when intracellular pH was 7.2. However, at pH i =6.1, net Na+ influx occurred when [Na+] i was lower than 39mm. Valinomycin, which at low [K+] o was lower than 39mm. Valinomycin, which at low [K+] o clamps the membrane potential close to the K+ equilibrium potential, did not affect the net NEM-sensitive Na+ entry but markedly stimulated, the EIPA-and NEM-resistant Na+ uptake. This suggest that the net Na+ entry through the NEM-sensitive pathway at low pH i , is mediated by an electroneutral process possibly involving Na+/H+ exchange. In contrast, the EIPA-sensitive Na+/H+ exchanger is not involved in Na+/Na+ countertransport, because Na+ transport through this mechanism is not affected by an increase in cell Na from 0.4 to 39mm. Altogether, these findings indicate that both transport systems: the Na+/Na+ and Na+/H+ exchangers, are mediated by distinct transport proteins.  相似文献   

20.
Prevailing models postulate that high Ca2+ selectivity of Ca2+ release-activated Ca2+ (CRAC) channels arises from tight Ca2+ binding to a high affinity site within the pore, thereby blocking monovalent ion flux. Here, we examined the contribution of high affinity Ca2+ binding for Ca2+ selectivity in recombinant Orai3 channels, which function as highly Ca2+-selective channels when gated by the endoplasmic reticulum Ca2+ sensor STIM1 or as poorly Ca2+-selective channels when activated by the small molecule 2-aminoethoxydiphenyl borate (2-APB). Extracellular Ca2+ blocked Na+ currents in both gating modes with a similar inhibition constant (Ki; ∼25 µM). Thus, equilibrium binding as set by the Ki of Ca2+ blockade cannot explain the differing Ca2+ selectivity of the two gating modes. Unlike STIM1-gated channels, Ca2+ blockade in 2-APB–gated channels depended on the extracellular Na+ concentration and exhibited an anomalously steep voltage dependence, consistent with enhanced Na+ pore occupancy. Moreover, the second-order rate constants of Ca2+ blockade were eightfold faster in 2-APB–gated channels than in STIM1-gated channels. A four-barrier, three–binding site Eyring model indicated that lowering the entry and exit energy barriers for Ca2+ and Na+ to simulate the faster rate constants of 2-APB–gated channels qualitatively reproduces their low Ca2+ selectivity, suggesting that ion entry and exit rates strongly affect Ca2+ selectivity. Noise analysis indicated that the unitary Na+ conductance of 2-APB–gated channels is fourfold larger than that of STIM1-gated channels, but both modes of gating show a high open probability (Po; ∼0.7). The increase in current noise during channel activation was consistent with stepwise recruitment of closed channels to a high Po state in both cases, suggesting that the underlying gating mechanisms are operationally similar in the two gating modes. These results suggest that both high affinity Ca2+ binding and kinetic factors contribute to high Ca2+ selectivity in CRAC channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号